
Algorithms for Stochastic Games

Supplemental Appendix

Dilip Abreu Benjamin Brooks Yuliy Sannikov

January 30, 2020

C Pseudocode for Sections 3, 4, and 5

Algorithm 1 Minimize regimes.

1: procedure MinimizeRegimes(λ,a, r,W)

2: define S̃ to be the states with γ(a(s), λ,W) > 0

3: define r′ := r

4: for all s ∈ S̃ do

5: r′(s) := R . For these states, recursive can be taken to be minimal

6: loop

7: r′′ := r′

8: for all s /∈ S̃ do

9: if x̂APS(a(s), λ,W) < x(s, λ, a, r′,W) then

10: r′′(s) := APS . The best APS payoff is lower

11: else if xR(a(s), λ, a, r′,W) < x(s, λ, a, r′,W) then

12: r′′(s) := R . The recursive payoff is lower

13: if r′′ 6= r′ then

14: r′ := r′′ . Continue updating

15: else

16: return r′ . These regimes are minimal

1

Algorithm 2 Optimize the policy.

1: procedure OptimizePolicy(λ,W)

2: define a ∈ A(W)

3: define r ∈ R

4: loop

5: define a′ := a

6: r := MinimizeRegimes(λ, a, r,W)

7: for all s ∈ S, a ∈ A(W)(s) do

8: if and(xR(a, λ, a, r,W) > x(s, λ, a, r,W),

or(γ(a, λ,W) > 0, x̂APS(a, λ,W) > x(s, λ, a, r,W)) then

9: a′(s) := a

10: if a 6= a′ then

11: a := a′ . Continue updating

12: else

13: return (a, r) . The policy is optimal

Algorithm 3 Compute the shallowest legitimate test direction with N = 2.

Require: u is robustly optimal for direction λ

1: procedure FindNextDirection(λ,u,W)

2: define λ′ := λ

3: for all s ∈ S, a ∈ A(W)(s), p ∈ {R} ∪ C(a,W) do . Iterate over all substitutions

4: for all λ′′ that is a test direction for (s, a, p) given u do

5: if and (λ′′ is legitimate, λ′′ is shallower than λ′) then

6: λ′ := λ′′

7: return λ′ . The optimal payoffs may change at λ′

Given N = 2, let ûAPS(a, λ,W) be the highest binding APS payoff in the direction λ where

comparisons are made lexicographically using >λ. In a slight abuse of notation, we write

γ(a, λ+,W) > 0 if the APS gap for a is lexicographically positive at λ. The following

procedure, analogous to Algorithm 1, uses lexicographic comparisons to choose the regimes

which become minimal for the action tuple a after direction λ

2

Algorithm 4 Lexicographically minimize regimes for N = 2.

1: procedure LexMinimizeRegimes(λ,a,p,W)

2: define S̃ to be the states where γ(a, λ+,W) > 0

3: define p′ := p

4: for all s ∈ S̃ do

5: p′(s) := R . For these states, recursive must be minimal

6: loop

7: define p′′ := p′

8: define u := the payoffs induced by (a,p′)

9: for all s /∈ S̃ do

10: if u(s) >λ û
APS(a(s), λ,W) then

11: r′′(s) := APS . The best APS payoff is lexicographically lower

12: else if u(s) >λ u
R(a(s), λ,u) then

13: p′′(s) := R . The recursive payoff is lexicographically lower

14: if p′′ 6= p′ then

15: p′ := p′′ . Continue updating

16: else

17: return p′ . This p is minimal

The following procedure, analogous to Algorithm 2, uses lexicographic comparisons to

find the pair which is optimal after direction λ (i.e. the robustly optimal pair).

3

Algorithm 5 Lexicographically optimize the policy.

1: procedure LexOptimizePolicy(λ,a, p, W)

2: define a′ := a

3: define p′ := p

4: loop

5: define a′′ := a′

6: p′ := LexMinimizeRegimes(λ, a′,p′,W)

7: define u := the payoffs induced by (a′,p′)

8: for all s ∈ S, a ∈ A(W)(s) do

9: if and (uR(a, λ,u) >λ u(s),

or(γ(a, λ+,W) > 0, ûAPS(a, λ,W) >λ u(s))) then

10: a′′(s) := a

11: if a′′ 6= a′ then

12: a′ := a′′ . Continue updating the actions

13: else

14: for all s ∈ S do

15: if p′(s) = uR(a′(s),u) then

16: p′(s) := R . Make the pair canonical

17: return (a′,p′) . Return the optimal pair

4

Algorithm 6 Compute B̃ for N = 2.

Require: B(W) ⊆W

1: procedure B̃(W)

2: for all s ∈ S do

3: define A(W)(s) = ∅
4: for all a ∈ A(s) do

5: Compute C(a,W)

6: if C(a,W) 6= ∅ then

7: A(W)(s) := A(W)(s) ∪ {a}

8: if A(W)(s) = ∅ for some s then

9: return an empty correspondence

10: define W′ := (RN)S . There are supportable actions

11: define λ := (1, 0) . Begin pointing due east

12: define (a,p) to be an arbitrary pair

13: loop

14: define (a′,p′) := LexOptimizePolicy(λ, a,p,W)

15: define u := the payoffs induced by (a,p)

16: λ′ := FindNextDirection(λ,u,W)

17: W′ := W′ ∩ {λ′ · v ≤ λ′ · u} . Intersect W′ with the new half space

18: if λ points strictly north and λ′ points weakly south then

19: return W′ . Completed a full revolution

20: else

21: λ := λ′, a := a′ . Continue with the new direction

Algorithm 7 Compute V to a tolerance ε in the metric d. Returns the approximation.

Require: B(W̃0) ⊆ W̃0 and V ⊆ W̃0

1: procedure Solve(W̃0,ε)

2: define k := 0

3: do

4: k := k + 1

5: W̃k := B̃(W̃k−1)

6: while d(W̃k,W̃k−1) > ε . Stop when the movement is small

7: return W̃k

5

Next, given directions λ and λ̃, we define the (λ, λ̃)-line to be the subset of directions

in Λ of the form cos(θ)λ + sin(θ)λ̃, where θ ∈ (0, 2π]. We order (λ, λ̃)-line according to θ

in this parameterization. We also extend the notion of test directions for the substitution

(s, a, p) given the payoffs u to be any direction satisfying (14). Legitimacy also extends to

this setting. Finally, we redefine robust optimality in the many player setting by saying that

u is robustly optimal if it remains optimal in a neighborhood of λ. (Note that this definition

is more restrictive than what is used in Section 4, where robustly optimal payoffs only had

to remain optimal for perturbations in one direction.)

Algorithm 8 Update the direction by rotating towards λ̃. Returns the new direction of
optimization and the direction in which payoffs move.

Require: u is robustly optimal at λ

1: procedure RotateDirection(λ,λ̃,u,W)

2: for all s ∈ S, a ∈ A(W)(s), p ∈ {R} ∪ C(a,W) do

3: for all test directions λ′′ for (s, a, p) and u in the (λ, λ̃)-line do

4: if λ′′ is legitimate and a smaller rotation than λ′ then

5: λ′ := λ′′

6: d := u(s, a, p,u)− u(s) . the direction in which (s, a, p) moves payoffs

7: return (λ′,d)

Algorithm 9 Compute a randomly chosen face of B̃(W). Return the direction and the
corresponding half space.

Require: B(W, Λ̂) ⊆W

1: procedure FindFace(W)

2: define λ0 randomly

3: define (a, r) := OptimizePolicy(λ0,W)

4: define p ∈ P(a,W) to be min-max for (a, r,W)

5: define u := payoffs induced by (a,p)

6: for n = 1, . . . , N − 1 do

7: define λ̃n randomly to be orthogonal to {λ0} ∪ {dl|l = 1, . . . , n− 1}
8: define (λn, dn) :=RotateDirection(λn−1, λ̃n,u,W)

9: define H := {v|λN−1 · v ≤ λN−1 · u}
10: return (λN−1, H)

6

Algorithm 10 Approximate B̃(W), given an incumbent set of directions Λ̂. Returns a new
approximation and a new set of directions.

Require: B(W, Λ̂) ⊆W

1: procedure B̃(W,Λ̂,L)

2: define W′ := (RN)S

3: define Λ̂′ := ∅
4: for all λ ∈ Λ̂ do

5: (a, r) := OptimizePolicy(λ,W)

6: define p ∈ P(a,W) to be min-max for (a, r,W)

7: define H := {v|v · λ′ ≤ x(λ′,p,W)}
8: if W′ and W′ ∩H do not have the same local binding frontier then

9: Λ̂′ := Λ̂′ ∪ {λ}
10: W′ := W′ ∩H
11: define K := |Λ̂′|
12: for k = 1, . . . , L−K do

13: (λ,H) := FindFace(W)

14: if W′ and W′ ∩H do not have the same local binding frontier then

15: W′ := W′ ∩H
16: Λ̂′ := Λ̂′ ∪ {λ}

17: return (W′, Λ̂′)

Algorithm 10 can be combined with an analogue of Algorithm 7 to approximate V when

N > 2.

7

D Connections to linear programming

and dynamic programming

To the student of linear programming, our procedure may evoke the simplex algorithm and

sensitivity analysis. The choice of (a, r) bears a resemblance to the choice of a basis, and our

use of test directions and optimization is similarly reminiscent of parametric programming

in the theory of linear programming (see Dantzig and Thapa, 2006, for a comprehensive

treatment). In this section, we attempt to elucidate the connection.

Suppose we were not concerned with incentives at all and simply wanted to compute the

feasible payoff correspondence F, i.e., payoffs that can be obtained with some pure-strategy

profile starting in state s (still allowing public randomization). For a fixed direction λ, the

problem of computing the optimal levels

x(s, λ) = max{λ · v|v ∈ F(s)}

is a Markov decision problem. It is shown by Blackwell (1962) that there is an optimal

strategy profile which is stationary and given by some a ∈ A. There are many ways to

compute the solution, including value function iteration, policy function iteration, and linear

programming. In particular, the levels {x(s, λ)}s∈S are the solution to the linear program

min
yR(·)

∑
s∈S

yR(s) (1a)

s.t. yR(s) ≥ (1− δ)λ · g(a) + δ
∑
s′∈S

π(s′|a)yR(s′) for all s ∈ S, a ∈ A(W)(s). (1b)

A solution can be computed via the simplex algorithm, which will select exactly |S| of the

constraints to bind, so that their intersection uniquely pins down the value of yR. At an

optimum, there must be a binding constraint in each state, since otherwise we could decrease

yR(s), and simultaneously decrease the right-hand side of every constraint. The choice of

binding constraints is therefore a choice of exactly one action profile for each state, i.e.,

an a ∈ A(W), which is an optimal policy. The simplex algorithm would identify such an

optimal policy as a basic solution to the LP (1).

It has long been understood that the output of the simplex algorithm can be used to

conduct “sensitivity analysis”: how much can we perturb the original problem without

changing the optimal basis? In our case, we are concerned with sensitivity to λ, and for

what range of directions would the optimal solution remain the same. As we rotate λ,

we change the constants in the constraints. Eventually the optimal basis will change, and

8

generically a single constraint will leave the basis and be replaced by a new one. This

corresponds to changing the optimal policy in a single state. The next action to enter can be

determined using well-known techniques, as in Dantzig and Thapa (2006). Mapping out the

set of solutions for all λ is known as parametric programming, which is also a well established

concept in mathematical optimization. In fact, this is precisely how our algorithm would

behave if we restricted ourselves to using r(s) = R, in which case the algorithm would

converge in exactly one iteration (provided we start with any compact and convex valued

correspondence that contains the feasible correspondence, e.g., large boxes whose bounds are

given by the maximum and minimum flow payoffs across all states and actions.)

This is not our program, since we do have incentive constraints. It is in that sense closer

to the problem of APS, which can also be formulated as an LP thusly: xAPS(s, λ) is the

solution to

min
yAPS(·)

∑
s∈S

yAPS(s) (2a)

s.t. yAPS(s) ≥ max{λ · v|v ∈ B(a,W)} for all s ∈ S, a ∈ A(W)(s). (2b)

This is not an LP in standard form, because of the inner maximization which is also an LP.

But that problem can be replaced with its dual, in which case we have a single minimization

program. Suppose that W has finitely many faces with normals {λl}Ll=0 and corresponding

levels {zl(s)}Ll=0. Let µl(a, s) denote the multiplier on feasibility of the continuation value

for action a in state s in the direction λ, and let αi(a) denote the multiplier on the incentive

constraint for player i. Applying the strong duality theorem of linear programming, we

conclude that the best APS payoff is equal to the minimum of

yAPS(a) =
∑
s′∈S

L∑
l=1

µl(a, s)((1− δ)λl · g(a) + δzl(s))−
N∑
i=1

αi(a)ui(a)

across all µl and αl that are non-negative. Thus, we can expand (2) to

min
yAPS(·),µl(·),αi(·)

∑
s∈S

yAPS(s)

s.t. yAPS(s) ≥ yAPS(a) for all s ∈ S, a ∈ A(W)(s) (3)

Again, this LP could be solved using the simplex algorithm, and one can map out the set of

all basic solutions for all λ using sensitivity analysis and parametric programming.

9

Again, this is not our program. Ours is in fact a hybrid of the two:

min
y(·),yR(·),yAPS(·),µl(·)≥0,αi(·)≥0

∑
s∈S

y(s) (4a)

s.t. (1b) and (2b) and (3)

y(s) ≥ min{yR(a), yAPS(a)} ∀s ∈ S, a ∈ A(W)(s). (4b)

This is not an LP, because of the min operator in (4b). However, we can modify this program

to make it into a larger LP, so that one could again use sensitivity analysis and parametric

programming to map out solutions.

Specifically, we can add parameters r(a) ∈ {R,APS} (which are not variables in the LP)

and replace (4a) and (4b) with

min
y(·),yR(·),yAPS(·),µl(·)≥0,αi(·)≥0

∑
s∈S

y(s) +
∑

a∈A(W)(s)

(yR(a) + yAPS(a))

s.t. (1b) and (2b) and (3)

y(s) ≥ yr(a)(a) ∀s ∈ S, a ∈ A(W)(s)

(5)

This is now an LP, and the y(s) in the solution corresponds to the optimal levels under

a particular conjecture as to which are the minimizing regimes, action profile by action

profile. We could compute the level x(s, λ) for a fixed direction by solving a sequence of such

LPs, where at each step, we replace r(a) with arg minr y
r(a), where yr(a) is taken from the

previous solution. This will necessarily produce a decreasing sequence of solutions, whose

limit is x(s, λ).

Now, once we reach the optimal solution regimes r(a), if we add one more constraint:

yr(a)(a) ≤ yr
′
(a) for all s ∈ S, a ∈ A(W)(s), r ∈ {R,APS}, (6)

the optimal solution will not change. Moreover, if we do sensitivity analysis on this expanded

program, we will exactly find the range of directions λ under which the optimal actions and

level-minimizing regimes do not change, action profile by action profile. So, in principle, one

way to map out x(s, λ) is to do sensitivity analysis on the expanded program of (5) and (6)

to find adjacent directions where the solution to that program would change, and for those

adjacent directions, resolve (5), re-optimizing the regimes r(a) as needed.

Overall, this is quite a bit more work than what we have done in our more direct imple-

mentation. Effectively, the LP-based approach involves computing optimal regimes for every

10

action profile, even those which are not optimal, whereas our main procedure only computes

minimal regimes for maximal action profiles. We have even implemented the LP based al-

gorithm for two players using Gurobi, a high-performance commercial linear programming

package. We found that this program took an order of magnitude longer to solve than the

more direct implementation described in Section 4.2.

Nonetheless, this discussion may help to explain where the linear structure comes from,

and why we end up using similar objects as those which arise in linear programming. It may

also explain why we cannot simply use off-the-shelf techniques from linear programming in

determining the function x(s, λ).

11

E Redux for B̃ε

This appendix extends the key results from Sections 3 and 4 to the operator B̃ε.

E.1 Convergence results

Define the operator

T ε(y, λ, a, r,W)(s) = −ε+

(1− δ)λ · g(a(s)) + δ
∑

s′∈S y(s′)π(s′|a(s)) if r(s) = R;

xAPS(a(s), λ,W) if r(s) = APS.

Lemma 1 (Operator T ε). Fix λ, a, r, and W. As a function of y : S → R, T ε is

(L1.i) increasing;

(L1.ii) a contraction with modulus δ and hence has a unique fixed point y∗;

(L1.iii) if T ε(y) ≤ (≥)y then y∗ ≤ (≥)T ε(y).

Proof. The proof coincides verbatim with that of Lemma 1, changing T to T ε.

Theorem 1 (The perturbed max-min-max algorithm). For every ε > 0, as a function of

W : S → 2RN
, the operator B̃ε has the following properties:

(T1.i) B̃ε is increasing in W, and if W is compact, then B̃ε (W) is compact;

(T1.ii) B̃ε (W) ⊆ Bε (W). Thus, if W ⊆ B̃ε (W), then W is self-generating and W ⊆ Vε;

(T1.iii) Vε = B̃ε (Vε);

(T1.iv) Fix a correspondence W̃0 that contains Vε. Define the sequence
{

W̃k
}∞
k=0

by

W̃k = B̃ε
(
W̃k−1

)
. Then Vε = ∩∞k=0W̃

k.

Proof of Theorem 1.

(T1.i) For every λ and (a, r), we can write

η(s, a, r) = x(s, λ, a, r,W)− xε(s, λ, a, r,W).

Then η uniquely solves the system of equations

η(s, a, r) = ε+

0 if r(s) = APS;

δ
∑

s′∈S π(s′|a(s))η(s′, a, r) otherwise.

12

Note for future reference that η is independent of both λ and W. Thus, since x is

monotonic in W, so is xε. This implies monotonicity of B̃ε. B̃ε(W) is also closed,

being the intersection of closed half-spaces, and bounded because x̂APS is bounded,

so that xε is bounded as well.

(T1.ii) Clearly, xε (s, λ,W) ≤ xAPS (s, λ,W)−ε, which implies that B̃ε is always contained

in Bε. Thus, if W ⊆ B̃ε(W), then W ⊆ Bε(W) and hence, by APS, Bε(W) ⊆ Vε.

Consequently, B̃ε(W) ⊆ V.

(T1.iii) From (T1.ii), it suffices to show that Vε ⊆ B̃ε(Vε), i.e., for all λ, xε(s, λ,Vε) ≥
xAPS(s, λ,Vε) − ε. To that end, fix λ, and for all s, let a (s) be an action that

maximizes xAPS (a, λ,Vε) and let w(·) be the associated continuation values as

a function of the next-period state s′. We will show that minr x
ε(s, λ, a, r,Vε) ≥

xAPS(s, λ,Vε)−ε, so that xε(s, λ,Vε) ≥ xAPS(s, λ,Vε)−ε, which implies the result.

Since Vε = Bε(Vε), xAPS(s, λ,Vε) − ε ≥ λ · u for all u ∈ Vε(s′) for all s′. Since

w(s′) ∈ Vε(s′) for all s′,

xAPS(s, λ,Vε) = (1− δ)λ · g(a(s)) + δ
∑
s′∈S

π(s′|a(s)λ ·w(s′)

≤ (1− δ)λ · g(a(s)) + δ
∑
s′∈S

π(s′|a(s)(xAPS(s′, λ,Vε)− ε).

Thus, if we let y(s) = xAPS(s, λ,Vε)−ε for all s, then for any regimes r, T ε(y, λ, a, r,Vε) ≥
y (with equality if r(s) = APS and weak inequality if r(s) = R). By (L1.iii), we

conclude that y(s) = xAPS(s, λ,Vε)− ε ≤ xε(s, λ, a, r,Vε) = y∗(s), as required.

(T1.iv) (T1.ii) implies that W̃k ⊆ Wk, where the latter is the kth element of the APS

sequence for Bε starting from W̃0. Also, the fact that W̃0 contains V, (T1.i), and

(T1.iii) imply that Vε ⊆ W̃k. Thus, Vε ⊆ ∩kW̃k ⊆ ∩kWk = Vε.

E.2 State independence of the optimal policy

We now restate the results for minimal regimes. Let us define

xR,ε(a, λ, a, r) = (1− δ)λ · g(a) + δ
∑
s′∈S

π(s′|a)xε(s′, λ, a, r).

13

For given λ, W, and a ∈ A(W), we say that the regimes r are minimal if and only if for all

s ∈ S,

xε(s, λ, a, r) = min
r′∈R

xε(s, λ, a, r′).

Lemma 2 (Minimal regimes). For all a ∈ A(W), λ, and ε > 0,

(L2.i) there exists minimal regimes;

(L2.ii) r is minimal if and only if for all s ∈ S,

xε(s, λ, a, r) =
{
xAPS(a(s), λ), xR,ε(a(s), λ, a, r)

}
− ε; (7)

(L2.iii) if (7) is violated for some s, then r is not minimal. Moreover, for all s′ ∈ S,

xε(s′, λ, a, r \ s) ≤ xε(s′, λ, a, r), with strict inequality in state s.

Proof of Lemma 1. The proof follows verbatim that of Lemma 1, replacing T with T ε.

Proof of Lemma 2. The proof follows verbatim that of Lemma 2, replacing T with T ε, x

with xε, references to equation (6) with (7), and references to Lemma 1 with references to

Lemma 1.

We next extend the results for maximal actions. Define xε(s, λ, a) to be xε(s, λ, a, r) for

some minimal regimes r. Also, define

Tmin,ε(y, λ, a)(s) = min

{
xAPS(a(s), λ), (1− δ)λ · g(a(s)) + δ

∑
s′∈S

y(s′)π(s′|a(s))

}
− ε.

Lemma 3 (Operator Tmin,ε). Fix ε > 0, λ, and a ∈ A(W). As a function of y : S → R,

Tmin,ε is

(L3.i) increasing;

(L3.ii) a contraction with modulus δ, and hence has a unique fixed point y∗;

(L3.iii) if Tmin,ε(y) ≤ (≥)y then y∗ ≤ (≥)Tmin,ε(y);

Proof of Lemma 3. The proof follows verbatim that of Lemma 3, replacing Tmin with Tmin,ε.

We further define

xR,ε(a, λ, a) = (1− δ)λ · g(a) + δ
∑
s′∈S

π(s′|a)xε(s′, λ, a, r),

14

where r is minimal for a and λ.

Lemma 4 (Maximal actions). Suppose that A(W) is non-empty valued. For all ε > 0 and

λ,

(L4.i) there exist maximal actions;

(L4.ii) a ∈ A(W) is maximal if and only if for all s ∈ S and a ∈ A(W)(s),

xε(s, λ, a) ≥ min
{
xAPS(a, λ), xR,ε(a, λ, a)

}
− ε, (8)

with equality when a = a(s);

(L4.iii) if (8) is violated for some s ∈ S and a ∈ A(W)(s), then a is not maximal. Indeed,

for all s′ ∈ S, xε(s′, λ, a \ (s, a)) ≥ xε(s′, λ, a), with strict inequality in state s.

Proof of Lemma 4. Once again, this follows verbatim the proof of Lemma 4, replacing x

with xε, Tmin with Tmin,ε, references to (7) with references to (8), and references to Lemma

3 with references to Lemma 3.

E.3 Sufficiency of binding payoffs

Lemma 5. For any direction λ, if Bε sub-generates at W in the direction λ, then for any

a ∈ A(W), if γ(a(s), λ,W) > 0, then

xAPS(a(s), λ,W)− ε ≥ xR,ε(a(s), λ, a,W)− ε = xε(s, λ, a,W)

Moreover, there exist minimal regimes such that r(s) = R for s with γ(a(s), λ,W) > 0.

Proof of Lemma 5. Suppose that γ (a (s) , λ,W) > 0. Then the best continuation values

from W in the direction λ, denoted w, must be incentive compatible for a(s), and

xAPS (a (s) , λ,W) = (1− δ)λ · g (a (s)) + δ
∑
s′∈S

π (s′|a (s))λ ·w (s′) .

Sub-generation and the definition of xε imply that λ · w(s′) ≥ xAPS (a (s′) , λ,W) − ε ≥
xε (s′, λ,W). Hence,

xAPS (a (s) , λ,W)− ε ≥ (1− δ)λ · g (a (s)) + δ
∑
s′∈S

π (s′|a (s))xε(s′, λ,W)

≥ xR,ε (a (s) , λ, a,W)

15

as desired.

Finally, suppose r is minimal and γ(a(s), λ,W) > 0. If xAPS(a(s), λ,W) > xR,ε(a(s), λ, a,W),

then r(s) is necessarilyR. Otherwise, (9) implies that xAPS(a(s), λ,W) = xR,ε(a(s), λ, a,W).

Thus, if we set r′(s) = R for all states with γ(a(s), λ,W) > 0 and r′(s′) = r(s′) otherwise,

then xε(·, λ, a, r,W) is clearly a fixed point of T ε(·, λ, a, r′,W), so that r′ also satisfies (6)

and is minimal.

Lemma 6. If B̃ε sub-generates at W, then Bε sub-generates at B̃ε(W).

Proof of Lemma 6. Towards a contradiction, suppose that some action profile a ∈ A(W)(s),

with continuation values w ∈ B̃ε(W), generates a payoff outside the convex set B̃ε(W). Then

for some direction λ, xAPS(a, λ, B̃ε(W))− ε > xε(s, λ,W), so

xε(s, λ,W) + ε < xAPS(a, λ, B̃(W)) = λ ·

(
(1− δ)g(a) + δ

∑
s′∈S

π(s′|a)w(s′)

)
≤ (1− δ)λ · g(a) + δ

∑
s′∈S

π(s′|a)xε(s′, λ,W),

where the last inequality holds because λ·w(s′) ≤ xε(s′, λ,W), since w(s′) ∈ B̃ε(W)(s′). The

right-hand side of this inequality equals xR,ε(a, λ, a,W) for any a ∈ A(W)(s) that is maximal

in the direction λ (given W). Since B̃ε(W) ⊆ W, we know that xAPS(s, λ,W) is greater

than xε(s, λ,W) as well. That is, xε(s, λ, a,W) < min{xAPS(a, λ,W), xR,ε(a, λ, a,W)} − ε,
contradicting (L4.ii).

Proposition 1 (Sufficiency of binding payoffs). As long as Bε sub-generates at W̃0, then for

any k ≥ 0, Bε sub-generates at W̃k. As a result, for any λ and a ∈ A(W), if γ(a, λ,W̃k) > 0

is strictly positive, then r∗(s) = R.

Proof of Proposition 1. Follows verbatim the proof of Proposition 1, replacing B and B̃ with

Bε and B̃ε, respectively.

Finally, we extend the characterizations of optimal policies and optimal pairs.

Lemma 7. If Bε sub-generates at W in the direction λ, the actions a ∈ A(W) are maximal

if and only if for all (s, a),

xε(s, λ, a) ≥

min
{
x̂APS(a, λ), xR,ε(a, λ, a)

}
− ε if γ(a, λ,W) = 0;

xR,ε(a, λ, a)− ε if γ(a, λ,W) > 0.

16

Note that Lemma 10 implies, via the same argument in Corollary 1, that Vε has at most L

extreme points. Moreover, we can adapt the algorithm in Section 4 to compute B̃ε(W). It is

still the case that direction where robustly optimal payoffs u cease to be optimal corresponds

to a substitution (s, a, p). When p = R, the change must occur at a direction λ′ such that

λ′ · (uR(a,u)− u(s)) =
∑
s′∈S

π(s′|a)η(s′, a, r) + ε− η(s, a, r), (9)

so that the change in level is exactly offset by a change in penalty, and otherwise

λ′ · (p− u(s)) = ε− η(s, a, r), (10)

where r are the regimes associated with the incumbent optimal pair that induces u. There are

at most 2LM directions that satisfy (9) or (10). Such a direction is again called legitimate

if (a,p) is optimal in that direction. We can therefore compute B̃ε by finding the optimal

pair in one direction, then iteratively computing the legitimate substitution direction with

the smallest clockwise rotation, and then lexicographically optimizing the pair in the new

direction. This produces a sequence of directions and optimal payoffs {(λk,uk)}Kk=0.

Note that a subtle issue is that the new optimal level xε(s, λ,W) is no longer piecewise

linear, but is piecewise affine of the form λ · u − η, where η > 0. Because of the sign of

the constant, it turns out that directions at which the optimal pair does not change are still

redundant. In particular, if we have a clockwise sequence of directions λ, λ′, and λ′′ at which

u are the optimal payoffs in state s and η is the optimal penalty, then

λ′ · v =
αλ+ (1− α)λ′′

‖αλ+ (1− α)λ′′‖
· v

≤ 1

‖αλ+ (1− α)λ′′‖
[α(λ · u− η) + (1− α)(λ′′ · u− η)]

= λ′ · u− 1

‖αλ+ (1− α)λ′′‖
η

≤ λ′ · u− η,

since ‖αλ+(1−α)λ′′‖ ≤ 1. As a result, we can simply intersect the half-spaces at legitimate

test directions to compute B̃ε. We therefore have:

Theorem 2. Suppose that N = 2, A(W) is non-empty valued, and Bε sub-generates at

W. Then the previously described procedure terminates in at most 2LM substitutions and

runtime O(LM
2
). If there are no legitimate test directions at u0, then B̃(W)(s) = {u0(s)}

17

for all s. Otherwise,

B̃ε(W)(s) = {v|λk · v ≤ λk · uk(s) ∀k = 1, . . . , K}. (11)

18

References

Blackwell, D. (1962): “Discrete dynamic programming,” The Annals of Mathematical

Statistics, 719–726.

Dantzig, G. B. and M. N. Thapa (2006): Linear programming 1: introduction, Springer

Science & Business Media.

19

