
A “Pencil-Sharpening” Algorithm

for Two Player Stochastic Games

with Perfect Monitoring∗

Dilip Abreu Benjamin Brooks Yuliy Sannikov

April 28, 2016

Abstract

We study the subgame perfect equilibria of two player stochastic games with perfect

monitoring and geometric discounting. A novel algorithm is developed for calculating

the discounted payoffs that can be attained in equilibrium. This algorithm generates a

sequence of tuples of payoffs vectors, one payoff for each state, that move around the

equilibrium payoff sets in a clockwise manner. The trajectory of these “pivot” payoffs

asymptotically traces the boundary of the equilibrium payoff correspondence. We also

provide an implementation of our algorithm, and preliminary simulations indicate that

it is more efficient than existing methods. The theoretical results that underlie the

algorithm also yield a bound on the number of extremal equilibrium payoffs.

Keywords: Stochastic game, perfect monitoring, algorithm, computation.

JEL classification: C63, C72, C73, D90.

∗Abreu: Department of Economics, Princeton University, dabreu@princeton.edu; Brooks: Becker Fried-
man Institute and Department of Economics, University of Chicago, babrooks@uchicago.edu; Sannikov:
Department of Economics, Princeton University, sannikov@princeton.edu. This work has benefitted from
the comments of seminar participants at the Hebrew University and UT Austin. We have also benefitted
from the superb research assistance of Mathieu Cloutier, Moshe Katzwer, and Kai Hao Yang. Finally, we
would like to acknowledge financial support from the National Science Foundation.

1

1 Introduction

This paper develops a new algorithm for computing the subgame perfect equilibrium payoffs

of two player stochastic games with perfect monitoring. Specifically, we study the pure strat-

egy equilibria of repeated games with a stochastically evolving state variable that determines

which actions are feasible for the players, and, together with the chosen actions, induces the

players’ flow payoffs. The chosen actions in turn influence the future evolution of the state.

This classical structure is used to describe a wide range of phenomena in economics and in

other disciplines. The range of applications include: dynamic oligopoly with investment (in,

e.g., capacity, research and development, advertising), markets for insurance against income

shocks, and the dynamics of political bargaining and compromise (cf. Ericson and Pakes,

1995; Kocherlakota, 1996; Dixit, Grossman, and Gul, 2000).

Our work has three inter-related components: (i) we uncover new theoretical properties

of the equilibria that generate extreme payoffs for a fixed discount factor, (ii) we use these

properties to develop a new algorithm for calculating the set of all equilibrium payoffs, and

(iii) we provide a user-friendly implementation that other researchers can use to specify,

solve, and analyze their games of interest. Preliminary results indicate that our algorithm

is significantly more efficient than previously known computational procedures.

The standard methodology for characterizing subgame perfect equilibrium payoffs for

infinitely repeated games comes from Abreu, Pearce, and Stacchetti (1986, 1990), hereafter

APS. They showed that the set of discounted payoffs that can arise in subgame perfect

equilibria satisfies a recursive relationship, which is analogous to the Bellman equation from

dynamic programming. This recursion stems from the fact that any equilibrium payoff can

be decomposed as the flow payoff from one period of play plus the expected discounted

payoff from the next period onwards, which, by subgame perfection, is also an equilibrium

payoff. Just as the value function is the fixed point of a Bellman operator, so too the

equilibrium payoff set is the largest fixed point of a certain set operator, which maps a set

of payoffs which can be promised as continuation utilities into a set of new payoffs which

they generate. In addition, APS show that iterating this operator on a sufficiently large

initial estimate will yield a sequence of approximations that asymptotically converges to the

true equilibrium payoff set. Although APS wrote explicitly about games with imperfect

monitoring and without a state variable, their results extend in an obvious way to the case

of perfect monitoring and a stochastic state whose evolution is influenced by the players’

actions.1

1For early extensions involving a state variable see Atkeson (1991) and Phelan and Stacchetti (2001).
A more recent application is Hörner et al. (2011). For a more complete description of the self-generation
methodology for stochastic games, see Mailath and Samuelson (2006).

2

The APS algorithm does not exploit the detailed structure of equilibria nor does it focus

attention on equilibria that generate extreme payoffs.2 In contrast, Abreu and Sannikov

(2014), hereafter AS, provide an algorithm that does this for two-player repeated games with

perfect monitoring, that is, the same environment studied here but without the stochastic

state. The algorithm of AS exploits the simple structure of the equilibria that attain extreme

payoffs. Some extreme payoffs are generated with both players strictly preferring their first-

period action over any deviations, while for other payoffs, at least one player is indifferent to

deviating to another action. AS show that in the former case, the corresponding equilibrium

involves the repetition of the same action profile in every period. In the latter case, it turns

out that there are at most four payoffs that can be used as continuation values.3 Thus,

associated with each action profile there are at most four extremal equilibrium payoffs when

incentive constraints bind in the first period and at most one when incentive constraints are

slack. This leads to an obvious bound on the number of extreme points when the action sets

are finite as AS assume (and as we assume in this paper as well).

With the generalization to a stochastic game, there is not one set of equilibrium pay-

offs, but rather a set of such payoffs for each possible initial state. In this richer setting,

simultaneously considering the generation of a particular tuple4 of payoff vectors, one for

each state, leads to computationally useful insights. Consider a tuple of equilibrium payoff

vectors that maximize the same weighted sum of players’ utilities in every state, e.g., the

tuple of equilibrium payoffs that maximize player 1’s payoffs in each state. For a generic

choice of weights, these maximal payoffs are unique and are in fact extreme points of their

respective equilibrium payoff sets. We show that the equilibria that generate such maximal

payoff tuples have a great deal of common structure. Specifically, we show that behavior in

these equilibria follows a common stationary structure until the first history at which some

player’s incentive constraint binds.

To illustrate, suppose that in the initial period, the state is s and in the extremal equilib-

rium all players strictly prefer their equilibrium actions ai over any deviation. Then it must

be the case that if the state in the second period turns out (by chance) to also be s, exactly

2APS do not even assume the existence of a public randomization device, so the set of equilibrium payoffs
need not be convex.

3Due to there being perfect monitoring and two players, the locus of continuation payoffs that make
a given player indifferent to deviating is a line, and the intersection of that binding incentive constraint
with the (convex) set of equilibrium payoffs that are incentive compatible for both players has at most two
extreme points. There are therefore at most four extreme binding continuation values between the two
players’ incentive constraints, and it is one of these payoffs which must be generated by continuation play.

4Throughout our exposition, we will use the term tuple to denote a function whose domain is the set of
states and the term payoff will usually refer to a vector specifying a payoff for each player.

3

the same actions ai must be played.5 Moreover, suppose that the state switches to some s′ at

which incentive constraints are again slack, and then returns to s. Still, the players must use

the original actions ai. It is only after the state visits some s′′ at which at least one player is

indifferent to deviating that the stationarity property may break, and subsequent visits to s

or s′ may be accompanied by different equilibrium actions. This stationarity is reminiscent

of the classical observation that Markov decision problems admit an optimal policy that is

stationary (Blackwell, 1965). Furthermore, as in AS, there are still at most four payoffs that

may be generated by continuation play when the actions a are played in the first period and

some player is indifferent to deviating.

The tuples of payoffs that are generated by equilibria with this structure, i.e., stationarity

until constraints bind and extreme binding continuation values, can be succinctly described

by what we refer to as a basic pair, which consists of (i) a tuple of pairs of actions that are

played in each state in the first period and (ii) a tuple of continuation regimes that describe

how play proceeds from period two onwards. The continuation regime for a given state either

indicates (iia) that an incentive constraint binds for some player and which extreme binding

continuation value is used, or (iib) that incentive constraints are slack and that play will be

stationary until a binding state is reached. Thus, the continuation values in (iib) are implic-

itly taken to be the generated tuple of equilibrium payoffs themselves. The basic pair is in

a sense a generalization of the familiar decomposition of equilibrium payoffs into a discount-

weighted sum of flow utilities and continuation values, except that it also incorporates the

exceptional recursive structure that arises in extremal equilibria when incentive constraints

are slack. Since there are only finitely many extreme binding continuation values associated

with each action, there are only finitely many ways to configure the basic pair. Hence, there

is a finite set of basic equilibrium payoffs that are generated by basic pairs and are sufficient

to maximize payoffs in any direction (that is for some set of weights over players’ utilities).

The second central feature of the theory we develop is a novel algorithm for computing

the tuple of equilibrium payoff sets V (s). This algorithm adopts a methodology that is quite

different from the earlier results of APS and AS. We construct an infinite sequence of payoff

tuples that move around the equilibrium payoff correspondence in a clockwise direction. As

the algorithm progresses, these payoffs move closer and closer to the true equilibrium payoffs,

and asymptotically trace the boundary of V. To be more specific, our algorithm constructs

a sequence of tuples of payoffs vk, with one payoff vk(s) for each state s, which are estimates

of the equilibrium payoffs that all maximize in a given common direction. We refer to the

payoff tuples along the sequence as pivots. It will always be the case that these pivots are

5In exceptional cases, it could be that there is an equivalent action a′i 6= ai that could also be played, but
even in such cases, ai may be reused without loss.

4

generous estimates, in the sense that they are higher in their respective directions than the

highest equilibrium payoff. In addition, we keep track of an estimate of the basic pair that

generates each pivot. In a sense, this equilibrium structure is analogous to a hybrid of AS

and Blackwell, in that we “solve out” the stationary features of the equilibrium, but when

non-stationarity occurs, we use a coarse approximation of the extreme binding payoffs that

can be inductively generated. Our algorithm generates the sequence of pivot payoffs by

gradually modifying the approximate basic pair.

This “pivoting” idea is especially fruitful in combination with another insight, that allows

us to make changes only in one state at a time as we move around and compute successive

pivots. This is possible because of a remarkable property of the equilibrium sets: it is possible

to “walk” around the boundary of V while stepping only on payoffs that are generated by

basic pairs, where each basic pair differs from its predecessor in at most one state. We remark

that this property is far from obvious, given the complex synergies that can arise between

actions in different states through their effect on transitions. For example, switching actions

in state s may lead to a higher probability of state s′, which is an unfavorable change unless

actions are also changed in s′ to facilitate transition to a third state s′′ that has desirable

flow payoffs. It turns out, however, that one does not need to exploit these synergies when

starting from maximal payoffs and moving incrementally along the frontier. Moreover, we

show that there is a simple procedure for identifying the direction in which a particular

modification will cause payoffs to move. Thus, starting from some incumbent basic pair,

there is a straightforward series of calculations that identify the modification that moves

payoffs in as “shallow” a direction as possible, and by iteratively computing shallowest

directions and making single-state substitutions, one can construct a sequence of basic pairs

whose corresponding payoffs demarcate the extent of the equilibrium payoff sets.6

This structure is the second pillar of our approach and underlies the algorithm we propose.

In particular, our algorithm constructs an analogous sequence of pivots, except that instead of

using true basic pairs (which require precise knowledge of equilibrium payoffs), the algorithm

constructs approximate basic pairs that use an approximation of the equilibrium payoff

correspondence to compute incentive constraints and binding continuation values. At each

iteration, the algorithm generates “test directions” that indicate how payoffs would move for

every possible modification of the action pair or continuation regime in one of the states. The

algorithm identifies the shallowest of these test directions and introduces the corresponding

modification into the basic pair. We show that this shallowest substitution will cause the

6Strictly speaking, at each step, our algorithms identify an initial substitution in a new action pair and/or
continuation regime in single state. A Bellman-like procedure is used to obtain the next pivot. This updating
procedure entails no further changes to actions, but the regimes in some states may change from non-binding
to binding, in order to preserve incentive compatibility.

5

pivot to move around the equilibrium payoff correspondence in a clockwise direction but

always stay weakly outside. This is the algorithmic analogue of the equilibrium property.

As the algorithm progresses, the pivot revolves around and around V. Moreover, every time

the pivot moves, we remove payoffs from the approximation that are “above” the trajectory

of the pivot. Thus, as the trajectory gets closer to V, the estimate improves, and the pivots

move even closer. In the limit, the pivot traces the frontier of the true equilibrium payoff

correspondence.

At a high level, the progression of these approximations towards the equilibrium payoff

correspondence resembles the process by which a prism pencil sharpener gradually shaves

material from a new pencil in order to achieve a conical shape capped by a graphite tip. In

this analogy, the final cone represents the equilibrium payoffs and the initial wooden casing

represents the extra non-equilibrium payoffs contained in the initial approximation. Every

time the pivot moves, it “shaves” off a slice of the excess material. The rotations continue

until the ideal conical shape is attained. To complete the analogy it should be noted that a

tuple of pencils (one for each state) is being sharpened simultaneously, and in a synchronized

way.

As with the APS algorithm, the set of available continuation values starts out large and

is progressively refined, as we require the available continuation values to be inductively

generated. A key difference is that APS implicitly generates new payoffs using all kinds

of equilibrium structures. Here we show that only particular equilibrium structures can

generate extreme payoffs. By focusing attention on only those equilibrium structures that

are candidates to generate extreme payoffs, the algorithm saves time and other computational

resources.

Our procedure is quite different from previous methods for computing equilibrium payoffs,

and the complete description requires the introduction of a number of new concepts. We will

therefore build slowly towards a general algorithm by first considering the simpler problem of

computing the correspondence of feasible payoffs that can arise for some sequence of actions.

Our methodology yields a simple “pencil-sharpening” algorithm for calculating this object,

and the exposition of this algorithm, in Section 3, allows us to develop intuition and ideas

that will be used in the computation of equilibrium payoffs.

In addition to our theoretical results, we have also implemented our algorithm as a soft-

ware package that is freely available through the authors’ website.7 This package consists of

a set of routines that compute the equilibrium payoff correspondence, as well as a graphical

interface that can be used to specify games and visualize their solutions. The implementa-

tion is standalone, and does not require any third-party software to use. We have used this

7www.benjaminbrooks.net/software.shtml

6

program to explore a number of numerical examples, and we will report computations of

the equilibria of risk-sharing games à la Kocherlakota (1996). We also report runtime com-

parisons with an implementation of the algorithm proposed by Judd, Yeltekin, and Conklin

(2003), appropriately adapted to stochastic games.8 Preliminary simulations indicate that

our algorithm can be significantly faster than that of Judd et al.

The rest of this paper is organized as follows. Section 2 describes the basic model and

background material on subgame perfect equilibria of stochastic games. Section 3 provides a

simple algorithm for calculating the feasible payoff correspondence, to build intuition for the

subsequent equilibrium analysis. Section 4 gives our characterization of the equilibria that

generate extreme payoffs and explains how one might trace the frontier of the equilibrium

payoff correspondence. These insights are used in Section 5 to construct the algorithm for

computing equilibrium payoffs. Section 6 presents the risk sharing example, and Section 7

concludes. All omitted proofs are in the Appendix.

2 Setting and background

We study stochastic games in which two players i = 1, 2 interact over infinitely many periods.

In each period, player i takes an action ai in a finite set of feasible actions Ai(s), where s

is the current state and lies in a finite set S. We denote by A(s) = A1(s) ×A2(s) the set

of all action pairs that are feasible in state s. Players receive flow utilities gi(a|s) when the

state is s and actions a are played. In addition, the next period’s state s′ is drawn from

the probability distribution π(s′|a, s). Players discount future payoffs at the common rate

δ ∈ (0, 1). The players’ actions and the state of the world are all perfectly observable.

Throughout the following exposition, we will take the pair of actions a to be a sufficient

statistic for the state, and simply write gi(a) and π(s′|a).9 In addition, we will use bold-face

to denote functions whose domain is the set of states. Correspondences that map states

into sets are denoted by bold upper-case, e.g., A or X, and functions that map states into

actions, scalars, or vectors will generally be denoted by bold lower case, e.g., a or x. We will

abuse notation slightly by writing x ∈ X when x(s) ∈ X(s) for all s.

We will study the equilibrium payoff correspondence V, which associates to each state of

the world a compact and convex set of equilibrium payoffs V(s) ⊂ R2 that can be achieved

in some pure strategy subgame perfect Nash equilibrium with public randomization, when

8The algorithm of Judd, Yeltekin, and Conklin (2003) was originally written for non-stochastic games,
but the ideas extend readily to games with a stochastic state variable. This extension has been described by
Yeltekin, Cai, and Judd (2015).

9This is without loss of generality, since we could simply redefine an action to be the ordered pair (ai, s)
when ai ∈ Ai (s) so that a given action (ai, s) appears in only one state.

7

the initial state of the world is s. For a formal definition of an equilibrium in this setting, see

Mailath and Samuelson (2006).10 The techniques of APS can be used to show that V is the

largest bounded self-generating correspondence (cf. Atkeson, 1991; Phelan and Stacchetti,

2001; Mailath and Samuelson, 2006; Hörner et al., 2011). This recursive characterization

says that any equilibrium payoff can be decomposed into the sum of (i) a flow payoff which

is obtained in the first period and (ii) expected discounted continuation equilibrium payoffs

from the second period onwards. Specifically, let v ∈ V(s) be generated by a pure strategy a

in the first period, and let w(s′) denote the payoff generated by the continuation equilibrium

if the state is s′ in the second period. Since these continuation values are equilibrium payoffs,

we must have w ∈ V. Moreover, v and w must satisfy the promise keeping relationship:

v = (1− δ)g(a) + δ
∑
s′∈S

π(s′|a)w(s′). (PK)

In addition, since v is an equilibrium payoff, neither player must have an incentive to deviate

in the first period (incentive constraints after the first period are implicitly satisfied, since

w (s′) is an equilibrium payoff for all s′). Since actions are perfectly observable, the con-

tinuation payoffs after deviations do not affect the equilibrium payoff, and we may assume

without loss of generality that a deviator receives their lowest possible equilibrium payoff in

the continuation game. This equilibrium threat point is defined by

vi(s) = min {wi|(w1, w2) ∈ V(s) for some wj} .

That is, v(s) is a vector of the worst equilibrium payoffs for each player in state s. The

incentive constraint is therefore that

vi ≥ (1− δ)g (a′i, a−i) + δ
∑
s′∈S

π (s′|a′i, aj) vi(s
′)

for all a′i ∈ Ai(s). Rearranging terms, we can write this condition as∑
s′∈S

π(s′|a)wi(s
′) ≥ hi(a) (IC)

10Strictly speaking, the definition of an equilibrium in Mailath and Samuelson (2006) differs slightly from
the one which we are implicitly using. They assume that there is a probability distribution over the state
in the initial period, while we are implicitly assuming that an equilibrium is defined conditional on a given
initial state.

8

where

hi(a) = max
a′i

[
1− δ
δ

(gi (a′i, aj)− gi(a)) +
∑
s′∈S

π (s′|a′i, aj) vi(s
′)

]
.

Thus, the function h(a) gives the vector of minimum incentive compatible continuation values

that are sufficient to deter deviations from the action pair a.

Since V is the correspondence of all equilibrium payoffs, every payoff v ∈ extV(s) for

each s must be generated in this manner, using some action pair a in the first period and

continuation values drawn from V itself. The technique of APS is to generalize this recursive

relationship in a manner that is analogous to how the Bellman operator generalizes the

recursive characterization of the value function in dynamic programming. Explicitly, fix a

compact-valued payoff correspondence W. Note that the assumption of compactness of W

is maintained throughout. The associated threat tuple is w(W)(s) ∈ R2, where

wi(W)(s) = min {wi|(w1, w2) ∈W(s) for some wj, j 6= i} .

For a given action pair a ∈ A(s), let

hi(a,W) = max
a′i

[
1− δ
δ

(gi (a′i, aj)− gi(a)) +
∑
s′∈S

π (s′|a′i, aj) wi(W)(s′)

]
.

We say that a point v is generated in state s by the correspondence W if there exist a ∈ A(s)

and w ∈W such that

v = (1− δ)g(a) + δ
∑
s′∈S

π(s′|a)w(s′); (PK′)∑
s′∈S

π(s′|a)wi(s
′) ≥ hi(a,W) ∀i = 1, 2. (IC′)

The correspondence W is self-generating if every v ∈ W(s) is a convex combination of

payoffs that can be generated in state s by W. In particular, define the operator B by

B(W)(s) = co {v|v is generated in state s by W} ,

where co denotes the convex hull. W is then self-generating if W ⊆ B(W) (i.e., W(s) ⊆
B(W)(s) for all s ∈ S). Note from the definition that this operator is monotonic. Tarski’s

theorem therefore implies that B has a largest fixed point V, which is in fact the equilibrium

payoff correspondence.

9

In the context of repeated (i.e., non-stochastic) games, APS also propose an iterative

procedure for calculating V, which extends naturally to stochastic games as follows: Start

with any correspondence W0 that contains V, and generate the infinite sequence Wk =

B
(
Wk−1) for k ≥ 1. One can show that this sequence converges to V in the sense that

∩k≥0Wk = V. Moreover, if W0 is chosen so that B(W0) ⊆W0, then the correspondences

will be monotonically decreasing: Wk ⊆Wk−1 for all k > 0.

Throughout the following, we will assume that a pure strategy equilibrium exists for each

possible initial state, so that the sets V (s) are all non-empty. At the end of Section 5, we

will clarify how our algorithm would behave if there are no pure strategy Nash equilibria.

3 Intuition: The feasible payoff correspondence

Before describing our approach to computing V, we will first provide some intuition for our

methods by solving a simpler problem: finding the feasible payoff correspondence F. F(s)

is defined to be the set of discounted present values generated by all possible distributions

over action sequences starting from state s, without regard to incentive constraints, but

respecting the transition probabilities between states induced by the actions that are played.

In a repeated game, the set of feasible payoffs is just the convex hull of stage-game payoffs,

since each action can be played every period. In stochastic games, however, the state variable

is changing over time, and a given action cannot be played until its corresponding state is

reached. Moreover, the distribution over the sequence of states is determined by the sequence

of actions. This simultaneity makes calculating F a non-trivial task.

For example, consider the simple stochastic game depicted in Table 1. There are two

states in which the stage game takes the form of a prisoner’s dilemma. For each state, we

have written the players’ payoffs, followed by the probability of remaining in the same state

after playing that action profile. Note that the payoffs in state 2 are equal to the payoffs in

state 1, shifted up by the vector (2, 2). In addition, the level of persistence is the same for

corresponding action pairs. While it is easy to represent the stage-game payoffs, transition

probabilities complicate the choice of best actions overall. For example, if the goal were to

maximize the sum of players payoffs, should (C,C) be played in state 2, even though it leads

to a lower probability of remaining in the more favorable state 2 than do (C,D) and (D,C)?

We approach the problem as follows. A payoff (vector) v ∈ R2 that is an extreme point of

F(s) must maximize some linear objective over all elements of F(s). In particular, there must

exist some vector d = (d1, d2) such that the line {v + xd | x ∈ R} is a supporting hyperplane

of F(s) at v. Let us further denote by d̂ = (−d2, d1) the counter-clockwise normal to that

d, i.e., d rotated 90 degrees counter-clockwise. Supposing that d points clockwise around F,

10

State 1

C D

C 1, 1 1/3 −1, 2 1/2

D 2,−1 1/2 0, 0 1/3

State 2

C D

C 3, 3 1/3 1, 4 1/2

D 4, 1 1/2 2, 2 1/3

Table 1: A simple stochastic game

then it must be the case that v is a solution to

max
w∈F(s)

w · d̂. (1)

We denote this relationship by saying that the payoff v is d-maximal. We may extend this

notion to a tuple of payoffs v, where v(s) ∈ F(s) for all s ∈ S. If v(s) is d-maximal for

each s, then we will say that the entire tuple of payoffs v is d-maximal. Finally, payoffs and

payoff tuples are maximal if they are d-maximal for some direction d. These definitions are

illustrated in Figure 1(a),11 which depicts a game with two states S = {s1, s2}, with payoffs

in state s1 on the left and payoffs in state s2 on the right. Highlighted in green are the

directions d and its counter-clockwise normal d̂, for which v is the maximal tuple.

For a fixed vector d, the problem of maximizing v · d̂ over all feasible distributions over

action sequences has the structure of a Markov decision problem, and it is a well-known

result in dynamic programming that there exists an optimal solution which is stationary

(Blackwell, 1965). In particular, for any direction d there is a d-maximal payoff tuple which

is generated by stationary strategies in which the same actions a(s) are played whenever the

state is s. The payoff tuple so generated is the unique solution of the system of equations

v(s) = (1− δ)g (a(s)) + δ
∑
s′∈S

π (s′|a(s)) v(s′) ∀s ∈ S. (2)

We refer to payoff tuples that can be generated as the solution to (2) for some choice of

action tuple as basic. Indeed, every extreme point of F(s) is part of some basic payoff tuple,

and hence can be described as a solution of (2) for some choice of action tuple a. We can see

in Figure 1(b) how basic payoff tuples can be generated by a tuple of stationary strategies

defined by an action tuple a.

11This picture has been drawn for the case in which π (s′|a) > 0 for all s′ and for all actions which generate
extreme payoffs. It is for this reason that all of the edges of F (s1) are parallel to edges of F (s2). More
generally, if transition probabilities are degenerate, there does not have to be any particular relationship
between the shapes of the feasible payoff sets for states which are not mutually reachable.

11

F(s1)

F(s2)

v(s1)

v(s2)

d

d

d̂

d̂

(a) Maximal payoffs.

g(a(s1))

g(a(s2))

v(s1)

v(s2)
F(s1)

F(s2)

(b) Basic payoffs.

v0(s1)

v0(s2)

vT(s2)

d0

d0

dT

dT

(c) The clockwise tangent dT.

vT(s2)

g(a∗)

(d) A test direction.

Figure 1: The structure of feasible payoffs.

One could in principle use this observation to characterize the feasible payoff correspon-

dence by solving (2) for every possible action tuple to obtain all of the basic payoff tuples

and taking the convex hull. An immediate implication is that each F(s) has a finite number

of extreme points. There is, however, a large number of action tuples, and this number grows

exponentially in the number of states. One might hope to find an algorithm for characteriz-

ing F(s) where the computational burden depends not on the number of action tuples but

rather on the number of actual extreme points, which may be much smaller in practice.

We will argue that such a procedure exists. The näıve algorithm described in the previous

paragraph uses the recursive structure of d-maximal payoffs, but there is even more structure

to be exploited in how the maximal action tuples change with the direction of maximization.

For example, suppose that one had found a maximal action tuple a with corresponding basic

payoff tuple v. A conjecture is that that the action tuples that generate maximal payoff

tuples for nearby directions will be similar in structure to a. If this conjecture were correct,

we could use the known maximal structure to find other maximal structures by making small

modifications to a, and thereby extend our knowledge of the frontier of F.

12

This intution is indeed correct and is a fundamental building block of the algorithm we

propose. Consider a direction d0, and suppose that we know the actions a0 which generate

a basic payoff tuple v0 which is d0-maximal. Let us further suppose that there exists a state

in which F(s) 6= {v (s)}. Thus, if the direction of maximization were to rotate clockwise

from d0, v0 would eventually cease to be maximal in the rotated direction, and there is

some critical dT such that if the direction were to rotate any further clockwise, some other

extremal tuple would become maximal. The direction dT is in fact the clockwise tangent

from v0 to V. Indeed, if the direction rotated any further, a particular tuple vT would

become uniquely maximal. These payoffs are clockwise dT-maximal, meaning that of all of

the tuples that are dT-maximal, they are the ones that are furthest in the direction dT. Note

that at the critical direction dT, both v0 and vT are maximal. Thus, it must be possible to

find non-negative scalars x (s) that are not all zero such that

vT(s) = v0(s) + x(s)dT.

Figure 1(c) illustrates the directions d0 and dT in our running example.

We argue that it must be possible to modify a0 by changing the action pair in a single

state, so that the resulting basic payoffs move towards vT from v0. In particular, let s∗

be any state in which x (s) is maximized. In Figure 1, this occurs in state s2. Since vT is

uniquely maximal, it must also be basic, and thus vT (s∗) is generated by some pure actions

a∗ in the first period and continuation values vT, i.e.

vT (s∗) = (1− δ) g (a∗) + δ
∑
s′∈S

π (s′|a∗) vT (s′) .

Now consider the strategy of playing a∗ for one period, followed by a return to the original

stationary strategies associated with a0 forever after. The payoff thus generated must be

v = (1− δ)g (a∗) + δ
∑
s′∈S

π (s′|a∗) v0(s′).

As a result, the direction from v0 (s∗) to v must be

v − v0 (s∗) = vT (s∗)− v0 (s∗)− δ
∑
s′∈S

π (s′|a∗)
(
vT (s′)− v0 (s′)

)
=

(
x(s∗)− δ

∑
s′∈S

π (s′|a∗) x (s′)

)
dT,

13

and since x(s∗) ≥ x (s′) for all s′ and δ < 1, it must be that the coefficient on dT is strictly

positive. As a result, v must lie in the direction dT relative to v0 (s∗). Figure 1(d) illustrates

the geometry of this construction.

Now, let us consider what would happen if we were to modify a0 by substituting a∗ in

place of a0 (s∗), to obtain a new action tuple a1, which in turn generate a new basic payoff

tuple v1. We claim that this new payoff tuple v1 has to lie between v0 and vT. To see this,

first observe that v1 must be the fixed point of the following Bellman operator µ(·):

µ(w)(s) = (1− δ)g
(
a1(s)

)
+ δ

∑
s′∈S

π
(
s′|a1(s)

)
w(s).

This operator is a contraction mapping, and so starting from any initial guess of v1, the

iterates will eventually converge to the unique fixed point. Moreover, we have already proven

that starting from v0, µ(v0) moves in the direction dT relative to v0 (in state s∗ only). The

linearity of µ in w implies that subsequent applications of µ will only move payoffs further in

the direction dT, as the movement in state s∗ is propagated through to the other states. This

point is of such importance to our subsequent analysis that we state it as a formal result:

Lemma 1.

(i) For any a ∈ A, (2) has a unique solution.

(ii) Suppose v and ṽ solve (2) for a and ã respectively, that v 6= ṽ, and that a (s) = ã (s)

for all s 6= s̃. Let

d = (1− δ) g (ã (s̃)) + δ
∑
s′∈S

π (s′|ã (s̃)) v (s′)− v (s̃) .

Then ṽ (s) = v (s) + x (s) d for some non-negative scalars x (s).

Thus, we conclude that there must be at least one action which, when substituted into

the initial stationary action sequence, must result in a clockwise movement of the basic

payoffs around the feasible correspondence. We should note that generically v1 is in fact

equal to vT, and only a single substitution will be required to cross each edge of F. In the

case of equilibrium studied in Section 4, however, it is a generic possibility that multiple

substitutions may be required to move across an edge of V.

Thus far, we have presumed that we omnisciently knew the action a∗ that generated the

payoffs that were clockwise relative to v0. This was unnecessary: First, Lemma 1 shows that

we can identify the direction in which a substitution moves the payoff tuple by just looking

at the first application of µ in the substituted state. In other words, if a new action tuple

14

differs from a0 only in state s in which the action is a 6= a0(s), then the direction that the

substitution moves payoffs will be

d(a) = (1− δ)g(a) + δ
∑
s′∈S

π(s′|a)v0(s′)− v0(s).

As such, we can easily project where a given substitution will send the payoffs by computing

the test direction d (a). Second, we know that there is some substitution that will move us

in the direction that points along the frontier. We could therefore consider all substitutions

in all states and compare the corresponding test directions. Note that it is impossible for

any of the test directions to point above the frontier, since this would imply the existence of

a feasible payoff tuple that is outside of F. As a result, the test direction with the smallest

clockwise angle of rotation relative to d0 must point along the frontier, and by implementing

the substitution associated with this direction, payoffs are guaranteed to move clockwise

along the boundary of F.

From these observations, it follows that there is a simple way, starting from a known v0,

a0, and d0, to trace the entire frontier of F using only basic payoff tuples. We first generate

all test directions d(a) for all possible substitutions. One of these directions, denoted by d1,

is shallowest, in the sense of having the smallest clockwise angle of rotation from d0. This

shallowest direction must in fact coincide with the tangent direction dT. We then form a new

action tuple a1 by substituting in the action a∗ that generated the shallowest test direction

and leaving the rest of the actions unchanged, and the new tuple a1 in turn generates new

basic payoffs v1. We then repeat this process, inductively finding shallowest directions and

substituting to generate a sequence of action tuples ak. These action tuples generate a

sequence of payoff tuples vk that we refer to as pivots, since the direction of movement

pivots around these points while tracing the frontier. For generic payoffs, the pivot moves in

a new direction each time we make a substitution, though it could in principle move more

than once in the same direction. The pivot will eventually visit all of the basic payoff tuples

which are uniquely maximal in some direction, at which point we will have traced the frontier

of F. Figure 2 demonstrates this “pencil-sharpening” algorithm for feasible payoffs. In this

example, the pivot returns to v0 after six steps.

The one remaining difficulty with our proposed algorithm is that it presumes an initial

a0 that generates basic payoffs v0 that are d0-maximal. How do we find such a starting

point? It turns out that we do not have to! We can augment the game in a simple way that

automatically gives us an initial condition. Pick any tuple v0 that can be weakly separated

from F by some hyperplane. For example, v0(s) could be the pointwise maximum of each

player’s payoffs across all actions in state s, for each s. We use these payoffs to create a tuple

15

v0(s1)

v0(s2)

d0

d0

d(a1(s1))

g(a1(s2))

(a) Generate test directions.

v1(s1)

v1(s2)

d1

g(a0(s2))

g(a0(s1)) = g(a1(s1))

g(a1(s2))

(b) Substitute and advance the pivot.

v1(s1)

v1(s2)g(a2(s1))

d(a2(s1))

(c) Generate more test directions.

d2

v1(s1)

v1(s2)

v2(s1)

v2(s2)

g(a2(s1))

g(a1(s1))

g(a1(s2))

(d) Substitute again.

v0

v0

v1

v1

v2

v2

v3

v3

v4

v4

v5

v5

d1

d2

d3

d4

d5

d6

(e) Iterate.

Figure 2: Tracing the frontier.

of “synthetic” action pairs a0(s) /∈ A(s), and define g (a0(s)) = v0(s) and π (s|a0(s)) = 1, so

that a0 generates the initial pivot. Starting from this initial condition, we trace the boundary

of the feasible payoffs of the augmented game which consists of all of the original actions

together with the synthetic actions a0. It is not hard to see that once we pivot around to

16

Figure 3: Tracing the boundary of the feasible set for the prisoners’ dilemmas example.

the opposite side of F from v0, it will not be optimal to use any of the synthetic actions

a0. In fact, these actions will be dominated by any choice of actions in the original game.

Thus, the synthetic actions will eventually be driven out of the solution, at which point we

must be generating payoffs on the boundary of F for the original game. From that point on,

we disallow the synthetic actions a0 from being substituted back in, and all further pivoting

operations will remain on the frontier of F. After one more full revolution, we will have

traced the boundary for the original game.

We used this procedure to calculate F for the game in Table 1. The results of the

computation are depicted in Figure 3. The initial pivot consisted of payoffs of (−1, 4) in

both states, which corresponds to the lowest payoff for player 1 and the maximum payoff for

player 2, across all states and action pairs. After two substitutions, the synthetic actions have

been driven out of the system, and we are generating payoffs on the frontier, in particular

the symmetric surplus maximizing tuple of payoffs at which (C,C) is played in both states.

Note that from the utilitarian efficient payoffs, pivoting from (C,C) to (D,C) in either state

shifts the stage payoffs in the direction (1,−2). However, introducing (D,C) in state 2

increases the probability of remaining in the better state 2, whereas introducing (D,C) in

state 1 entails a lower probability of state 2. Thus, the correct choice must be to pivot to

(D,C) in state 2, and this is indeed the substitution that is identified by our algorithm.

4 The structure of equilibrium payoffs

We now return to the primary objective of this paper, which is the characterization and

computation of equilibrium payoffs. The equilibrium requirement adds significant complex-

ity relative to the analysis of the feasible payoffs in the previous section. Equilibrium payoffs

are generated by distributions over action sequences that not only obey the transition prob-

17

abilities between states but also satisfy the players’ forward-looking incentive constraints.

Nonetheless, we shall see that there are high-level similarities between the structure of fea-

sible payoffs and that of equilibrium payoffs. Characterizing the equilibria that generate

extremal equilibrium payoffs is the subject of this section, and in Section 5, we will use these

results to develop a general algorithm for computing V.

4.1 Basic pairs

The central tool for characterizing equilibrium payoffs will be what we refer to as a basic

pair, which in a sense generalizes the stationary strategies of Section 3. This object consists

of a tuple of action pairs a and a tuple of continuation regimes r, which we shall explain

presently. In Section 2, we reviewed the standard analytical technique of decomposing an

equilibrium payoff as the discount-weighted average of a flow payoff and an expected equi-

librium continuation value. The basic pair gives this decomposition for an entire tuple of

equilibrium payoffs v ∈ V simultaneously. In particular, each v (s) can be decomposed as a

weighted average of a flow payoff, g (a (s)), and an expected continuation value w which is

determined by r (s).

The continuation regime, and consequently the expected continuation value, falls into one

of two categories depending on whether or not the incentive constraints (IC) are slack or hold

with equality. In the non-binding case, incentive constraints are slack, r (s) = NB, and the

continuation value is simply the expectation of the payoff tuple v itself. In the binding case,

at least one of the players is indifferent to deviating from their prescribed action ai (s), so

that the expected continuation value lies along a binding incentive constraint. Moreover, this

continuation value must be an extreme point of the set of expected equilibrium continuation

values at which some constraint binds.

To be more precise, let

V (a) =
∑
s′∈S

π(s′|a)V(s′)

denote the set of expected equilibrium continuation values when the action pair a is played,

and let

IC(a) =
{
w ∈ R2|w ≥ h(a)

}
denote the set of continuation value pairs that would deter players from deviating from the

action pair a (where the minimal expected continuation value h (a) is defined in Section 2).

The set of extreme binding continuation values is

C(a) = ext
(
V (a) ∩ bdIC(a)

)
,

18

V(s1)

V(s2)

V (a)

v(s1)

v(s2)

(a) Expected and threat payoffs.

IC(a)

h(a)

(b) Incentive compatible region.

C(a)

(c) Extreme binding continuations.

g(a(s1))

g(a(s2))w

r(s1)
v(s1)

v(s2)

(d) Basic equilibrium payoffs.

Figure 4: The geometry of feasible and incentive compatible continuation values.

where bd denotes the topological boundary, so that bdIC (a) is the set of continuation value

vectors at which at least one player is indifferent to deviating.

These sets are depicted for our two-state example in Figure 4. A key observation is

that C (a) can have at most four elements. The reason is that bdIC (a) is the union of

two rays, so that the intersection of bdIC (a) with V (a) is the union of two line segments.

Each of these line segments can have at most two extreme points, so that between the two

players’ constraints there are at most four extreme binding continuation values. Figure 4(c)

illustrates the case where C (a) has the maximal number of elements.

Thus, returning to the definition of the continuation regime, either r (s) = NB in the

non-binding case, or r (s) = (B, w) for some w ∈ C (a (s)) if a constraint binds. As a result,

r (s) can take on at most five values once we have fixed a (s), so that we can bound the

number of basic pairs:

Lemma 2 (Basic pairs). The number of basic pairs is at most 5|S|
∏

s∈S |A(s)|.

We say that the basic pair (a, r) generates the payoff tuple v if

19

v (s) =

(1− δ) g (a (s)) + δ
∑

s′∈S π(s′|a(s))v(s′) if r(s) = NB;

(1− δ) g (a (s)) + δw if r (s) = (B, w) ,
(3)

and if ∑
s′∈S

π (s′|a (s)) v (s′) ∈ IC (a (s)) (4)

whenever r (s) = NB. In this case, we say that v is a tuple of basic equilibrium payoffs.

Equation (3) is a promise keeping condition, analogous to (PK′). Incentive constraints are

satisfied by definition when r (s) ∈ C (a (s)), and (4) ensures that the expected payoffs

themselves are incentive compatible whenever r (s) = NB. Note that the tuple of payoffs v

that solves (3) is the fixed point of a certain Bellman operator

µ(w; a, r)(s) =

(1− δ) g (a (s)) + δ
∑

s′∈S π(s′|a(s))w(s′) if r(s) = NB;

(1− δ) g (a (s)) + δw if r (s) = (B, w) ,
(5)

Thus, µ maps a tuple of payoffs w into a new tuple of payoffs µ (w; a, r), where µ (w; a, r) (s)

is the discount-weighted average of g (a (s)) and w when r (s) = NB. This operator is a

contraction of modulus δ, and thus has a unique fixed point which is the solution to (3).

Lemma 3 (Basic equilibrium payoffs). Suppose that the basic pair (a, r) generates v. Then

v ∈ V.

Proof of Lemma 3. Consider the correspondence V′ defined by V′ (s) = V (s) ∪ {v (s)}. It

is immediate from the definitions that V′ is self-generating, so that V′ ⊆ V, and hence

v ∈ V.

Thus, a basic pair describes the decomposition of an entire tuple of equilibrium payoffs

into flows and continuations. Basic pairs correspond to what we might call basic equilibrium

systems, consisting of one equilibrium for each initial state, that exhibit exceptional recursive

structure. In particular, each equilibrium in this system can be decomposed into a flow payoff

in the first period and a continuation equilibrium system, which describes the continuation

equilibria that are played for each possible state in the second period. A basic equilibrium

system has the feature that whenever incentive constraints are slack in the first period, the

continuation system simply reboots the original system of equilibria. This corresponds to the

case where r (s) = NB. When r (s) 6= NB, the continuation equilibrium system generates an

extreme binding expected continuation value. This perspective is analogous to how action

tuples were used to describe a corresponding tuple of stationary strategies in Section (3).

A stationary strategy tuple defines a strategy for each possible initial state, and after the

20

first period, the strategy tuple simpy restarts. This remains true of the basic equilibrium

system when incentive constraints are slack, although when incentive constraints bind, the

equilibrium may evolve in a non-stationary manner.

Figure 4(d) gives an example of how basic equilibrium payoffs are generated. In state s1,

on the left, the equilibrium that maximizes player 2’ s payoff involves a binding continuation

value (at which player 1’s incentive constraint is binding), whereas in state s2, on the right,

the equilibrium that maximizes player 2’s payoffs has slack constraints. For simplicity,

this picture is drawn for the special case where the transition probabilities π (·|a (s1)) and

π (·|a (s2)) coincide, so that V (a (s1)) = V (a (s2)). We suppose, however, that h (a (s1)) >

h (a (s2)), so that while the expected pivot w is incentive compatible in state s2, it is not

incentive compatible in s1.

4.2 The maximality of basic equilibrium payoffs

As we have already indicated, basic pairs have properties which make them extremely useful

for the characterization and computation of equilibrium payoffs. Most importantly, it turns

out that basic pairs are sufficient to maximize equilibrium payoffs in any given direction.

This is in a sense a generalization of the sufficiency of stationary strategies for maximizing

feasible payoffs in a given direction.

It will be convenient in the sequel to use a refined notion of maximality that selects for a

unique maximal payoff tuple. We will say that a payoff tuple v is clockwise d-maximal in V

if it is d-maximal and if there is no other d-maximal tuple v′ such that v′ (s) · d > v (s) · d
for some s. In other words, among all d-maximal tuples, v is the one that is furthest in the

direction d. Note that while there may be many d-maximal equilibrium payoff tuples, the

clockwise d-maximal tuple is unique. Moreover, all of the v(s) must be extreme points of

their respective V(s). This relationship is depicted in Figure 5(a). In both states si , there is

a continuum of d-maximal payoffs but a unique clockwise d-maximal payoff, which is v(si).

We have the following result:

Proposition 1 (Maximality of basic equilibrium payoffs). For every direction d, the clock-

wise d-maximal equilibrium payoffs are basic.

Proof of Proposition 1. Suppose v is clockwise d-maximal. Since v(s) ∈ extV(s), v(s) must

be generated by some pure action a(s) and expected continuation value w(s) ∈ V (a(s)).

Note that an arbitrary v ∈ V(s) may require public randomization over actions in the first

period, but this is not true of the extreme points of V(s).

If (IC) is binding, then it must be that the expected continuation value w(s) is in C(a(s)).

If not, then there must exist a perturbation d̃ such that w(s) + d̃ and w(s) − d̃ are both

21

d

d

V(s1)

V(s2)

v(s1)

v(s2)

(a) Clockwise maximal payoffs.

bd IC(a(s1))

g(a(s1))

(b) Binding perturbation.

g(a(s2))

v(s2)

(c) Sub-optimal continuation payoffs.

g(a(s2))

(d) Non-binding perturbation.

Figure 5: Maximal basic equilibrium payoffs.

feasible and incentive compatible continuation values in V (a(s)) ∩ bdIC(a(s)), so that we

can generate the payoffs v(s)+δd̃ and v(s)− δd̃, thus contradicting the extremeness of v(s).

This is depicted in Figure 5(b). Thus, w (s) ∈ C (a(s)), and we can set r(s) = w(s).

On the other hand, suppose that (IC) is slack for both i = 1, 2, and

w(s) 6=
∑
s′∈S

π(s′|a(s))v(s′) = w.

This configuration is depicted in Figure 5(c). Note that we must be able to find a ṽ such

that

w(s) =
∑
s′∈S

π(s′|a(s))ṽ(s′),

and since w(s) 6= w, there must be at least one state s′′ with π(s′′|a(s)) > 0 such that

ṽ(s′′) 6= v(s′′). Since the clockwise d-maximal payoff is unique, v(s′′) is either higher in the

d̂ direction or in the d direction relative to ṽ(s′′).

22

Since V is convex (because of public randomization), the payoff

w̃ =
∑

s′∈S\{s′′}

π(s′|a(s))ṽ(s′) + π(s′′|a(s))((1− ε)ṽ(s′′) + εv(s′′))

is in V (a(s)) for every ε ∈ (0, 1), and since (IC) is slack, there must be a sufficiently small

but positive ε so that constraints will still be statisfied, i.e., w̃ ≥ h(a) (the constraint is

satisfied strictly at ε = 0). Thus, it is possible to generate the payoff

ṽ = (1− δ)g(a(s)) + δw̃

= v(s) + δπ(s′′|a(s))ε(v(s′′)− ṽ(s′′)).

We can see the construction of this payoff in Figure 5(d). Thus, ṽ must be higher in the d̂

or d direction, thus contradicting clockwise d-maximality of v(s).

As a result, it must be that ṽ(s′) = v(s′) for states in which π(s′|a(s)) > 0, and it is

obviously without loss of generality to take this to be true when π(s′|a(s)) = 0. We can then

set r(s) = NB, so that v(s) is a solution to (3) and must therefore be a basic equilibrium

payoff.

Intuitively, if incentive constraints are slack and the continuation values are not v, then it

is possible to move the continuation payoffs in the direction of v without violating incentive

constraints or feasibility. Since v is already presumed to be clockwise d-maximal, the con-

tinuation values move weakly in the directions d̂ and d, and strictly in at least one of these

directions. This means that the payoffs that we generate with these continuation values have

also moved in the direction d̂ or d relative to v, which would violate our hypothesis that v

is already clockwise d-maximal.12

Since every extremal equilibrium payoff is clockwise maximal for some direction, Propo-

sition 1 implies that it must be generated by a basic pair. Combining this observation with

Lemma 2, we have the following result:

Corollary 1 (Number of extremal equilibrium payoffs). For each s, the number of extreme

points of V(s) is at most 5|S|
∏

s′∈S |A(s′)|.
12This result has some antecedents in the literature. For example, Kocherlakota (1996) studies the Pareto

efficient equilibria of a model of informal insurance, and he shows that ratios of marginal utilities of agents
should be held constant over time when incentive constraints are slack. Ligon, Thomas, and Worrall (2000,
2002) make a similar point in the context of a more general class of insurance games. Dixit, Grossman, and
Gul (2000) make similar observations in the context of a model of political power-sharing. These results are
implied by the sufficiency of basic pairs for generating extremal payoffs, as basic pairs build in the property
that as long as incentive constraints do not bind, continuation payoffs must maximize a fixed weighted sum
of players’ utilities.

23

This result, like a similar one in AS for the non-stochastic case, is of independent theo-

retical interest. In the prior literature, it was not even known that the number of extreme

points is finite.

4.3 Tracing the frontier

Ultimately, we will use basic pairs to design a pencil-sharpening algorithm for computing

equilibrium payoffs. This algorithm will construct a sequence of pivot payoffs, each of which is

generated by what is essentially an approximation of a basic pair, and the trajectory of these

pivots will asymptotically converge to the frontier of V. Before describing that algorithm

in detail, it is useful to develop intuition by thinking about how one would traverse the

frontier of V itself by pivoting between basic pairs, in an analogous fashion to the procedure

we described in Section 3 for tracing the feasible payoff correspondence by pivoting between

stationary strategies. Note that while the following discussion is informal, it will be rigorously

justified by our formal results in Section 5, since we are essentially describing the behavior

of our algorithm after it has converged to V.

Suppose we are given an initial basic pair (a, r) that generates equilibrium payoffs v

that are d-maximal (but not necessarily clockwise d-maximal). Let us suppose that we also

know the sets of extreme binding continuation values C (a) for all a. Even so, there is a large

number of possible configurations of the basic pair, only some of which will generate maximal

tuples in V. We may therefore ask, as we did before, how we might use this information

to identify other basic pairs that generate payoffs that are maximal for directions close to

d. It turns out that we can do so using an appropriate generalization of the idea of “test

directions” from Section 3. Consider, as before, the shallowest clockwise tangent dT from

v to V (under the assumption that V 6= {v}, so that this direction exists), and let vT

denote the clockwise dT-maximal equilibrium payoffs. Let us again focus on the state s∗ in

which the movement from v (s) to vT (s) is the largest. Since vT is clockwise dT-maximal,

Proposition 1 tells us that it is generated by a basic pair
(
aT, rT

)
.

Now suppose that rT (s∗) = NB, i.e., vT (s∗) is generated in the non-binding case. Thus,

vT (s∗) = (1− δ) g
(
aT (s∗)

)
+ δ

∑
s′∈S

π
(
s′|aT (s∗)

)
vT (s′) .

This situation is exactly analogous to that of the v and vT from Section 3, in which the next-

clockwise payoffs were generated by using the same clockwise-maximal tuple as continuation

values. In that setting, we saw that playing aT (s∗) for one period, followed by continuation

payoffs v, will generate a payoff that is between v (s∗) and vT (s∗). We can do the same in

24

the present setting: the non-binding test direction

dNB (a) = (1− δ) g (a) + δ
∑
s′∈S

π (s′|a) v (s′)− v (s)

is essentially what we called the test direction for feasible payoffs, and if we were to pick

s = s∗ and a = aT (s∗), then it would point precisely in the direction dT.

But what about when rT (s∗) 6= NB, so that vT (s∗) is generated with extreme binding

continuation values? In this case, there need not be a non-binding direction that points

towards vT. We can, however, compute a small number of additional directions, one of

which will surely point in the direction dT. The binding test directions point from v (s) to

the payoffs that can be generated by one of the (at most four) extreme binding continuation

values w ∈ C (a):

dB (a) = (1− δ) g (a) + δw − v (s) .

If we pick s = s∗, a = aT (s∗), and if we consider the correct extreme binding continuation

value, then the binding direction will point in same direction as dT.

Thus, if we simply search over all of the binding and non-binding test directions, we will

necessarily encounter the critical state, action, and possibly extreme binding continuation

values that generate a test direction that points along the frontier. However, if we search over

the test directions as we have just defined without further restrictions, we may even encounter

test directions that point above dT and out of V altogether. The reason is that the payoffs

pointed to by dNB (a) use v as continuation values, regardless of whether or not v is incentive

compatible for a. It turns out that if we simply exclude those non-binding directions that are

not incentive compatible, then the shallowest among the remaining (incentive compatible)

non-binding directions and the binding directions will necessarily be parallel to dT.13

In addition, one can use this shallowest test direction to identify a new basic pair that

generates payoffs that move in the dT direction relative to v. Test directions are associated

with continuation regimes in the obvious manner: dNB (a) is associated with r = NB and

dB (a, w) is associated with r = w. We can therefore imagine making a substitution, as we

did in Section 3, by simply changing the action and regime in the state that generates the

shallowest direction to the (a, r) associated with that shallowest direction, to construct a new

basic pair (a′, r′). We can even compute new payoffs by iteratively applying the operator

µ (·|a′, r′) from equation (5) to the original payoff tuple v. On the first application, payoffs

will only move (in the direction dT) in the state in which we made the substitution. On

13There is a subtlety here: even if rT (s∗) = NB, that is no guarantee that v is incentive compatible for
aT (s∗). One can show, however, that in this situation there will be a binding test direction that points
towards vT (s∗).

25

subsequent applications, payoffs will only move in for those states in which r′ (s) = NB. The

linearity of µ in the continuation payoffs w implies that the generated payoffs move even

further in the direction dT, exactly as in the case of feasible payoffs.

There is, however, a new subtlety that arises with this Bellman procedure that did not

appear in Section 3: it may be that over the course of iteratively applying µ, the iterates

µk (v; a′, r′) cease to be incentive compatible for some a′ (s) for which r′ (s) = NB. If

this happens, it means that (a′, r′) is not incentive compatible per se. There is a simple

modification, though, that will restore incentive compatibility. Note that if at one iteration

the continuation values are incentive compatible, but at the next they are not, then the

expected continuation value must “pass through” an incentive constraint. In addition, all of

the payoffs generated by iteratively applying µ are dT-maximal in V. This means that the

point at which the iterates cross the constraint is in fact an extreme binding continuation

value. If we change r′ (s) to be equal to this extreme binding continuation value, incentive

compatibility will be restored, and as we continue to apply µ, payoffs will continue to move

further in the dT direction for any remaining non-binding states. These switches from non-

binding to binding regimes can happen only finitely many times, and one can show that the

limit of the sequence of payoff tuples v′ must be generated by the appropriately modified

basic pair (a′, r′). Moreover, the limit payoffs v′ necessarily lie between v and vT, and in

many cases are equal to the latter. From this new basic pair and payoffs, one could again

search over test directions, substitute in the shallowest action and regime, and compute a

new basic pair that generates new basic payoffs. By repeating these steps over and over, the

generated sequence of basic payoffs will march clockwise around the frontier of V, and after

finitely many repetitions will visit all of the clockwise maximal equilibrium payoffs.

The algorithm that we develop in the next section is essentially the generalization of this

procedure to the case where we do not know the equilibrium threat point v or the extreme

binding equilibrium continuation values C (a), but instead we replace these quantities with

generous approximations, associated with some payoff correspondence that contains V. The

algorithm pivots between approximate basic pairs by generating test directions, and making

the substitution associated with the shallowest test direction that is incentive compatible.

The pivot payoffs move clockwise around V, and as they do, we “shave of” parts of the

approximation that are outside of the trajectory of the pivot. This shaving removes payoffs

from the approximation that cannot be inductively generated. In the limit, only those payoffs

survive which can be perpetually bootstrapped, i.e., those that can arise in equilibrium.

26

5 Calculating equilibrium payoffs

5.1 Test directions

Without further ado, we describe the general algorithm. We will begin by formally describing

the appropriate generalizations of basic pairs and test directions to the case where we only

have an approximation of V. Suppose that W is a compact and convex payoff correspondence

that contains V. Also, suppose that v ∈W is a tuple of payoffs that are above V in some

direction d̂. In other words, if we let

H (v, d) =
{

w|w (s) · d̂ ≤ v (s) · d̂ ∀s ∈ S
}

denote the “half correspondence” of payoff tuples that are below the line v + xd, then

V ⊆ H (v, d). The present question is, can we identify a direction in which the payoffs v

can move that satisfies the following:

P1: (Non-zero) The direction is non-zero;

P2: (Containment) The direction does not point into the interior of V;

P3: (Feasible and incentive compatible) The direction points towards payoffs that can be

generated from W; and

P4: (Monotonicity) The direction points into W and below d.

If a direction satisfies all of P1–P4, then we will simply say it satisfies P. Properties P1–P3

are natural desiderata given the discussion at the end of Section 4, and the reason for P4

will be seen shortly, at which point we will give a formal definition. It turns out that we

always can find a direction that satisfies P, by considering a series of test directions that

generalize those of Section 3.

Let us establish some useful definitions. For each state, there is a clockwise tangent

direction from v(s) to V(s), which we denote by d(s). We take this direction to be zero if

V (s) = {v (s)}, but if V (s) is not a singleton then this direction must be non-zero.14 Let dT

denote the shallowest of all of these tangents across all states, which is attained in states in

ST ⊆ S, and recall that d̂T is the counter-clockwise normal to dT. We write vT for the payoff

tuple that is clockwise dT-maximal in V, and note that vT(s) is the tangent point from v(s)

to V(s) for s ∈ ST. We depict these objects in Figure 6(a). Figure 6(b) depicts expected

14Note that when v (s) ∈ V (s), the very existence of these tangent directions, and the fact that they are
non-zero, relies upon the prior conclusion that each V (s) has finitely many extreme points (cf. Corollary 1).

27

d(s1) = dT

d(s2)

vT(s1)

vT(s2)vk(s1) vk(s2)

V(s1)

V(s2)

Wk(s1)

Wk(s2)

(a) Tangent directions.

W (a)

V (a)

dT

(b) Expected continuations.

Figure 6: The tangent directions for an example with two states S = {s1, s2}. dT = d(s1) is
the shallowest tangent among all of the d(s).

continuation values and provides useful context for the figures and arguments below. Thus,

a sufficient condition for a direction to satisfy (i) is that it points above dT.

When the action is a, the set of feasible expected continuation values is

W (a) =
∑
s′∈S

π(s′|a)W(s′).

Incentive compatibility is measured relative to the threat point w = w (W). Thus,

hi(a) = max
a′i

[
1− δ
δ

(gi(a
′
i, aj)− gi(a)) +

∑
s′∈S

π(s′|a′i, aj)w (s′)

]

and

IC(a) =
{
w ∈ R2|w ≥ h(a)

}
are respectively the minimum incentive compatible expected continuation value and the set

of incentive compatible payoffs for action a. Finally, let

C (a) = ext
(
W (a) ∩ bdIC(a)

)
(6)

denote the set of extreme feasible and binding expected continuation values. Finally, let

Gen (a) = (1− δ) g (a) + δ
(
W (a) ∩ IC (a)

)
28

denote the set of payoffs that can be generated from a promising incentive compatible con-

tinuation values in W, which is empty in the event that W (a) ∩ IC (a) is empty.

The test directions fall into three categories. First, let

w̃(a) =
∑
s′∈S

π(s′|a)v(s′)

denote the expected pivot when actions a are played, and let

ṽ (a) = (1− δ)g(a) + δw̃(a)

denote the payoff that is generated by playing a today and going to continuation values v

tomorrow. The non-binding test direction is

dNB(a) = ṽ(a)− v(s).

The non-binding direction is associated with a regime r = NB, and it is considered incentive

compatible if w̃ (a) ∈ IC (a).

The second type is the binding test direction, and is of the form

dB(a, w) = (1− δ)g(a) + δw − v(s),

for w ∈ C(a). The binding test direction dB (a, w) is associated with a regime r = (B, w),

and it is always incentive compatible.

Together we refer to the non-binding and binding test directions as the regular test

directions. These test directions are directly motivated by the structure of the basic pair,

and they are the primary paths that will be considered by our algorithm. It turns out that

we can always identify a regular test direction that satisfies P1–P3 of our desiderata:

Lemma 4 (Regular test directions). Suppose that v ∈W, V ⊆W∩H (v, d), and V 6= {v}.
Then there exists a state s∗ ∈ S and actions a∗ ∈ A (s∗) such that.

(a) Either dNB (a∗) · d̂T > 0 or dNB (a∗) = xdT for some x > 0. As a result, dNB (a∗) 6= 0.

(b) If dNB (a∗) is not IC, then there exists a w∗ ∈ C (a∗) such that either dB (a∗, w∗)· d̂T > 0

or dB (a∗, w∗) = xdT for some x > 0. As a result, dB (a∗, w∗) 6= 0.

Proof of Lemma 4. We first identify the action a∗. Note that for states in ST, we must be

able to write

vT (s)− v (s) = x (s) dT

29

for some x (s) > 0. Let s∗ denote any state in which x (s) attains its maximum, and let(
a∗, wT

)
denote the action pair and continuation value that generate vT (s∗):

vT (s∗) = (1− δ) g (a∗) + δwT.

In addition, define

w̃ =
∑
s∈S

π (s|a∗) v (s) ;

ṽ = (1− δ) g (a∗) + δw̃;

dNB = ṽ − v (s∗) ,

which are, respectively, the expected pivot when a∗ is played, the payoff that is generated by

playing a∗ for one period and using v as continuation values, and the non-binding direction

associated with a∗. Also, let w∗ denote the clockwise dT-maximal element of C (a∗), and

define

v∗ = (1− δ) g (a∗) + δw∗;

dB = v∗ − v (s∗) ,

which are, respectively, the payoff generated by (a∗, w∗) and the “best” binding direction

associated with a∗, in the sense of smallest clockwise angle relative to dT.

We now prove (a). Since dT is the shallowest tangent, we must have

v (s) · d̂T ≥ v′ (s) · d̂T (7)

for all v′ ∈ V. As a result,

w̃ · d̂T ≥ w · d̂T (8)

for all w ∈ V (a∗). Since wT ∈ V (a∗), we conclude that

ṽ · d̂T = (1− δ) g (a∗) · d̂T + δw̃ · d̂T

≥ (1− δ) g (a∗) · d̂T + δwT · d̂T

= vT (s∗) · d̂T,

and hence

dNB · d̂T ≥ 0. (9)

30

vk(s∗)

g(a∗)
dT

w̃

wTdNB

(a)

vk(s∗)

g(a∗)
dT

w̃

dB

(b)

Figure 7: (a) The non-binding direction is always shallower than dT. (b) The non-binding
direction fails P3, and the shallowest binding direction is shallower than dT.

The geometry of the non-binding test direction is depicted in Figure 7(a).

If (9) is a strict inequality, then we are done. Otherwise, then the fact that dNB · d̂T = 0

implies that w̃ · d̂T = wT · d̂T. Since wT ∈ W (a∗), it must be possible to write

wT =
∑
s′∈S

π (s′|a∗) w (s′)

for some w ∈ V, and moreover, due to (7) and the definition of w̃, it must be that

w (s)− v (s) = y (s) dT (10)

for all s in S+ = {s|π (s|a∗) > 0}. Finally, since vT is clockwise dT-maximal in V, it must

be that

y (s) ≤ x (s) ≤ x (s∗) (11)

for all s ∈ S+. This implies that

dNB = ṽ − v (s∗)

= vT (s∗)− v (s∗)− δ
∑
s∈S

π (s|a∗) (w (s)− v (s))

=

x (s∗)− δ
∑
s∈S+

π (s|a∗) y (s)

 dT,

where the coefficient on dT must be strictly positive because δ < 1 and equation (11). This

proves the first part of the Lemma.

31

We now prove (b). We have shown that dNB is non-zero. Now suppose that it is not

incentive compatible. From the definitions of dB and x, we can write

dB = x (s∗) dT + δ
(
w∗ − wT

)
.

We will argue that w∗ · d̂T ≥ wT · d̂T, which will imply the result. Since w̃ and wT are both in

W (a∗), so is every convex combination w (α) = αw̃ + (1− α)wT. Also, since wT ∈ IC (a∗)

(it is in fact incentive compatible for the even more stringent threats v) and w̃ /∈ IC (a∗),

there must exist some α∗ such that w (α∗) ∈ bdIC (a∗) ∩W (a∗). This implies that w∗, the

clockwise dT-maximal element of bdIC (a∗) ∩W (a∗), satisfies

w∗ · d̂T ≥ w (α∗) · d̂T

≥ (1− α∗) w̃ · d̂T + α∗wT · d̂T

≥ wT · d̂T

as desired. This geometry is depicted in Figure 7(b).

If this inequality is strict, we are done. Otherwise, it must be that

w∗ · d̂T = w̃ · d̂T = wT · d̂T,

and indeed

w∗ = (1− α∗) w̃ + α∗wT.

Moreover, in this case we know that dNB = xdT for some x > 0. This implies that

dB = (1− α∗) ṽ + α∗vT (s∗)− v (s∗)

= ((1− α∗)x+ α∗x (s∗)) dT

as claimed.

Thus, it is always possible to find actions a∗ that generate a regular test direction, which

we will call d∗,R, that satisfies P1–P3. In other words, d∗,R is shallower than the shallowest

tangent, and therefore will not cut into the interior of V, and it also points towards payoffs

that can be generated by promising continuation values in W. Specifically, we define d∗,R to

be dNB (a∗) if that direction is incentive compatible, and otherwise d∗,R is equal to dB (a∗, w∗).

Notice, however, that this conclusion required us to assume that v was itself contained

in W. The critical step in the argument was when we concluded that there exists a binding

32

direction that is shallower than dT in the event that dNB (a∗) is not incentive compatible.

Thus, when we ultimately adapt these test directions to construct an algorithm for computing

V, we will require that the pivot always stay inside the approximation W. As a result, we

want the direction selected by the algorithm to be monotonic, in the sense that v (s)+xd∗ ∈
W for some x > 0.

Unfortunately, we have no guarantee that the direction d∗,R identified by Lemma 4 will

satisfy P4, and it is a generic possibility (for an arbitrarily chosen Wand v) that this direc-

tion could point out of W. This may be surprising, since the APS operator is monotonic.

However, the non-binding and binding directions point to a relatively small subset of the

payoffs that can be generated from W, specifically those which are candidates to be ex-

tremal payoffs according to the characterization of Section 4, and these payoffs can move in

complicated ways as W changes.15

Thus, in the event that the critical regular test direction is non-monotonic, we will replace

it with another test direction which satisfies all of P. For a given action pair a in state s,

let vCW denote the next clockwise maximal payoffs from v (s) along the frontier of W (s) ∩
H (v (s) , d), and let

dCW = vCW − v (s) ,

i.e., dCW is the clockwise tangent from v (s) to W ∩H (v, d). This vector is proportional to

d except when v (s) is an extreme point of W ∩H (v, d). Further, let

xC = max
{
x|v (s) + xdCW ∈ Gen (a)

}
,

when the set over which we are maximizing is non-empty. Finally, when xC > 0, we define

the continuation test direction to be

dC (a) = min
{
xC, 1

}
dCW.

We associate the continuation direction with a regime r = (C, v), where v = v (s) + dC (a).

Lemma 5 (Continuation direction). Let a∗ and d∗,R be the action profile and direction

identified in the proof of Lemma 4, and suppose that d∗,R is non-monotonic. Then xC > 0,

so that the continuation direction dC (a∗) is monotonic and satisfies P.

Proof of Lemma 5. Let us argue that xC is strictly positive. Since V is contained in W, it

must be that dT is below dCW, in the sense that dCW · d̂T > 0 or dT = ydCW for some y > 0.

15We note that these non-monotonicities also occurred in Abreu and Sannikov (2014). We further note
that such non-monotonicities cannot happen when W = V, i.e., when we are at the fixed point, for the
existence of a non-monotonic regular test direction would imply that there are equilibrium payoffs that can
be generated from V that are outside of V.

33

In the latter case, xC must be positive because vT (s∗) is itself an element of Gen (a∗) and

vT (s∗) = v (s∗) + x (s∗) dT

= v (s∗) + yx (s∗) dCW.

So suppose that dCW · d̂T > 0, so that the tangent direction points strictly below dCW.

In that case, we can find non-zero weights (x, y) such that

d∗,R = xdCW + ydT,

and since d∗,R · d̂T > 0 (if this were zero d∗,R would be monotonic, and thus satisfy P), we

conclude that xdCW · d̂T > 0, which is only possible if x > 0. If y ≥ 0, then d∗,R must point

into W (s), for we can find a z sufficiently small so that

v (s) + zxdCW ∈W (s)

and such that zy < x (s∗), so that v (s∗) + zd∗ is a convex combination of a point on the

clockwise edge emanating from v (s∗) and a point between v (s∗) and vT (s∗). Thus, it must

be that y < 0, so that

d∗,R · d̂CW = ydT · d̂CW

= −yd̂T · dCW > 0.

Let us write

v = v (s∗) + d∗

for the payoffs pointed to by d∗,R . Since d∗,R points above dCW and dT points below dCW, it

must be that

v · d̂CW > v (s∗) · d̂CW ≥ vT (s∗) · d̂CW.

Note that both v and vT (s∗) can be generated by a∗, so that for every α ∈ [0, 1), the payoff

v (α) = αv + (1− α) vT is contained in Gen (a∗). Moreover, we can find a critical α∗ such

that v (α∗) lies on exactly the same dCW plane as v (s∗). As a result,

v (α∗)− v (s∗) = α∗d∗,R + (1− α∗) dT

= α∗xdCW,

so that xC in the definition of the continuation direction is strictly positive.

34

d∗

dC

dT

g(a)

Figure 8: The continuation direction.

We conclude from Lemmas 4 and 5 that there is an action a∗ that generates a direction

d∗ that satisfies P. In particular, the direction is non-zero, it is shallower than the shallowest

tangent, it points to payoffs that can be generated from W, and it is monotonic. The

direction d∗ is equal to d∗,R in the event that d∗,R is monotonic, and otherwise it is equal to

dC (a∗).

5.2 Finding a new approximate basic pair

Ultimately, we will use the test directions to iteratively identify approximate basic pairs that

are generous estimates of the shape of V. Specifically, we redefine a basic pair (a, r) to be

the analogous object from Section 4, except where feasibility and incentive compatibility

are defined relative to W rather than V, and we also allow the possibility that regimes can

take on the additional values (C, v) when the present pivot is the result of a continuation

direction. The generalized basic pair induces unique payoffs v according to

v (s) =

(1− δ) g (a (s)) + δ

∑
s′∈S π (s′|a (s)) v (s′) if r (s) = NB;

(1− δ) g (a (s)) + δw if r (s) = (B, w) ;

v if r (s) = (C, v) ,

(12)

and the pair (a, r) is incentive compatible if, for all s ∈ S in which r (s) = NB,

∑
s′∈S

π (s′|a (s)) v (s′) ∈ IC (a (s)) , (13)

35

where again IC (a) is defined relative to the approximate threats w (W). In this case, we say

that (a, r) generates v from W, or that it just generates v, when W is clear from context.

Now suppose that the pivot v from the previous subsection is generated by a basic pair

(a, r). From the previous section, we know that there is a test direction d∗, generated by

an action and regime (a∗, r∗)16 in state s∗, that is shallower than the shallowest tangent

dT, points to payoffs that can be generated from W, and is monotonic. We can use this

information to find a new basic pair (a′, r′) that generates payoffs

v′ = v + xd∗

for some non-negative scalars x (s) that are not all zero.

First, set

a′ (s) =

a∗ if s = s∗;

a (s) otherwise.

The new regime r′ and movements x will be determined as the limits of sequences
{
rk
}∞
k=0

and
{
xk
}∞
k=0

, where

r0 (s) =

r∗ if s = s∗;

r (s) otherwise,

and

x0 =

1 if s = s∗;

0 otherwise.

We also let x−1 (s) = 0 for all s.

To motivate the iteration, suppose we tried to generate payoffs from (a′, r0). Verily, these

payoffs will move in the direction d∗ relative to v. We have no guarantee, however, that the

resulting tuple will be incentive compatible for states in which r0 (s) = NB. It might be that

the induced payoffs move too far in the direction d∗, so that they move outside of the incentive

compatible region for the relevant states. In addition, the induced payoffs could move so

far in the direction d∗ that they move outside of W altogether. The iterative procedure

gradually moves payoffs in the direction d∗ for non-binding states to identify whether or not

16While we continue to use d∗ to denote the shallow direction and a∗ to denote the actions that generate
it, we note that for the purposes of the following discussion and Proposition 2, it is not necessary that a∗ and
d∗ be the particular actions and direction identified in Lemmas 4 and 5. Indeed, d∗ can be any direction that
satisfies conditions (i-iii) from the beginning of Section 5. This is essential to the operation of our algorithm,
which may in general identify directions that satisfy (i-iii) and are shallower than the d∗ of Lemmas 4 and 5.

36

constraints would be violated, and if so, change the regimes in the relevant states so that

payoffs stop at the appropriate incentive and monotonicity constraints.

We now define the iterative procedure. At iteration k > 0, for all states in which rk (s) 6=
NB, we simply set (

rk (s) ,xk (s)
)

=
(
rk−1 (s) ,xk−1 (s)

)
.

Otherwise, we compute

x = xk−1 (s) + δ
∑
s′∈S

π (s′|a (s))
(
xk−1 (s′)− xk−2 (s′)

)
,

and let

x = max {y ≤ x|v (s) + yd∗ ∈ Gen (a (s)) ∩W (s)} , (14)

which is necessarily non-negative.

If x = x, then we simply set xk (s) = x. Otherwise, we set

(
rk (s) ,xk (s)

)
= ((B, w) , x)

where

w =
1

δ
(v (s) + xd∗ − (1− δ) g (a (s)))

is the continuation value that generates v (s) + xd∗.

This completes the specification. Let us define

r′ = lim
k→∞

rk, x′ = lim
k→∞

xk.

The following proposition characterizes the procedure.

Proposition 2 (New basic pair). The basic pair (a′, r′) in the preceding discussion is well

defined. Moreover, (a′, r′) generates basic equilibrium payoffs

v′ (s) = v (s) + x (s) d∗.

Proof of Proposition 2. Let us first argue that our procedure is well defined. For any state

such that r0 = NB, the payoffs

v (s) + x0 (s) d∗ ∈ Gen (a′ (s)) .

If s = s∗, then r∗ = NB, so the non-binding test direction must have been IC. On the

other hand, if s 6= s∗, then it must have been that r (s) = NB as well, and this conclusion

37

follows from the hypothesis that v (s) are generated by (a, r). Now, suppose inductively that

xk−1 ≥ xk−2 and that

v (s) + xk−1 (s) d∗ ∈ Gen (a′ (s)) ∩W (s) ,

the base case having just been established for k = 1. Then it must be that x in equation

(14) is well-defined and non-negative.

Finally, let us argue that the regime and movement sequences converge, and that (a′, r′)

generates v+x′d∗. While rk is not changing, our procedure is essentially iteratively applying

the Bellman operator of equation (5) which, as we have previously observed, is a contraction

of modulus δ. Thus, the iterates xk converge at a geometric rate to the unique fixed point

x′ which satisfies

x′ (s)− x0 (s) = δ
∑
s′∈S

π (s′|a′ (s)) x′ (s′) .

Thus,

v′ (s) = v (s) + x0 (s) d∗ + δ
∑
s′∈S

π (s′|a′ (s)) x′ (s′) d∗.

Note that if r′ (s) = NB,

v (s) + x0 (s) d∗ = (1− δ) g (a′ (s)) + δ
∑
s′∈S

π (s′|a′ (s)) v (s′) ,

so

v′ (s) = (1− δ) g (a (s)) + δ
∑
s′∈S

π (s′|a′ (s)) v′ (s′) .

Now suppose that
(
a′, rk

)
generates payoffs that are not incentive compatible or are not

contained in W. In that case, after finitely many iterations, an incentive or a monotonicity

constraint will be violated by v + xkd∗, and rk will be changed to a binding regime. Since

there are only finitely many states, there can be only finitely many switches from non-binding

to binding regimes, and rk must converge after finitely many iterations. At this point, xk

converges to the fixed point at which incentive and monotonicity constraints are satisfied.

This Bellman procedure is depicted graphically in Figure 9. In this example, r (s1) is non-

binding at every iteration, whereas r (s2) starts out non-binding but eventually transitions

to binding. In Figure 9(a), the initial substitution is made that moves payoffs in state s2 in a

south-westerly direction. Figure 9(b) shows the second iteration, in which the movement in

state s2 is propagated through to state s1. Through the second iteration, the expected pivots

38

v0(s1)

v0(s2)

g(a1(s1))

g(a1(s2))

(a) Initial substitution.

v0(s1)

v0(s2)

g(a1(s2))

g(a1(s1))

(b) Second iteration.

v0(s1)

v0(s2)

g(a1(s2))

g(a1(s1))

(c) Third iteration. IC binds in s2.

v0(s1)

v0(s2)

g(a1(s2))

g(a1(s1))

(d) Final.

Figure 9: The Bellman procedure.

are incentive compatible in both states. At iteration three, however, the incentive constraint

in state s2 would be violated by using the pivot as continuation values. As a result, we fix

the payoff in s2 at the binding constraint, but move the continuation payoff for state s1 all

the way to the expected pivot. This is depicted in Figure 9(c). In Figure 9(d), we see the

final configuration of the new pivot.

Note that we have described this procedure as if there are infinitely many iterations. In

practice, we have implemented this procedure by inverting the system of equations (12) for

each
(
a1, r1,k

)
and checking if the resulting payoffs satisfy the incentive constraint (13). If

not, we iterate as above until a constraint is violated, update the regimes, and then invert

again. After finitely many rounds, the payoffs obtained by inverting (12) must be incentive

compatible.

5.3 The algorithm

The test directions and the updating procedure are the building blocks from which we will

construct an algorithm for computing V. The algorithm proceeds over a series of iterations,

over the course of which we will generate a sequence of pivot payoff tuples vk and accom-

panying action and regime tuples
(
ak, rk

)
. We will also keep track of a current direction dk

39

that satisfies

V ⊆ H
(
vk, dk

)
.

This means that the equilibrium payoff correspondence is always below vk in levels with

slope dk. In addition, we will maintain a compact and convex payoff correspondence Wk,

which contains the equilibrium payoff correspondence and serves as our approximation of

the payoffs that can be promised as binding

continuation values on the equilibrium path and as punishment continuation values after

deviations. This Wk will in fact be the set of payoffs that have been circumscribed by the

trajectory of the pivot vk thus far, i.e.,

Wk = W0 ∩
(
∩kl=0H

(
vl, dl

))
.

The algorithm can be initialized with any v0, d0, and W0 that satisfy these conditions. The

initial a0 and r0 can be arbitrary as long as r0(s) 6= NB for all s.

At each iteration, we will search over all test directions according to a procedure that

we will describe presently. The test direction which generates the smallest clockwise angle

relative to dk will be deemed shallowest and will become the new current direction dk+1. We

then substitute the action and regime that generated the best direction into the system (3)

using the procedure described in Section 5.2, and advance the pivot to

vk+1 = vk + xdk+1

where x is a tuple of non-negative scalars. Lemmas 4 and 5 will imply that dk+1 satisfies

V ⊆ H
(
vk, dk+1

)
= H

(
vk+1, dk+1

)
,

so that our approximations will continue to contain all of the equilibrium payoffs.

The algorithm proceeds over a sequence of such iterations, through which the pivot tuple

moves clockwise, revolving around and around the equilibrium payoff sets. Our convention

will be that the new revolution begins when the dk passes due north dN = (0, 1), i.e., when

dk−1 points somewhere to the west of due north, and dk points somewhere to the east. The

index of the iteration can therefore be decomposed as k = r : c, where r is the number

of revolutions and c is the number of cuts, or steps, within the revolution. The current

40

revolution and cut are denoted by r(k) and c(k), respectively. With slight abuse of notation,

we will write k+ 1 = r+ 1 : 0 if k+ 1 starts a new revolution and k+ 1 = r : c+ 1 otherwise.

Within iteration k, we search over the directions described in Section 5.1, where the

current pivot and direction are vk and dk, and the feasible payoff correspondence is Wr(k):0,

i.e., the approximation at the beginning of the current iteration. We shall see that keeping

the feasible payoff correspondence constant within a revolution simplifies our subsequent

anti-stalling arguments. For each action pair a, we look for the direction that would be

identified by Lemmas 4 and 5, under the hypothesis that this action pair is in fact the a∗

that generates the shallowest tangent with the largest movement. We denote this candidate

direction by d∗ (a). If we encounter conditions that imply that a cannot be a∗, then we

simply set d∗ (a) to be null, i.e., d∗ (a) = ∅. The algorithm then selects as the next direction

the shallowest direction from among all of the non-null candidates:

D∗ = {d∗ (a) |a ∈ A, d∗ (a) 6= ∅} .

The exact search procedure is portrayed as a tree in Figure 10. We know from Lemma

4 that the critical actions a∗ must generate a non-binding direction that is above dT. Thus,

the first thing our search procedure does for each a is examine its associated non-binding

test direction dNB (a). Note that dT must point into Wk, so it must therefore be below both

dk and dCW. Hence, if a is the critical action pair and if dNB (a) is below dCW, then dNB (a)

must be below dCW and above dT and therefore point into Wk. If this is not the case, then

we can simply skip this action and set d∗ (a) = ∅. We can also rule out a being a∗ if dNB = 0.

If dNB (a) is non-zero and if it might be above dT, then we check whether it is incentive

compatible or not (cf. Lemma 4(a)). If the non-binding direction satisfies P, then it is a

candidate to be the critical direction, and we set d∗ (a) = dNB (a). Otherwise, if it fails P4,

then we can check for the continuation direction, as in Lemma 5. If no continuation direction

exists, because there are no payoffs that can be generated in the direction dCW, then it is

impossible that this action pair is a∗. If dC (a) does exist, then we take it as the candidate

for the critical direction from a∗.

Finally, if we find that dNB (a) is not incentive compatible, so that P3 fails, then Lemma

4 tells us (again under the hypothesis that the actions under consideration are a∗) that

there is a non-zero binding direction that is shallower than the shallowest tangent. We

therefore look for the shallowest binding direction generated by a, and if this direction

dB (a, w) is monotonic, then we take it as the candidate to be the critical direction with

d∗ (a) = dB (a, w). If it is non-monotonic, then again we invoke Lemma 5 and look for a

continuation direction. If one exists, then we set it to be the candidate associated with a.

41

For each a

dNB = 0
or dNB is below dCW

and non-monotonic

d∗(a) = ∅

dNB is IC

dNB is non-monotonic
and x1 > 0

d∗(a) = dC

dNB is monotonic d∗(a) = dNB

d∗(a) = ∅

dNB is not IC

∃dB above dCW

and x1 > 0
d∗(a) = dC

∃dBthat
is monotonic

d∗(a) = dB,∗

d∗(a) = ∅

Figure 10: The search for the next direction.

Otherwise, a cannot be a∗, and we move on to the next action pair. This completes the

specification of our search procedure.

5.4 Characterization of the algorithm

We now prove that the sequence of approximations Wk converge to the equilibrium payoff

correspondence V. This will be verified in three steps.

5.4.1 Containment

First, we will show that as long as our approximation Wk contains V, then the algorithm

will necessarily select a new direction dk+1 that does not “cut into” V, in the sense that

V ⊆ H(vk, dk+1). Thus, the pivot will orbit around V in a clockwise manner, so that the

sequence of trimmed approximations Wk will contain V.

The reason is that, under the inductive hypothesis that V ⊆ H
(
vl, dl

)
for all l ≤ k,

then V ⊆ Wk as well, so that vk, dk, and Wk satisfy the assumptions of Lemmas 4 and

5. Thus, as long as V 6=
{
vk
}

, we know there will exist an action pair a∗, specifically the

actions that generate the largest shallowest tangent direction across all states, that generates

42

a non-binding test direction that is non-zero and shallower than the shallowest test direction.

Moreover, if this test direction is not incentive compatible, then we know that the same a∗

will generate a binding test direction that is also non-zero and shallower than the shallowest

tangent. Thus, a∗ generates a regular test direction that is incentive compatible and shallower

than the shallowest tangent, and even if this direction is non-monotonic, then we know we

can find a continuation direction that is shallower than the shallowest tangent as well.

Since a∗ must be considered by our search procedure, we know that D∗ is non-empty

and contains at least one direction in which payoffs can move without intersection V. As a

result, the shallowest test direction dk+1 is well-defined and will satisfy the inductive step of

containment.

Lemma 6 (Existence). Suppose that V ⊆ Wk and V 6=
{
vk
}

. Then there exists a test

direction that satisfies P1–P4.

Lemma 7 (Containment). Suppose that V ⊆Wk and that there exists a test direction that

satisfies P1–P4. Then V ⊆ H
(
vk+1, dk+1

)
, so that V ⊆Wk+1.

We note that if no direction exists that satisfies P1–P4, then it simply means that either

(i) V =
{
vk
}

, which can be easily verified by checking that vk is self-generating, or (ii)

if vk (s) cannot be generated for some s, then V (s) = ∅ and there are no pure strategy

subgame perfect Nash equilibria for that state. Recall, however, that we are maintaining the

assumption that V (s) 6= ∅, to simplify the statements of our subsequent results.

5.4.2 No stalling

Having established that Wk will not converge to anything smaller than V, we wish to argue

that it also cannot converge to anything larger. The key second step in our argument is

showing that the algorithm cannot stall, in the sense that starting from any iteration, the

pivot will complete a full revolution around V in finitely many steps.

Let us be more precise about our definition of revolutions. We will refer to a subsequence

of iterations of the form {l|(r,−1) ≤ l ≤ (r+1, 0)} as a complete revolution. Our anti-stalling

result is that starting from any k, there exists a k′ > k such that the sequence {k, . . . , k′}
contains a complete revolution. The logic behind this result is as follows. The algorithm must

find a new test direction that satisfies P at every iteration. If the pivot stopped completing

new revolutions around the equilibrium payoff correspondence, then these directions must

get stuck at some limit direction, which we denote by d∞. Thus, for l sufficiently large, vl

will be strictly increasing in the direction of d∞.

New test directions can only be generated by three methods: non-binding, binding, and

continuation. Moreover, new pivots are always generated as the solution to the system (3) for

43

some configuration of actions and continuation regimes. Since there are only finitely many

states and actions, if the binding payoffs can only take on one of finitely many values, then

there are only finitely many ways to configure (3) to generate different pivots. This would

be at odds with our hypothesis that there are infinitely many pivots being generated that

all increase in the direction d∞. Thus, there must be infinitely many new binding payoffs

being introduced into the system.

Now, recall that the C (a) sets are constant within a revolution. Hence, if the pivot

gets stuck and is no longer completing revolutions, the set of continuation values that can

be used to generate binding test directions constant as well, and the infinitely many new

binding payoffs must be coming from (i) hitting an IC or monotonicity constraint during the

pivot update procedure, at which point the regime for that state is changed from non-binding

to binding, or (ii) from a continuation direction, in which the pivot travels as far as it can

go in the given direction while maintaining monotonicity.

However, (i) or (ii) cannot occur more than once with a given action if dl is sufficiently

close to d∞. Suppose for the sake of exposition that dl is exactly d∞ and is not changing

from iteration to iteration. If, say, the best direction at iteration l is a continuation direction

generated by action a, then the pivot will travel as far as possible in the direction d∞

while staying within Wk (s) ∩ Gen (a). This set is a compact and convex polytope that is

monotonically decreasing. Thus, if vl(s) is already maximized in the direction d∞, then at

subsequent iterations, it will be impossible to move further in this direction using action a.

Even if dl is only very close to d∞, this will still be true, because eventually dl will be close

enough to d∞ that moving in any direction between dl and d∞ would violate a constraint.

Thus, (i) and (ii) can only happen finitely many times, so that the existence of new

directions will eventually require the pivot to complete new revolutions. We therefore have

the following:

Lemma 8 (No stalling). If the algorithm generates infinitely many directions that satisfy P,

then the pivot completes infinitely many revolutions, i.e.,

lim
k→∞

r(k) =∞.

5.4.3 Convergence

We are almost done. Our algorithm generates a sequence of monotonically decreasing cor-

respondences Wk. It is therefore a consequence of Tarski’s fixed point theorem that the

Wk converge to a well-defined limit. The third and last piece of our characterization in-

volves arguing that this limit must be a fixed point of our algorithm. As a consequence, the

44

limit correspondence must be self-generating, and therefore cannot be strictly larger than

V. Since the Wk are monotonically decreasing, they are converging to a limit

W∞ = ∩∞k=0W
k.

= W0 ∩
(
∩∞k=0H

(
vk, dk

))
.

(In the event that at some iteration k the algorithm fails to find a test direction satisfying

P, we simply define Wl =
{
vk
}

for l ≥ k, so that W∞ =
{
vk
}

.)

It turns out that this limit is self-generating in the sense of APS, and therefore can be

no larger than V. Loosely speaking, any payoff v that is in W∞ (s) must be in Wk (s) for

all k. As we show in the Appendix, it must be possible to write v as a convex combination

of other payoffs that could be generated at the rth revolution from Wr−1:0. When new

pivots are generated from regular test directions, these payoffs are simply the pivots that are

generated on the rth revolution from Wr−1:0. The argument is only slightly more subtle when

a continuation test direction was used, in which case there are payoffs that can be generated

that are “ahead” of the pivot in the direction dk, which turns out to be sufficient for our

purposes. By taking convergent subsequences of the continuation values that generate payoffs

whose average is v, we can identify continuation values in the limit set W∞ that generate

payoffs whose convex combination is v as well, so that W∞ self-generates.

Lemma 9 (Self generation). W∞ is self-generating, and therefore is contained in V.

Combining Lemmas 7, 8, and 9, we have our main result:

Theorem 1 (Convergence). The sequence of approximations {Wk}∞k=0 converges to the equi-

librium payoff correspondence, i.e., ∩∞k=0W
k = V.

6 Application

6.1 A risk sharing example

We will now illustrate our algorithm and methodology by solving a game of informal insur-

ance in the vein of Kocherlakota (1996).17 Each period, player i ∈ {1, 2} has an endowment

of consumption good ei ∈ [0, 1], which evolves stochastically over time. The total amount

of the good in the economy is constant at e1 + e2 = 1, so that we can simply write e = e1

and e2 = 1− e (cf. Ljungqvist and Sargent, 2004, ch. 20). Thus, e describes the state of the

world, which was previously denoted by s.

17See also Dixit, Grossman, and Gul (2000), Ligon, Thomas, and Worrall (2000, 2002), and Ljungqvist
and Sargent (2004).

45

The good cannot be stored and must be consumed each period. If player i consumes ci

in a given period, then the flow utility is

u (ci) =
√
ci.

Note that flow utility is concave, so that players prefer to smooth consumption over time. For

example, if players could perfectly smooth their endowment, then the resulting payoffs would

be
√

0.5 ≈ 0.705. On the other hand, if the endowment were independently and uniformly

distributed and if a player consumed just their endowment each period, then average utility

across states would be only
´ 1
x=0

√
xdx ≈ 0.667.

Thus, the players would like to insure themselves against the riskiness of the endowment.

While there are no formal insurance contracts, players can make unilateral transfers to

subsidize one another’s consumption. Let c denote player 1’s consumption and let t denote

the net transfer from player 1 to player 2. The realized consumption profile is

(c, 1− c) = (e− t, 1− e+ t) .

In our subsequent equilibrium analysis, we will implicitly restrict attention to action profiles

in which at most one player makes a positive transfer. This is without loss of generality,

since any net transfer can be replicated with such an action profile, while at the same time

relaxing incentive constraints for both players.

As we have said, the endowment evolves stochastically. We suppose that tomorrow’s

state e′ is distributed according to the density

f (e′|c) =
ρ exp (−ρ |e′ − c|)

2− exp (−ρc)− exp (−ρ (1− c))
.

This density is symmetric around a mode of c with exponential tails that have a shape

parameter ρ. As ρ goes to infinity, the distribution converges to a Dirac measure on c, and

as ρ goes to zero, the distribution converges to the standard uniform. The density is plotted

for various parameter values in Figure 11.

An economic interpretation of these transitions is that each player’s productivity is tied

to their health and diet, so that players who are well-nourished will, on average, be more

productive in the subsequent period. At the same time, there is a fixed amount of resources

in the economy, so that one player is well-nourished only if the other player is somewhat

malnourished. As an aside, we regard the perfect negative correlation between endowments

as somewhat artificial, but it facilitates an apples-to-apples comparisons between economies

46

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

(c,ρ) = (0,8)
(c,ρ) = (0.25,6)
(c,ρ) = (0.5,4)
(c,ρ) = (0.75,2)
(c,ρ) = (1,0.0001)

Figure 11: The density f (e′|c) for various values of c and ρ.

with different levels of persistence, since all of these economies have the same feasible payoffs.

Thus, the persistence of the endowment affects equilibrium welfare only through incentives.

For the purposes of the computation, both endowment and consumption were taken to

be on finite grids

e ∈ E =

{
0,

1

Ke − 1
, . . . ,

Ke − 2

Ke − 1
, 1

}
;

c ∈ C =

{
0,

1

Kc − 1
, . . . ,

Kc − 2

Kc − 1
, 1

}
,

with Ke and Kc are respectively the number of grid points for endowment and consumption.

The consumption grid was chosen to include the endowment grid, so that Kc = 1+L (Ke − 1)

for a positive integer L ≥ 1. We adapted the continuous probabilities by assigning to each

level of the endowment e′ the mass in the bin [e′ − 1/ (2Ke) , e
′ + 1/ (2Ke)].

We used our algorithm to compute the equilibria of this game for various discount factors,

grid sizes, and levels of persistence ρ. The computations were performed using software that

implements our pencil-sharpening algorithm. Specifically, we wrote a library in C++ that

we call SGSolve, which contains data structures and routines for representing games and

generating the sequence of pivots. The code is general and can be used to solve any game.

We note that the algorithm as implemented differs slightly from the algorithm as specified

in Section 5, in that the program only generates the regular test directions, which may

cause the pivot to move non-monotonically. The program tests a sufficient condition that

containment will be satisfied, and it emits a warning if the condition fails.18 We have also

18The key step in our containment argument that relies on monotonicity is showing the existence of a
binding test direction that is shallower than the shallowest tangent, in the event that the non-binding test

47

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Player 1’s payoff

P
la

ye
r

2’
s

pa
yo

ff

0.35 0.4 0.45 0.5
0.75

0.8

0.85

0.9

Player 1’s payoff
0.42 0.425 0.43 0.435 0.44

0.825

0.83

0.835

0.84

Player 1’s payoff

Figure 12: The trajectory of the pivot in state e = 0, with δ = 0.7, Ke = 5, Kc = 201, and
ρ = 0. The second and third panels show the trajectory around the northwestern corner of
V (0) at greater magnification.

written a graphical interface called SGViewer for interacting with the library. All of these

programs and the source code are available through the authors’ website,19 under the terms

of the GPLv3 license.20

We now describe the computations. Figures 12 and 13(a) present output of the algorithm

for the parameter values δ = 0.85, Ke = 5, Kc = 101, and ρ = 0 (so that the endowment is

i.i.d. uniform). The algorithm terminated when the distance between successive approxima-

tions was less than 10−8, which was attained after 84 revolutions and 52,766 cuts, at a run

time of one minute and nine seconds. The final sets have 637 maximal payoff tuples. Figure

12 shows the path taken by the pivot vk (0) during the first 20,000 cuts. Figure 13(a) shows

the trajectory on the final revolution. The equilibrium payoff sets are outlined in blue and

overlap along a northwest-southeast axis. As player 1’s endowment e increases from 0 to 1,

player 1’s payoffs generally increase and payoffs for player 2 generally decrease.

This computation demonstrates key properties of the equilibrium payoff correspondence

that are known from prior work, which we will briefly review. Note that the following

properties hold for all parameter values, not just the ones used for the computation in

Figures 12 and 13(a) (e.g., for ρ > 0). First, all of the equilibrium payoff sets have right

angled southwest frontiers. The corner payoffs, which coincide with the threat tuple v, are

generated by the “autarkic” equilibrium in which neither player ever makes positive transfers.

direction is not incentive compatible. If the pivot is not feasible, then the shallowest binding test direction
may in fact cut into the equilibrium payoff correspondence. However, a sufficient condition for a given
binding test direction associated with an action a to not cut into the set is that it is shallower than the slope
of the frontier of Gen (a) at the binding payoff that generates the test direction. SGSolve verifies that this is
the case whenever a binding test direction is selected as the best direction, and emits a warning if it is not
shallower.

19www.benjaminbrooks.net/software.shtml
20http://www.gnu.org/licenses/gpl-3.0.en.html

48

0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

V(0)

V(0.25)

V(0.5)

V(0.75)

V(1)

Player 1’s payoff

P
la

ye
r

2’
s

pa
yo

ff

V
v

v
∗

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Player 1’s payoff

P
la

ye
r

2’
s

pa
yo

ff

ρ=0
ρ=4
ρ=9
ρ=14

(b)

Figure 13: (a) The equilibrium payoff correspondence for δ = 0.7, Ke = 5, Kc = 201, and
ρ = 0. (b) Equilibrium payoff correspondences for δ = 0.85, Ke = 9, Kc = 201, and various
values of ρ.

Indeed, this must be the minimum payoff, since a player can always deviate by keeping their

endowment for themself, which generates at least the autarky payoff.

Second, the Pareto frontiers of the equilibrium payoff sets all lie along the common

frontier indicated by an extra thick blue line. Notice that the evolution of the endowment

only depends on current consumption, and not on the current value of the endowment. As

a result, the feasible expected continuation value sets, V (c), are independent of e. This

implies that

X (c) = (1− δ)u (c) + δV (c)

is independent of e as well. Moreover, the best deviation is always a transfer of zero, which

results in a payoff of exactly v (e). Thus, the set of payoffs that can be generated when the

endowment is e is simply

X ∩ {v|v ≥ v (e)}

where

X = ∪c∈CX (c) ,

and the northeastern frontier is simply the Pareto frontier of X.

49

Third, Figure 13(a) allows us to see, in a vivid way, the recursive structure of Section 4.

Consider the payoff tuple v∗, depicted with red stars, that maximizes the sum of players’

payoffs. Since the Pareto frontiers of V (0.25), V (0.5), and V (0.75) overlap at the 45 degree

line, these utilitarian efficient payoffs coincide for these states, i.e., v∗ (0.25) = v∗ (0.5) =

v∗ (0.75). Moreover, it must be the same consumption (c = 0.5) that generates each of these

payoffs. Indeed, since constraints are slack at these levels of the endowment and at this

payoff, we know that perfect insurance will obtain until the endowment reaches 0 or 1.

We solved the model for levels of the persistence ρ ∈ {0, 4, 9, 14}, with δ = 0.85, Ke = 9,

and Kc = 201. Figure 13(b) displays the equilibrium payoff correspondence for different

parameter values. Intuitively, the higher is ρ, the more persistent is the endowment around

consumption. This tightens incentive constraints, because when a player deviates by grab-

bing more consumption today, they also raise their expected endowment in the future. Thus,

deviations induce a transition to autarky in a relatively favorable state, thereby weakening

the punishment. When ρ equals zero, so that the endowment distribution is always uni-

formly, it is possible to implement perfect insurance. As ρ increases, the equilibrium payoff

sets spread out along the northwest-southeast axis, and even for ρ = 4 it is no longer possible

to support perfect insurance.

Figure 14 provides two other and complementary visualizations of how payoffs change

with the level of persistence. Suppose that the endowment starts at some particular level, and

players play the Nash bargaining game to decide which equilibrium should be implemented,

where the threat point is the autarky equilibrium. Figure 14(a) shows how the resulting Nash

bargaining payoffs depend on the degree of persistence and on the initial state. The results are

not terribly surprising: the player with the higher endowment has an advantage in bargaining,

and this advantage generally increases as the endowment becomes more persistent.

Now consider a large economy of agents that are engaged in constrained-efficient bilateral

risk sharing arrangements. If endowment shocks are independent across pairs, then there

is a steady state distribution of consumption in the economy. The blue curve in Figure

14(b) presents the average long run payoffs as a function of ρ. When ρ is close to zero, it

is possible to support efficient risk sharing, in which players obtain the efficient surplus of√
0.5 ≈ 0.705. As ρ increases, this average payoff declines until risk sharing breaks down

altogether for ρ > 19.21 We note that this breakdown occurs somewhat abruptly at high

ρ due to the finite consumption grid and discontinuous changes in efficient payoffs when

particular discrete transfers can no longer be incentivized.

21The current implementation of our algorithm simply stops when there are no directions satisfying P.
This may happen because (a) the equilibrium payoff correspondence V has a single element or (b) there
are no pure strategy subgame perfect Nash equilibria, so that V is empty. In this case, we know that the
autarkic equilibrium always exists. Thus, for ρ > 19, the efficient and autarky curves would coincide.

50

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Player 1’s endowment (e)

P
la

ye
r

1’
s

N
as

h
pa

yo
ff

ρ=0
ρ=3.25
ρ=6.5
ρ=9.75
ρ=13
ρ=16.25

(a)

0 5 10 15 20
0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

Persistence (ρ)

A
ve

ra
ge

 lo
ng

 r
un

 p
ay

of
f

Efficient equilibrium
Autarky

(b)

Figure 14: (a) Nash bargaining payoffs and (b) long run payoffs for δ = 0.85, Ke = 9,
Kc = 201, and various values of ρ.

6.2 Computational efficiency

We conclude this section with a comparison to other computational procedures. Because

the APS algorithm generates all possible payoffs at each step, the number of extreme points

along the APS sequence could in principle grow without bound. In contrast, whenever

the monotonicity constraint is not binding, pencil-sharpening has bounded computational

complexity per revolution (proportional to the bound on the number of basic tuples).

Judd, Yeltekin, and Conklin (2003), hereafter JYC, proposed an alternative procedure

that also has bounded complexity per iteration, at the cost of only approximating the equi-

librium correspondence. Fix a finite set of directions

D = {d1, . . . , dKd
} .

For a set W ⊂ R2, we can define its outer approximation to be the smallest convex set with

edges parallel to the dj that contains W . Explicitly, the outer approximation of W is

O (W) =
{
w|d̂j · w ≤ bj ∀j = 1, . . . , Kd

}
,

where

bj = max
{
d̂j · w|w ∈ W

}
.

51

Run times (h:m:s)

Kd = 100 Kd = 200 Kd = 400 Kd = 600

Ke Kc #BP JYC ABS JYC ABS JYC ABS JYC ABS

3 31 126 1:21.8 1.2

3 51 203 2:21.2 3.1 7:46.2 3.1

3 101 395 5:21.9 11.6 16:42.6 11.7 56:50.3 11.5

5 101 637 13:43 50.7 43:53.2 50.1 2:29:13.1 51.2 5:17:25.5 50.3

Table 2: Run times for various specifications of the risk sharing model and algorithms,
in hours:minutes:seconds. #BP denotes the number of basic pairs on the final revolution
of pencil sharpening. The convergence criterion for JYC is that distances between sets
are less than 10−6, and the convergence criterion for pencil sharpening (ABS) is that the
approximation is contained within the final JYC set.

The definition extends to correspondences in the obvious manner: O (W) (s) = O (W(s)).

JYC propose iterating the operator B̂(W) = O (B(O (W))), i.e., the outer approximation

of the APS set of the outer approximation. Since B and O are both monotonic, B̂ will be

monotonic as well. Thus, if W0 contains V, then so does B̂k (W0). By taking a rich set of

gradients, each O (W) converges to W, so hopefully the limit of this iteration will closely

approximate V. Finally, computing B̂ (W) is equivalent to solving a linear programs for

each s ∈ S, a ∈ A (s), and d ∈ D.

For purposes of comparison, we implemented our own version of the JYC algorithm

within our C++ libary. For the linear programming, we used the commercial optimization

software Gurobi. We also exploited some common structure in the linear programs across j

to streamline the computation.

Table 2 reports run times for pencil sharpening and JYC on the risk-sharing example

with δ = 0.85, ρ = 0, and various grid sizes. In these trials, we first ran the JYC algorithm

until the Hausdorff distance between successive approximations was less than 10−6. We then

ran pencil sharpening until its approximation was contained in the final JYC set. Thus, the

numbers in the “ABS” column represent the time for pencil sharpening to provide a better

approximation than JYC. Also, from the output of our algorithm, we know the number of

basic pairs that are visited by the pencil-sharpening algorithm on the last revolution, which

will generically be the same as the number of extreme points of V.22 To obtain a comparable

22There are two caveats to make here. First, it is a generic possibility that the pencil-sharpening algorithm
may take two steps in the same direction; this could occur when the next extreme payoff is generated using
a non-binding action a, but the current pivot v is not incentive compatible for a. In this case, the algorithm
may first introduce a into the basic pair with a binding payoff, and then move in the same direction by

52

level of accuracy, we configured the JYC algorithm with a similar number of directions as

the final number of basic pairs, so that both algorithms could in principle generate the same

level of detail.

The result are striking. For example, there are 395 basic pairs on the last revolution

when Ke = 3 and Kc = 101, and JYC with 400 gradients takes approximately 56 minutes

and 43 seconds to converge. For that same example, pencil sharpening overtakes JYC in 11.5

seconds, which is about 1/300th of the time. Naturally, these numbers should be taken with

a grain of salt: there are many ways to implement any given algorithm, and we do not doubt

that the implementations of both our own and JYC’s algorithm can be refined to reduce run

time. Nonetheless, the results strongly suggest that pencil sharpening is significantly faster

than existing methods while providing an even greater level of accuracy.

7 Conclusion

It has been the purpose of this paper to study the subgame perfect equilibria of stochastic

games. Our work has three distinct components:

(i) We uncover key structural properties of extremal equilibria, namely that extremal

equilibrium payoffs can be generated by basic pairs.

(ii) We develop an algorithm that exploits this structure by computing a sequence of basic

pairs and corresponding pivot payoffs, and the trajectory of the pivot asymptotically

converges to the equilibrium payoff set.

(iii) We implement our algorithm in an accessible format for use by the research community.

AS previously undertook this research program for two player repeated games with per-

fect monitoring, and we extended the program to the considerably more complex class of

stochastic games. The insights that we have used are obviously particular to the two player

and perfect monitoring setting. Of course, these are fundamental classes of games both for

theory and application and eminently worthy of study. It is our hope that similar efforts

will bear fruit for other classes of games, for example, those involving imperfect monitoring

or more than two players.

introducing a with a non-binding regime. We regard this as a somewhat exceptional case. Second, on the
risk sharing example, the algorithm generates a large number of non-extreme pivots that lie on the “flats”
at the southern and western edges of the equilibrium payoff set. This is due to the highly non-generic payoff
structure, which causes payoffs generated with binding continuation values to lie along the same line. For a
more generic game, each action would generate binding payoffs along different lines. In contrast, all of the
basic pairs that are generated along the efficient frontier correspond to distinct extreme points.

53

References

Abreu, D., D. Pearce, and E. Stacchetti (1986): “Optimal cartel equilibria with

imperfect monitoring,” Journal of Economic Theory, 39, 251–269.

——— (1990): “Toward a theory of discounted repeated games with imperfect monitoring,”

Econometrica, 58, 1041–1063.

Abreu, D. and Y. Sannikov (2014): “An algorithm for two-player repeated games with

perfect monitoring,” Theoretical Economics, 9, 313–338.

Atkeson, A. (1991): “International lending with moral hazard and risk of repudiation,”

Econometrica: Journal of the Econometric Society, 1069–1089.

Blackwell, D. (1965): “Discounted dynamic programming,” The Annals of Mathematical

Statistics, 226–235.

Dixit, A., G. M. Grossman, and F. Gul (2000): “The dynamics of political compro-

mise,” Journal of political economy, 108, 531–568.

Ericson, R. and A. Pakes (1995): “Markov-perfect industry dynamics: A framework for

empirical work,” The Review of Economic Studies, 62, 53–82.

Hörner, J., T. Sugaya, S. Takahashi, and N. Vieille (2011): “Recursive methods in

discounted stochastic games: An algorithm for δ → 1 and a folk theorem,” Econometrica,

79, 1277–1318.

Judd, K. L., S. Yeltekin, and J. Conklin (2003): “Computing supergame equilibria,”

Econometrica, 71, 1239–1254.

Kocherlakota, N. R. (1996): “Implications of efficient risk sharing without commit-

ment,” The Review of Economic Studies, 63, 595–609.

Ligon, E., J. P. Thomas, and T. Worrall (2000): “Mutual insurance, individual

savings, and limited commitment,” Review of Economic Dynamics, 3, 216–246.

——— (2002): “Informal insurance arrangements with limited commitment: Theory and

evidence from village economies,” The Review of Economic Studies, 69, 209–244.

Ljungqvist, L. and T. J. Sargent (2004): Recursive macroeconomic theory, MIT press.

Mailath, G. J. and L. Samuelson (2006): “Repeated games and reputations: long-run

relationships,” OUP Catalogue.

54

Phelan, C. and E. Stacchetti (2001): “Sequential equilibria in a Ramsey tax model,”

Econometrica, 69, 1491–1518.

Yeltekin, S., Y. Cai, and K. L. Judd (2015): “Computing equilibria of dynamic games,”

Tech. rep., Carnegie Mellon University.

A Omitted proofs

A.1 No stalling

The argument for this result will not rely on the particulars of our algorithm, but only on the

fact that the pencil-sharpening algorithm generates a trajectory that (1) is monotonically

moving in the clockwise direction and (2) contains the non-empty convex sets V(s). These

properties are formalized as:

1. vl(s) = vl−1(s) + xl(s)dl where dl · d̂l−1 ≤ 0 and xl(s) ∈ R+.

2. v · d̂l ≤ vl(s) · d̂l for all v ∈ V(s).

We will refer to such a sequence
{
vl, dl

}
as an orbital trajectory. The containment argument

proves that the algorithm generates an orbital trajectory.

We will say that the orbital trajectory
{
vk, dk

}
has the rotation property if for all direc-

tions d and for all k, there exists an l ≥ k such that dl · d̂ ≤ 0. In words, this property says

that for every direction, the sequence will point weakly below that direction infinitely many

times.

We will argue that the trajectory generated by the twist algorithm satisfies the rotation

property, which in turn implies that the algorithm completes infinitely many revolutions.

The proof is lengthy, but the intuition is quite straightforwrd. If the pivot ever got stuck in

a way that prevented it from completing orbits of V, then eventually the direction would

move around and cut some payoffs in V out of the trajectory, which contradicts containment.

Lemma 10. If the orbital trajectory
{
vk, dk

}
satisfies the rotation property, limk→∞ r(k) =

∞.

Proof of Lemma 10. We will show that from any iteration k, there exists an iteration k′ > k

that starts a revolution, which implies the result.

First, for any k, there must exist a k′ > k such that dk
′ · d̂k < 0. The rotation property

would clearly fail for the direction −d̂k if dl ∝ dk for all l > k, and if we only have dl ∝ dk

55

or dl ∝ −dk, then containment would be violated under the hypothesis that V has full

dimension.

Now let us consider two cases. If dk ∝ dN , then there exists a smallest k′ > k such that

dk
′ · d̂k = dk

′ · d̂N < 0, which in fact must start a revolution.

Otherwise, if dk · d̂N > 0, there is a smallest k1 ≥ k such that dk1 · d̂N > 0. There is

then a smallest k2 ≥ k1 such that dk2 · d̂N ≤ 0, and finally a smallest k3 ≥ k2 such that

dk3 · d̂N < 0. We claim that k3 starts a revolution. If dk3−1 · d̂N > 0, then this is obvious.

Otherwise, we claim that dk3−1 ∝ dN . For if dk3−1 ∝ −dN , then dk3 · d̂k3−1 = −dk3 · d̂N > 0,

a contradiction.

Lemma 11. If the rotation property fails, then there exists a direction d∞ such that dl/‖dl‖ →
d∞, and moreover dl · d̂∞ ≥ 0 for l sufficiently large.

Proof of Lemma 11. Suppose that there exists a k and direction d such that dl · d̂ > 0 for all

l ≥ k. We can write each direction dl as

dl/‖dl‖ = xld+ yld̂

for some coordinates xl and yl. Note that the hypothesis dl · d̂ > 0 implies that yl > 0.

Claim: xl is monotonically increasing in l. The best direction dl must satisfy dl · d̂l−1 ≤ 0,

which implies that

dl · d̂l−1 = (xld+ yld̂)(xl−1 + yl−1d̂)

= (xl−1yl − xlyl−1)‖d‖2 ≤ 0

so that

xl−1yl ≤ xlyl−1.

Suppose that xl < xl−1. Then yl > yl−1 (since (xl)2 + (yl)2 = 1), so

xlyl−1 < xlyl < xl−1yl

since yl > 0, a contradiction. Thus, it must be that xl > xl−1. It must also be that xl ≤ 1, so

that xl converges to some x∞. Finally, yl =
√

1− (xl)2, so yl converges to y∞ =
√

1− (x∞)2,

and the limit direction is

d∞ = x∞d+ y∞d̂.

56

In the limit, dl · d̂∞ is proportional to x∞yl − xly∞. Monotonicity implies that x∞ ≥ xl and

x∞ and xl have the same sign. Thus, if x∞ > 0, xl must be positive so that yl ≥ y∞, so that

x∞yl ≥ xly∞. If xl ≤ x∞ ≤ 0, then yl ≤ y∞, and again we conclude that x∞yl ≥ xly∞.

Having established these general results about orbital trajectories, we can now return to

the particulars of our algorithm and prove the anti-stalling lemma.

Proof of Lemma 8. Suppose that the trajectory generated by the algorithm does not com-

plete infinitely many revolutions. Then from Lemma 10, we conclude that the rotation

property fails, so that there exists a k and a d such that dl · d̂ ≥ 0 for all l ≥ k. We then

conclude from Lemma 11 there exists a direction d∞ such that dl/‖dl‖ → d∞. Moreover,

there exists a k′ such that for all l ≥ k′, dl · d̂∞ ≥ 0 and dl · d∞ > 0. We also note that there

must exist a k′ such that no new revolutions are completed after iteration k′. In particular,

if d∞ points west of due north, then eventually all of the dl will point west of due north, so

that it will be impossible for dl to point east again and no new revolutions can be completed.

The analysis would be symmetric if d∞ points east. Thus, we can assume without loss of

generality that the sets W (a), IC(a), Gen(a), C(a), and the function h(a) are not changing.

Because there are finitely many actions and states, there must be some action which

generates infinitely many best test directions, and for l sufficiently large, we must have that

vl(s) is strictly increasing in the d∞ direction. Now, there are only finitely many binding

payoffs in the pivot vk and only finitely many extreme continuation values in C(a). As a

result, there are only finitely many configurations of the system that defines vl that use (i)

binding payoffs that were in the original pivot vk or (ii) extreme binding continuation values

in C(a). Thus, it is impossible that the algorithm generates infinitely many new pivots that

are monotonically increasing in the d∞ direction using only non-binding and binding payoffs.

There are therefore only two possibilities for generating new directions, by introducing

new binding payoffs into the pivot: (i) new binding payoffs introduced when changing a

non-binding regime to a binding regime in state s during the pivot updating procedure or

(ii) generating a new continuation test direction.

Now let us consider two cases. In the first case, there exists a k such that for all l ≥ k,

dl/‖dl‖ = d∞, i.e., dl converges exactly in finitely many iterations. Now, it is not too hard to

see that this is incompatible with a generating infinitely many non-zero movements according

to (i) or (ii). For example, when (i) occurs, the pivot must travel as far as possible in the

direction d∞ while maintaining incentive compatibility. If vl(s) were to travel any further

in the direction d∞ on a subsequent iteration using the same action, incentive compatibility

would be violated, which rules out new pivots of the forms (i), (ii), or (iii) being generated

with this action. Similarly, if a new pivot were generated according to (ii), the pivot again

57

moves as far as possible in the direction d∞ subject to the continuation value being (a)

incentive compatible, (b) feasible in the sense of w ∈ W (a), and (c) contained in Wk(s)

(which contains Wl(s) for all l > k). Thus, any further movement in the direction d∞ on a

subsequent iteration must violate one of these requirements (a-c), and therefore is impossible.

In the second case, dl approaches d∞ in the limit but never converges exactly. Let

X(a) = Gen(a) ∩Wk(s)

denote the payoffs in Wk that can be generated using a and feasible and incentive compatible

continuation values in state s. The set X(a) is a convex polytope in R2. Let M denote the

set of directions which are the slopes of edges of X(a). In other words, if E is an edge of

X(a), then

E ⊆ H (v,m)

for some v ∈ X(a) and m ∈M , where

H(v,m) = {w|w · m̂ = v · m̂}

is the line through v with slope m. Since there are only finitely many pivots up to iteration

k, X(a) has finitely many extreme points, and therefore M is a finite set. Let k′ be large

enough so that (i) dk
′ · m̂ 6= 0 for all m ∈ M , and (ii) sgn

(
dk

′ · m̂
)

= sgn
(
dl · m̂

)
for all

l ≥ k′. This k′ must exist beause dl converges. For example, if d∞ · m̂ > 0, then obviously

there exists a km so that for all l ≥ km, dl · m̂ > 0 as well. This will symmetrically be true

for d∞ · m̂ < 0. If d∞ · m̂ = 0, then we can establish the existence of km so that if d∞ ·m > 0

(< 0), then there exists a km such that dl · m̂ > 0 (< 0). For in the former case, d∞ = xm

for some x > 0, so dl · m̂ = dl · xd̂∞, which is strictly positive. In the other case, we use the

fact that d∞ = −xm for some x > 0.

Now let

Y l =
{
w|w · d̂l ≤ vl(s) · d̂l, w · d̂∞ > vl(s) · d̂∞

}

58

be the set of payoffs which could generate a new direction dl+1 such that dl+1 · d̂l ≤ 0 and

dl+1 · d̂∞ > 0. Note that Y l ⊆ Y l−1. Any payoff w ∈ Y l can be written as

w = xdl + yd∞;

vl(s) = xldl + yld∞;

vl−1(s) = xl−1dl + yl−1d∞.

The fact that w · d̂∞ > vl(s) · d̂∞ implies that x > xl, since dl · d̂∞ > 0. In turn, vl(s) ∈ Y l−1

implies that vl(s) · d̂∞ > vl−1(s) · d̂∞ and therefore xl ≥ xl−1, which proves that x ≥ xl−1.

On the other hand,

w · d̂l−1 = xdl · d̂l−1 + yd∞ · d̂l−1

≤ xldl · d̂l−1 + yld∞ · d̂l−1

since w · d̂l ≤ vl(s) · d̂l implies that y ≤ yl, as d∞ · d̂l < 0, and dl · d̂l−1 ≤ 0 as well. The latter

implies that vl(s) · d̂l−1 ≤ vl−1(s) · d̂l−1, so that w · d̂l−1 ≤ vl−1(s) · d̂l−1.
Now, let k′′ ≥ k′ such that a generates the best continuation direction. (The analysis

for case (i) is entirely analogous, with the incentive constraints replacing the half-space

constraints that define X(a).) This implies that vk′′(s) is on the boundary of X(a), and in

particular that vk′′(s) is on an edge E with slope m.

Claim: Y k′′ ∩X(a) = ∅. Note that any vl(s) for l ≥ k′′ must be contained in Y l ∩X(a),

which is contained in Y k′′∩X(a). Thus, a consequence of this claim is that a cannot generate

any more non-zero directions at iterations later than k′′ as we had supposed.

Now, let us see why the claim is true. Note that X(a) ⊆ H
(
vk′′(s),m

)
for some m ∈M ,

which is the slope of an edge that contains X(a). If vl(s) is not an extreme point, this m is

unique, and we note that it must be the case that dk
′′−1 ·m̂ > 0. Otherwise, traveling further

in the direction dk
′′−1 would move the pivot into the interior of X(a), contradicting that we

had moved as far as possible in the direction dk
′′−1 without violating feasibility or incentive

compatibility.

On the other hand, if vk′′(s) is an extreme point, there are two such m. We can distinguish

these as m1 and m2, where m2 is the slope of the clockwise edge and m1 is the slope of

the counter-clockwise edge. We claim that for at least one of these m, it must be that

dk
′′−1 · m̂ > 0. Otherwise, the same claim applies as above. In particular, if dk

′′−1 = xm2

or if dk
′′−1 = −xm1 for some x > 0, then it is clearly possible to move along one of the

edges. If dk
′′−1 = −xm2 or if dk

′′
= xm, then because m2 · m̂1 < 0, either dk

′′−1 · m̂1 < 0

59

or dk
′′−1 · m̂2 < 0. Finally, if dk

′′−1 · m̂1 > 0 and dk
′′−1 · m̂2 > 0, then by traveling in the

direction dk
′′−1, the pivot would move into the interior of X(a).

Thus, we can find an m for which X(a) ⊆ H
(
vk′′(s),m

)
and dk

′′−1 · m̂ < 0. This implies

that dl · m̂ > 0 for all l ≥ k′′, and in particular, that d∞ · m̂ ≥ 0. It will be sufficient to show

that for all w ∈ Y l, w · m̂ > vk′′(s) · m̂. Let us write

w = xdk
′′−1 + yd∞

vl(s) = xldk
′′−1 + yld∞.

Then

w · d̂∞ = xdk
′′−1 · d̂∞

> xk
′′
dk

′′−1 · d̂∞

= vk′′(s) · d̂∞,

which implies that x > xk
′′
, since dk

′′−1 · d̂∞ > 0. Similarly,

w · d̂k′′−1 = yd∞ · d̂k′′−1

≤ yk
′′
d∞ · d̂k′′−1

= vk′′(s) · d̂k′′−1,

which implies that y ≥ yk
′′
, since d∞ · d̂k′′−1 < 0. Thus, since d∞ · m̂ > 0 and dk

′′−1 · m̂ ≥ 0,

we conclude that

w · m̂ = xdk
′′−1 · m̂+ yd∞ · m̂

> xk
′′
dk

′′−1 · m̂+ yk
′′
d∞ · m̂

= vk′′(s) · m̂,

so w /∈ H
(
vk′′ ,m

)
and w /∈ X(a).

A.2 Convergence

To prove convergence, we need another “purely geometric” fact about orbital trajectories.

Let us say that the subsequence
{(

vl, dl
)}

k′′

l=k′ has the covering property if for all d ∈ R2,

there exist l ∈ {k′, . . . , k′′ − 1} and α, β ≥ 0 such that

d = αdl + βdl+1.

60

In other words, d lies between dl and dl+1. The first result is the following:

Lemma 12 (Covering). Suppose the subsequence
{(

vl, dl
)}

k′′

l=k′ satisfies the covering prop-

erty, and let
{
xl
}k′′
l=k′

be tuples of non-negative scalars. Then

∩k′′l=k′H
(
vl, dl

)
⊆ co

(
∪k′′l=k′

{
vl + xldl

})
.

Proof of Lemma 12. Let

X = ∩k′′−1
l=k′ H

(
vl(s), dl

)
,

and let

Y = co
(
∪k′′l=k′

{
vl(s) + xl (s) dl

})
denote the convex hull of the trajectory of the subsequence in state s, which are both convex

sets.

Suppose that there exists a v ∈ X \ Y . By the separating hyperplane theorem, there is

a direction d such that w · d̂ < v · d̂ for all w ∈ Y . In particular,
(
vl(s) + xl (s) dl

)
· d̂ < v · d̂

for all l = k′, . . . , k′′. Because of the covering property, we can find an l ∈ {k′, . . . , k′′ − 1}
and α, β ≥ 0 such that d = αdl + βdl+1. Note that v ∈ X implies that v ∈ H

(
vl(s), dl

)
and

also that v ∈ H
(
vl+1(s), dl+1

)
= H

(
vl(s), dl+1

)
. This means that

v · d̂l ≤ vl(s) · d̂l =
(
vl (s) + xl (s) dl

)
· d̂l;

v · d̂l+1 ≤ vl(s) · d̂l+1 ≤
(
vl(s) + xl (s) dl

)
· d̂l+1,

due to the fact that dl · d̂l+1 ≥ 0, so that

v · d̂ = αv · d̂l + βv · d̂l+1

≤ α
(
vl(s) + xldl

)
· d̂l + β

(
vl(s) + xldl

)
· d̂l+1

=
(
vl(s) + xldl

)
· d̂,

so that d cannot in fact separate v from Y .

Naturally, we will need the fact that complete revolutions of the pivot satisfy the covering

property.

Lemma 13 (Complete revolutions). A complete revolution satisfies the covering property.

61

Proof of Lemma 13. Let d ∈ R2 be an arbitrary direction, and let us suppose that d · d̂N ≤ 0.

The case where d · d̂N ≥ 0 is symmetric and is omitted.

We will show that d ∈ X l for some l, where

X l =
{
αdl + βdl+1|α ≥ 0, β ≥ 0

}
for l = k, . . . , k′ − 1. Note that the X l are additive (convex) cones, and some of the X l may

be one-dimensional if dl+1 = xdl for some x > 0. Note that a sufficient condition for d to be

in X l, as long as dl 6∝ dl+1, is that d · d̂l+1 ≤ 0 and d · d̂l ≥ 0. This can be easily verified by

decomposing d in (dl, dl+1) coordinates and verifying that the coefficients are both positive.

Now, observe that Xk contains dN . Since dk+1 · d̂N < 0, there is a smallest k̃ ∈ {k +

2, . . . , k′} such that dk̃ · d̂N ≥ 0, which we know exists because k′ starts a revolution so it is

true for k̃ = k′ − 1.

Claim: −dN ∈ X k̃−1. Why? dk̃−1 · d̂N < 0 and dk̃ · d̂N ≥ 0, so that there exists some

positive weights α and β such that d′ = αdk̃−1 + βdk̃ satisfies d′ · d̂N = 0. By scaling up or

down, we can ensure that either d′ = dN or d′ = −dN . Moreover, we know that d′ · d̂k̃−1 ≤ 0,

which cannot be true if d′ = dN .

Thus, we can define the following sets:

Y k =
{
αdN + βdk+1|α ≥ 0, β ≥ 0

}
;

Y k̃−1 =
{
αdk̃−1 + β(−dN)|α ≥ 0, β ≥ 0

}
;

Y l = X l if k < l < k̃ − 1.

Suppose that d /∈ X l for any l. Then since Y l ⊆ X l for l = k, . . . , k̃ − 1, we conclude that

d /∈ Y l either. We shall see that this leads to a contradiction.

In particular, since d · d̂N ≤ 0, d /∈ Y k implies that d · d̂k+1 < 0. Continuing inductively

for l = k + 1, . . . , k̃ − 2, if d · d̂l < 0 and d /∈ Y l = X l, then we conclude that d · d̂l+1 < 0.

Once we reach l = k̃ − 1, we know that d · d̂k̃−1 < 0, and since d /∈ Y k̃−1, we conclude that

−d · d̂N < 0, or equivalently that d · d̂N > 0, a contradiction.

Proof of Lemma 9. The result is trivial if W∞ (s) is a singleton, in which case containment

and the assumption that V (s) is non-empty imply that V (s) = W∞ (s). Similarly, we can

dispense with the case in which the algorithm fails to find a direction satisfying P, in which

case again V =
{
vk
}

. Thus, Lemma 8 implies that the algorithm completes infinitely many

revolutions.

We will argue that every v ∈ W∞ (s) is a convex combination of payoffs that can be

generated by some a ∈ A (s) and w ∈W∞. Since Wk is monotonically decreasing, it must

62

be that v ∈ Wr:0 (s) for all revolutions r. Recall that a pivot payoff vk (s) may have been

generated in one of three ways: (i) non-binding, (ii) binding, or (iii) continuation. In the

first two cases, vk (s) is generated by some actions a and continuation payoffs w ∈Wr(k):0.

In case (iii), however, vk (s) is not necessarily generated, but rather it may be the convex

hull of vk−1 (s) and a payoff vk (s) + xkdk ∈ Gen
(
ak (s)

)
with xk ≥ 0 that lies along the ray

extending from vk−1 (s) in the clockwise tangent direction to Wk−1 (which by assumption

is dk). Let us also define xk = 0 for iterations k in which the pivot was generated via (i) or

(ii), and define

Y r = co
(
∪r+1:0

l=r:0

{
vl (s) + xldl

})
.

Lemmas 12 and 13 show that Wr:0 ⊆ Y r+1 for each r.

Since v ∈Wr:0, we can write v as a convex combination of at most three extreme points

of Y r+1:

v =
3∑

l=1

αr,lvr,l (s) ,

where vr,l (s) ∈ Y r+1 for l = 1, 2, 3. Now, each of these pivots must have been generated

from actions ar,l ∈ A (s) and continuation values wr,l ∈Wr−1:0. Thus,

v =
3∑

l=1

αr,l

(
(1− δ) g

(
ar,l
)

+ δ
∑
s′∈S

π
(
s′|ar,l

)
wr,l (s′)

)
and for each r, l, i, and a′i ∈ Ai(s), we must have

vr,l
i (s) ≥ (1− δ) gi

(
a′i, a

r,l
−i

)
+ δ

∑
s′∈S

π
(
s′|a′i, a

r,l
−i

)
wr (s′) ,

where wr = w (Wr:0). Each of the sequences
{
ar,l
}

,
{
αr,l
}

,
{
wr,l

}
, and {wr} lie in compact

metric spaces A (s), [0, 1], and W0 respectively, and so there is a subsequence for which all

of these objects converge to limits al, αl, wl, and w respectively. Moreover, it must be that

wl ∈W∞ and w ∈W∞ for all l = 1, 2, 3. We argue this for wl: For every k, there is an r

such that r : 0 > k, and from this point on,

wr,l ∈Wr:0 ⊆Wk ⊆ H
(
vk, dk

)
.

Since H
(
vk, dk

)
is closed, wr,l must converge to a point in H

(
vk, dk

)
. But this is true for

every k, thus proving that wl ∈ H
(
vk, dk

)
for all k. Moreover, wr,l ∈W0 for every r and l,

and W0 is also closed, so that wl ∈W0 as well, and we conclude that wl ∈W∞.

63

It is now obvious that

v =
3∑

l=1

αl

(
(1− δ) g

(
al
)

+ δ
∑
s′∈S

π
(
s′|al

)
wl (s′)

)

and

vl
i (s) ≥ (1− δ) gi

(
a′i, a

l
−i
)

+ δ
∑
s′∈S

π
(
s′|a′i, al−i

)
w (s′)

≥ (1− δ) gi
(
a′i, a

l
−i
)

+ δ
∑
s′∈S

π
(
s′|a′i, al−i

)
w (W∞) (s′) ,

thus proving that v is a convex combination of payoffs that can be generated by W∞.

64

