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A A repeated game with infinitely many

extreme equilibrium payoffs

In this Online Appendix, we give additional details on the three-player example from Section

5.1, depicted in Figure 4, that has infinitely many extreme equilibrium payoffs. First we

construct a self-generating set that turns out to be V . We will then argue that this is in fact

the equilibrium payoff set.

A.1 The equilibrium payoff set

Recall that only four action profiles can be played in equilibrium, which induce payoffs

(4, 4, 4) and permutations of (8, 8, 0). Note that (4, 4, 4) is one of the equilibrium payoffs.

We will generate two sequences of payoffs {ul}∞l=0 and {vl}∞l=0. The payoff u0 corresponds

to u in the right panel of Figure 5, and the subsequent sequence is the sequence of extreme

payoffs that move counter-clockwise around the frontier. The payoff v0 corresponds to v in

the right panel of Figure 5, and the sequence of extreme points moves clockwise around the

frontier. Aside from (4, 4, 4), the extreme equilibrium payoffs are permutations of points in

these sequences.

Every vl is generated the same way, by randomizing between ul and (4, 4, 4), to make the

incentive constraint for player 1 bind, i.e.,

vl =

(
6− 1

ul2 − 4
, 6 +

ul1 − 4

ul2 − 4
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
βl(3, ul1, u

l
2) + (1− βl)(4, 4, 4)

]
, (1)
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where

βl =
2

ul2 − 4
. (2)

The payoffs ul are generated in three different ways. First, the permutations of u0, i.e.,

the extreme points on the efficient frontier comprise a self-generating set and are generated

according to

u0 =

(
11

2
,
15

2
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
1

4

(
3,

11

2
,
15

2

)
+

3

4

(
3,

15

2
,
11

2

)]
,

i.e., by playing (B,B,C) for one period, followed by randomizing over two other efficient

extreme payoffs to make the incentive constraint (player 1’s in this case) bind.

Given u0, we can generate v0 according to (1) and (2), which turns out to be v0 =

(40/7, 45/7, 3), with β0 = 4/7. The payoff u1 is then generated by playing (B,B,C) for one

period, followed by randomization between two permutations of v0:

u1 =

(
11

2
,
99

14
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
α1(3, v02, v

0
1) + (1− α1)(3, v01, v

0
2)
]
.

where α1 = 3/5 is again chosen to make player 1’s incentive constraint bind. Finally, the

rest of the ul sequence for l ≥ 2 is generated according to

ul =

(
6− 1

vl−22 − 4
, 6 +

vl−21 − 4

vl−22 − 4
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
αl(3, vl−21 , vl−22 ) + (1− αl)(4, 4, 4)

]
,

where

αl =
2

vl−22 − 4

is again chosen to make player 1’s constraint bind.

Finally, these sequences converge to the accumulation points in Figure 5, which are

permutations of ((9+
√

5)/2, (11+
√

5)/2, 3). These payoffs, together with (4, 4, 4), comprise

another self-generating set, where(
9 +
√

5

2
,
11 +

√
5

2
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
α∗

(
3,

9 +
√

5

2
,
11 +

√
5

2

)
+ (1− α∗)(4, 4, 4)

]
,

where α∗ = 3−
√

5.
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Figure 6: Three different bounds on the equilibrium payoff set. Left: The convex hull of
the flow payoffs. Center: The left set less the payoffs that are below the threat point.
Right: Additional payoffs removed to create the set W̃0. Faces that coincide with incentive
constraints are colored tan.

A.2 Feasible set

We next argue that the equilibrium payoff set is the convex hull of the points constructed

heretofore. The analysis consists of several steps. First, since only these three action pro-

files can possibly be played in equilibrium, we know that the equilibrium payoff set must

be contained in the triangular pyramid with peak at (4, 4, 4) and base corners which are

permutations of (0, 8, 8). Thus, the pyramid “points” in the direction (−1,−1,−1). In the

sequel, we refer to this as the “feasible set.”

A.3 Equilibrium threats

Clearly, the equilibrium threat point v must be less than 4 (since the Nash equilibrium

is certainly an equilibrium payoff). Thus, from the definition of B̃, the only way that

player 3 can obtain a lower payoff is if (B,B,C) is played in the first period, with a flow

payoff of (8, 8, 0). Moreover, any payoff we generate with this action must be weakly above

(8, 8, 0) in the direction (0, 0,−1), and therefore it must be generated with a binding incentive

constraint. But players 1 and 2 are playing myopic best responses at (B,B,C), so the only

relevant incentive constraint is player 3’s. Plugging in the specified payoffs and discount

factor, we conclude that

v =
1

2
3 +

1

2
v

⇐⇒ v = 3.
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A.4 The efficient frontier

In addition, we claim that no equilibrium payoff can lie above the plane that contains (4, 4, 4),

(11/2, 15/2, 3), and (3, 15/2, 11/2), i.e., with level x and direction λ such that

x = λ · (4, 4, 4) = λ ·
(

11

2
,
15

2
, 3

)
= λ ·

(
3,

15

2
,
11

2

)
⇐⇒ x = −52, λ = (−7, 1,−7) . (3)

(The permutations of this statement also apply when we give the low payoff of 3 to player

1 or player 2). The reason is as follows. Consider maximizing payoffs in this direction. The

optimal level must be at least −52, which is that of (4, 4, 4), the Nash equilibrium. But the

flow payoff (8, 0, 8) has level −112, which is strictly below the Nash level, and hence cannot

generate the optimal payoff. So, we may ask, what is the highest level that can be generated

by (0, 8, 8) or (8, 8, 0)? We will consider the former, and the case for the latter is symmetric.

In this direction, the flow payoffs (0, 8, 8) are maximal among all payoffs in the feasible

pyramid, so that the minimal regime must be APS. To satisfy incentive compatibility, the

continuation value of player 1 must be at least 6. Player 3’s continuation value must be

at least 3 from incentive compatibility. Finally, the sum of the payoffs is at most 16 (from

feasibility). It follows that the highest level that can be attained in this direction is

λ ·
(

1

2
(0, 8, 8) +

1

2
(6, 7, 3)

)
= −52.

Moreover, the permutations of u0 = (11/2, 15/2, 3) are a self-generating set. In particular,(
11

2
,
15

2
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
1

4

(
3,

11

2
,
15

2
,

)
+

3

4

(
3,

15

2
,
11

2

)]
.

We conclude that these are all extreme equilibrium payoffs (being at the corners of the

hyperplanes in (3), the minimum payoff constraints, and the efficient frontier. Moreover, the

convex hull of these points is the set of Pareto efficient payoffs.

The equilibrium payoff set must lie inside the polyhedron defined by the hyperplanes in

(3), the constraints vi ≥ 3 for all i, and the constraint
∑

i vi ≤ 16. We denote this set by Ŵ .

A.5 Structure of minimal regimes

Note that since (A,A,A) is a Nash equilibrium, no matter what feasible set W we consider, as

long as V ⊆ W , the recursive regime will be minimal for (A,A,A), i.e., x(λ, (A,A,A),W ) =

λ · (4, 4, 4).
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In addition, we claim that whenever (B,B,C) is maximal, the minimal regime must

be APS. For we already know that the payoffs (4, 4, 4), and permutations of u0 can be

generated. This pins down the optimal level exactly in all directions except those which

are in the interior of Λ̂1 = co{(−7,−7, 1), (−7, 1,−7), (−1, 0, 0)}, or permutations thereof.

(Outside of these sets of directions, an optimal payoff must be one of the aforementioned

extreme points). Λ̂i denotes the permutations of these directions, where we give the weight

−1 to a different player. For directions in Λ̂1, it is easy to argue that (0, 8, 8) is higher than

all other payoffs in the feasible triangle, so that necessarily the minimal regime for (C,B,B)

is APS. In addition, either (8, 0, 8) or (8, 8, 0) is minimal among all feasible payoffs, so that

the corresponding minimal regimes are all recursive, and hence these action profiles cannot

be maximal in directions in Λ̂1.

This means that for directions in Λ̂1, the optimal level is simply given by x̂APS((C,B,B), λ),

and we can reduce the computation of B̃ to simply computing the sets C(a) (where we drop

the argument W for notational simplicity) for each a 6= (A,A,A). Specifically, for all W

contained within Ŵ ,

B̃(W ) = co
(
{(4, 4, 4)} ∪a∈{(C,B,B),(B,C,B),(B,B,C)} C(a)

)
.

We also note for future reference that if v ∈ C(a) and v′ ∈ C(a′), then there is no direction in

which both v and v′ are both maximal. This comes from the fact that the sets of directions

λ̂i are disjoint.

A.6 Two more bounds on binding payoffs

The focus of the analysis now shifts to the sets C(a) where ai = C and a−i = (B,B) for

some i ∈ {1, 2, 3}. Ultimately we will construct a sequence of iterates using the B̃ operator

that converge to V and demonstrate that the limit set has infinitely many extreme points.

Before doing so, we will slightly refine the approximation so that the sequence converges in

an orderly manner.

It is straightforward that any v ∈ C(B,B,C) must satisfy vj ≥ 11/2 for j = 1, 2. This

follows from the fact that the flow payoff is 8 and the minimal equilibrium payoff is 3.

In addition, consider the direction (−7,−7,−29). We claim that no payoff in C(a) can

be above the level −172. This level is attained by the Nash payoff (4, 4, 4) and also by

(8, 8, 0) with maximal continuation payoffs w such that w3 ≥ 6 and w · (1,−7,−7) ≤ −52.
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In particular, the solution is attained by payoffs

v0 =

(
45

7
,
40

7
, 3

)
=

1

2
(8, 8, 0) +

1

2

[
4

7

(
11

2
, 3,

15

2

)
+

3

7
(4, 4, 4)

]
.

Note that since the permutations of u0 = (15/2, 11/2, 3) are already known to be part of a

self-generating set, we know that v0 are also equilibrium payoffs, and hence the plane with

level −172 in direction (−7,−7,−29) is a supporting hyperplane of V . In fact, it intersects

V in a face that contains (45/7, 40/7, 3), (40/7, 45/7, 3), and (4, 4, 4).

We thus conclude that C(B,B,C) is contained within the trapezoid of payoffs v defined

by v3 = 3,
∑

i vi ≤ 16, v1 ≥ 11/2, v2 ≥ 11/2, and −29v3−7(v1 +v2) ≤ −172. This trapezoid

is denoted by C̃0
3 (C̃k

i will later denote a sequence of minimal payoff sets for player i). We

note for future reference that C̃0
3 is the convex hull of the payoffs (15/2, 11/2, 3) and

w0 = (11/2, 93/14, 3)

and the permutations obtained by interchanging the payoffs of players 1 and 2. Note that

the payoff w0 is at the intersection of the bounds v1 ≥ 11/2, v3 = 3, and −29v3−7(v1+v2) ≤
−172. We correspondingly define the sets C̃0

1 and C̃0
2 by permuting players’ payoffs. We let

W̃ 0 = co
(
{(4, 4, 4)} ∪i=1,2,3 C̃

0
i

)
,

which will serve as the initial set for the sequence we generate in the next and final subsection.

A.7 The sequence {W̃ k}

We now analyze the sequence of sets produced by iterative application of B̃ to W̃ 0. The

critical issue is to determine the shape of the sets C̃k+1
i . In the following discussion, we take

the perspective of minimum payoffs for player i = 3, but the case is symmetric for the other

players.

We will argue that at iteration k ≥ 0, the set C̃k
3 is the convex hull of the points {ul}kl=0,

{vl}k−1l=0 , the payoff wk defined as above for k = 0 and by

wk =
1

2
(8, 8, 0) +

1

2

[
2

wk−12 − 4

(
3, wk−11 , wk−12

)
+

(
1− 2

wk−12

)
(4, 4, 4)

]
for k ≥ 1, and the permutations thereof obtained by interchanging the payoffs of players 1

and 2. The base case has already been given for k = 0 in the previous subsection.

Let us take as an inductive hypothesis that the set W̃ k is comprised of the following
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Figure 7: The sets C̃k
i for k ∈ {0, 1, 2, 3}. At every iteration, four new faces are added to

each C̃k
i . The right two panels show the left-hand corner of the set at different levels of

magnification.

edges: First, there are edges between the payoffs in C̃k
i . Second, there are edges between

permutations of u0 that are in different C̃k
i sets. Finally, there are edges that connect all of

the payoffs in C̃0
i with the Nash payoff (4, 4, 4).

Given this inductive hypothesis for k − 1, we can easily compute the set C̃k
3 . First,

we compute the intersection of W̃ k−1 with the plane w3 = 6 to find the extreme binding

continuation values for player 3. We then average these payoff with the flow payoff (8, 8, 0)

to obtain Ĉk
3 . The intersections with the w3 = 6 plane must lie on edges of W̃ k−1 that

have one point with v3 higher than 6 and another point with v3 less than 6. There are

three kinds of such edges that have intersections with the w3 = 6 plane: The edges between

permutations of u0, e.g., (3, 11/2, 15/2) and (3, 15/2, 11/2), which will generate the point u0;

The edges between permutations of w0 (when k = 1) or between permutations of v0, which

generate u1 (when k > 1); and the edges between one of the payoffs whose permutation is in

{ul}k−1l=0 ∪ {vl}
k−2
l=0 ∪ {wk−1}, and the Nash payoff (4, 4, 4), which generate a payoff vl, ul+2,

or wk, respectively. From the inductive hypothesis, all of these intersections must result in

new extreme payoffs of C̃k
3 .

As an example, when k = 1, the payoffs generated will be u0, u1, v0 and w1, as well as

their permutations when we swap the payoffs of players 1 and 2. The first five elements of

the C̃k
3 sequence are depicted in Figure 7.

Finally, it remains to argue that the inductive hypothesis will be true for k. The new

payoffs generated in C̃k
3 can be divided into those where player 1’s payoff is at least 6, and

those where player 1’s payoff is less than 6. Focus for now on the former. These payoffs

are maximal for directions that are convex combinations of (−7,−7,−29), (1,−7,−7), and

(0, 0,−1). Note that we have already characterized supporting hyperplanes of V in these
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Figure 8: Two views of W̃ 5. Flow payoffs are marked with red crosses. Efficient extreme
payoffs are red dots, inefficient extreme payoffs are blue dots. The minimum incentive
compatible continuation value for player 3 (whose payoff is on the z axis) is a blue plane. The
intersection of this set with the payoff set, contracted towards the payoff (8, 8, 0), generates
the bottom flat of V .

three directions, which are also necessarily supporting hyperplanes of W̃ k. For directions

other than (0, 0,−1) and (1,−7,−7), the only other optimal payoff is (4, 4, 4), so that edges

on supporting hyperplanes in these directions will be composed of either two payoffs in

Ĉk
3 with v1 ≥ 3, or one of the payoffs in C̃k

3 with v1 ≥ 6 and (4, 4, 4). For the direction

(−7,−7,−29), when k = 0, the permutations of w0 and the Nash equilibrium are all optimal,

so there is one additional edge, between the permutations of w0. For k ≥ 1, it is the

permutations of v0 and (4, 4, 4) that are optimal in this direction. Finally, for the direction

(0, 0,−1), all of the payoffs in Ĉk
3 are optimal, so edges here will be between points in Ĉk

3 .

A similar analysis applies to other extreme points, so that the inductive hypothesis is true

for k.

Note that at the kth round, we drop the permutations of wk−1, but add the permutations

of wk, vk−1, and uk. Thus, the number of extreme points increases by 12 on every iteration.

Moreover, the points uk and vk−1, once added, are never dropped, so the set of extreme

points increases without bound. In the limit, the sequence wk converges to the accumulation

point w∗, which is generated according to

w∗ =
1

2
(8, 8, 0) +

1

2
[α∗ (3, w∗1, w

∗
2) + (1− α∗)(4, 4, 4)] .
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The weight α∗ must solve

0 = −1

8
α3 +

1

2
α2 + α− 1.

This equation has three real roots, only one of which is between 0 and 1, which is α∗ = 3−
√

5.

The resulting payoff is

w∗ =

(
9 +
√

5

2
,
11 +

√
5

2
, 3

)
.

The set W̃ 5 is depicted in Figure 8. At this resolution, this set is indistinguishable from V .

As a final note, while the analysis of this game is involved, in many ways it is the simplest

example possible. Four is the minimum number of equilibrium action profiles such that the

equilibrium payoff set is full dimension, which is necessary for the number of extreme points

to be unbounded. The incentive constraints are also quite simple: One action profile is

a Nash equilibrium, and for each other equilibrium action profile, only a single incentive

constraint binds, that of the player whose payoff is being minimized.
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B Additional examples

B.1 Two-player two-state Prisoners’ Dilemma

This example illustrates the utility of the test directions in iteratively computing optimal

levels. There are two states, L and R, and the stage game in each state is a Prisoners’

Dilemma with the payoffs in Figure 9. The probability of staying in the same state is 1/3

if the players take the same action, and it is 1/2 if the players take different actions. The

discount factor is δ = 2/3.

We computed the sequence W̃k until the Hausdorff distance between successive iterations

was less than 10−8. The computation took 0.37 seconds. The sequence of payoff correspon-

dences is depicted in Figure 10. The final payoff set for the left state has six extreme points,

and the right state has four.

It turns out that the equilibrium threat point is generated by a policy that plays (D,D)

in both states in the recursive regime. The resulting threat point is

(vi(L), vi(R)) =

(
8

11
,
14

11

)
.

The utilitarian efficient payoffs that are optimal in the direction (1, 1) are generated by

playing (C,C) in both states in the recursive regime. The resulting symmetric payoffs are

19/11 in the left state and 25/11 in the right state.

We may ask, how will the optimal policy change as the direction rotates clockwise from

(1, 1)? A natural conjecture, which turns out to be correct, is that the optimal policy will

change by switching from (C,C) to (D,C) in some state. But should this switch occur first in

the left state or the right state? Both switches would move flow payoffs in the same direction

of (1,−3). But switching from (C,C) to (D,C) in state L would increase the probability

of staying at s = L where payoffs are lower, whereas switching in s = R leads to a higher

probability s = R, where payoffs are higher. Thus, less surplus is burnt by switching when

s = R, and indeed this is the correct substitution.

s = L s = R
a1/a2 D C D C
C (−1, 2) (1, 1) (1, 4) (3, 3)
D (0, 0) (2,−1) (2, 2) (4, 1)

Figure 9: A two-state Prisoners’ Dilemma. The probability of remaining in the same state
is 1/3 if ai = aj, and otherwise it is 1/2.

Our algorithm resolves this question mechanically using the test directions, which are
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s = L s = R

Figure 10: The sequence of correspondences generated by the max-min-max operator.

s = L s = R

Figure 11: Test directions for (D,C), relative to the symmetric efficient payoffs.

depicted in Figure 11. The flow payoffs from (D,C) are depicted with black stars, payoff sets

in blue, expected continuation payoff sets in red, binding incentive constraints in magenta.

The test directions are black arrows. The shallowest legitimate test directions point along

the frontier, and are generated by (D,C) in the right state. Note that there is a tie between

the recursive and APS substitutions: both move payoffs along the frontier,1 although only

the recursive substitution is “lexicographically legitimate” in the sense described in Section

4.2.4.

1In fact, there is a three-way tie, since there is a binding substitution for (C,C) in the right state that
moves payoffs in the same direction. This test direction is not depicted in Figure 11.

11



B.2 A three-player contribution game

We implemented the stochastic algorithm for three players as part of the aforementioned

SGSolve package.2 Let us illustrate the algorithm with two examples. The first example is

a simple contribution game: N = 3, S = {1, 2}, Ai(s) = {0, 1}, and

ui(a, s) = 2
N∑
j=1

aj − 3ai + 20s.

The transition probabilities are π(s|a) = 1/2 for every s and a, and δ = 2/3. The stage

game in each state is effectively a three-player Prisoners’ Dilemma.

This example illustrates how our algorithm can solve for the equilibrium payoff exactly.

We initialized the algorithm with 214 directions that are distributed around the unit sphere.

We used the convergence criterion that no directions were added or dropped between itera-

tions, and the Hausdorff distance between consecutive iterations was less than 10−8. Due to

the stochastic nature of the algorithm, its performance varies on each run. On one series of

five runs, the algorithm finished with 9 directions three times, and 10 directions the other

two. Over the course of one of the runs that terminated with 9 face directions, the algorithm

added 72 endogenous directions and dropped 277. In all cases, the algorithm converged in

45 iterations and took between 2.85 and 3.11 seconds.

One can analytically verify that the equilibrium payoff correspondence for this game

has exactly 9 face directions. Thus, in the runs where the algorithm terminated with 9

directions, it correctly identified the structure of equilibrium payoffs, which are depicted in

Figure 12. All sixteen action profiles can be sustained. The efficient points are generated

by always playing a = (1, 1, 1) in both states. There is also an inefficient point which

corresponds to the Nash equilibrium a = (0, 0, 0). The remaining points are generated by

playing permutations of a = (1, 1, 0) and (1, 0, 0). The face in which a player’s payoff is

minimized is attained by ai = 1 and a−i = (0, 0).

For comparison, we solved this game using our implementation of the JYC algorithm with

the same set of 214 initial directions. The same tolerance was achieved in 49 iterations and

3 minutes and 38.45 seconds. So, the JYC code is between one and two orders of magnitude

slower. All of our previous caveats still apply, but we find this suggestive that the stochastic

max-min-max algorithm is significantly more efficient.

A natural question is, which features of the max-min-max operator explain the difference

in performance? We also ran a version of our algorithm with the same 214 initial directions,

2We note that the graphical interface currently only works for two-player games, but the three-player
routines are part of the callable library.
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Figure 12: Equilibrium payoffs for the contribution game. The equilibrium payoff correspon-
dence is in red, and the expected equilibrium payoffs are in gray.

but where we set Λ̂k = Λ̂0 for all k, i.e., the set of directions is held fixed. In this case,

the algorithm converged in 44 iterations and 3.53 seconds. This suggests that most of the

efficiency gain comes from using the max-min-max level rather than APS. The endogeneity

of directions, however, leads to a tight limit set.

B.3 Three-player risk sharing and partial formal insurance

We solved a three-player risk-sharing game, as in Section 4. Each player now has an endow-

ment ei and their actions are vectors that specify how much they transfer to each other player.

For this particular simulation, we used u(c) =
√
c, the endowment grid is E = {0, 0.5, 1}, and

endowment distribution is independent across periods and uniform over endowment profiles

that sum to 1. The discount factor is δ = 0.6. For this simulation, we capped the algorithm

at 300 directions and iterated until a convergence threshold of 10−8. The algorithm con-

verged in 68 seconds and 33 iterations. Over the course of the computation, 492 endogenous

directions were added and 551 redundant directions were dropped. The computed expected

equilibrium payoff set is depicted in the left-hand panel of Figure 13.

As a simple application, we used our algorithms to investigate the following question:

What happens to equilibrium risk sharing and social welfare if the players can write formal

insurance contracts? If all of the players can write a formal full insurance contract, so that

they equally share their collective resources, then the welfare implications are obvious: The

sum of the agents’ surpluses must weakly increase. If only two of the three players can write

such a contract, however, the implications are ambiguous. Suppose that players 2 and 3

write such a contract, so that c2 = c3 and each consumes half of their total endowment net

of transfers to player 1, and their transfers to player 1 are chosen to maximize the joint
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Figure 13: Risk sharing with three players. Left: Expected equilibrium payoffs. Right:
Achievable (v1, v2 + v3) pairs. Non-cooperative play is in blue, and cooperation between
players 2 and 3 is in red.

surplus v2 + v3. On the one hand, players 2 and 3 should be better off, because they are

always guaranteed a minimal level of insurance, so that their autarkic payoffs are higher

with such a contract than without. On the other hand, the higher autarkic payoffs tighten

incentive constraints and may reduce risk sharing with player 1.

We used the two-player algorithm of Section 4 to investigate what would happen if play-

ers 2 and 3 behave cooperatively to maximize their joint surplus. Expected equilibrium

payoffs are plotted in red in the right-hand panel of Figure 13. For comparison, the blue

curve represents the possible (v1, v2 + v3) pairs in the game where players 2 and 3 behave

non-cooperatively. The threat payoff for players 2 and 3 is clearly higher with the contract:

their minimum joint surplus is approximately 0.805 in the non-cooperative case, and ap-

proximately 1.04 when they cooperate. A striking result is that the tightening of incentive

constraints appears to overwhelm the benefits of additional risk sharing, and the Pareto fron-

tier when players 2 and 3 cooperate is strictly below the Pareto frontier when they behave

non-cooperatively. Thus, the example illustrates how partial insurance contracts may lead

to lower social welfare.

B.4 Lower bounds on payoffs

Recall the two-state risk sharing example of Section 4 with δ = 0.7. Figure 14 compares the

upper and lower bounds on equilibrium payoffs, which are blue and red respectively. The

lower bound was computed with ε = 0.005. The red dotted line corresponds to the expansion

of the lower bound by ε in every direction, which is contained in the correspondence that

would be produced by the APS operator. The payoffs that induce the upper and lower
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Figure 14: Lower bounds on V for ε = 0.005. Dots represent the actual payoffs used to
generate the bounds.

bounds are represented as dots. Note that the distance from the payoffs to the lower bound

set varies depending on the direction of the bound. This distance is greater when more

states have a minimal regime that is recursive. When both states are binding, such as the

payoffs that approximate the threat point, the penalty is ε in both states. When one state is

binding, such as when we maximize one player’s payoff, the penalty in the binding state is

still ε, but the penalty in the recursive state is ε/(1− δ/2). When both states are recursive,

which is when the direction is close to maximizing the sum of payoffs, the penalties in both

states are ε/(1 − δ). At directions where the minimal regimes change, the penalties (and

hence the level of the optimal payoffs) change discontinuously.

The computation depicted in Figure 14 used a relatively large value for ε for visual effect.

When ε is small, the distance between the outer and inner bounds shrinks as well and appears

to go to zero. For example, we computed upper bounds on V and Vε to a tolerance of 10−7

when ε = 10−6. The extreme points of the upper bound on V are all within 10−6 of the

bounds for Vε, so that the lower and upper bounds are indistinguishable (up to the tolerance

for computing the extreme points of the upper bound).
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