
B Online Appendix

B.1 Pure Common Values

Let us first consider a more general version of the pure-common-values model that we studied
in Section 3, in which the bidders have the same value which is distributed according to P (v).
Recall the information structure of Engelbrecht-Wiggans, Milgrom, and Weber (1983), in
which one bidder knows the true value and the remaining bidders are uninformed. The
corresponding equilibrium has the informed player bid

σ (v) =
1

P (v)

∫ v

x=v

xP (dx) ,

i.e., the expected value of the good conditional on it being below its true value. This bidding
function ensures that the uninformed bidders must get zero rents in equilibrium, because
no matter what they bid, they must pay the expected value conditional on winning. In
equilibrium, the uninformed bidders bid independently of one another and independently of
the true value so that the marginal distribution of the highest of the N − 1 uninformed bids
is equal to the marginal distribution of the informed bid.

Let us compare the welfare properties of the equilibrium under the proprietary informa-
tion structure with our bounds for the family of power distributions with support equal to
[0, 1] and the cumulative distribution

P (v) = vα,

where α ≥ 0. For this family of distributions, the informed bidder’s strategy reduces to a
deterministic bid of

σ (v) =
α

α + 1
v.

Given the interpretation of the informed bid, we can immediately conclude that the expected
value of the object is

T =
α

α + 1
.

We can think of the highest of the N − 1 uninformed bids as also being of the same form
σ (v), but for an independent draw of v from the same prior. Thus, the surplus obtained by
the informed bidder is

UEMW =

∫ 1

v=0

(
v − α

1 + α
v

)
vα α vα−1dv =

α

(α + 1) (2α + 1)
.

1



Given our calculation of total surplus, revenue must be

REMW =
2α2

(α + 1) (2α + 1)
.

On the other hand, when N = 2, the revenue-minimizing winning-bid function we obtained
earlier is

β (v) =
α

α + 2
v.

Minimum revenue is therefore
R =

α2

(α + 2) (α + 1)

and maximum bidder surplus is

U =
2α

(α + 2) (α + 1)
.

We can now compare the welfare outcome in the equilibrium with the informed bidder
with our bounds for the parametrized family of distributions. Note that the ratio of the
bidder surplus between these two information structures is

U

UEMW
= 2

(
2α + 1

α + 2

)
.

This quantity is 2 when α = 1, which corresponds to our earlier observation in the uniform
example that the two bidders collectively earn twice as many rents in the bidder-surplus-
maximizing equilibrium as does the informed bidder. As α→ 0, the ratio converges to 1 so
that the informed bidder asymptotically attains the lower bound on bidder surplus (which is
zero). As α→∞, the bidder-surplus ratio converges to 4, meaning that as the distribution
of the common value converges weakly to a point mass on v = 1, and each bidder individually
receives twice as much surplus as the informed bidder in Engelbrecht-Wiggans et al.

B.2 Proof of Proposition 3

Proof of Proposition 3. Let us construct the symmetrized winning-bid distributions. Let

K : V N → ∆ (B ×N )

denote the probability transition kernel associated with the Hi (b|v), i.e.,

K ([0, b]× {i} |v) = Hi (b|v) .
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Then we can define a product measure φ ∈ ∆
(
V N ×B ×N

)
according to

φ (X) =

∫
(v,b,i)∈X

K (db, di|v)µ (dv)

for measurable X ⊆ V N ×B ×N . Now, let us define the mapping

fξ : V N ×B ×N → V N ×B ×N

according to
fξ (v, b, i) = (ξ (v) , b, ξ (i)) .

Then we can define the symmetrized distribution

φ̃ =
1

N !

∑
ξ∈Ξ

φ ◦ f−1
ξ .

Let us briefly verify that φ̃ has the symmetrized prior

µ̃ =
1

N !

∑
ξ∈Ξ

µ ◦ ξ−1.

as a marginal over V N (which, we remark, is symmetric; cf. the proof of Lemma 3), and that
it has the original distribution of winning bids H (b) as its marginal over B. This follows
from the observations that for any measurable X ⊆ V N ,

φ ◦ f−1
ξ (X ×B ×N ) = µ ◦ ξ−1 (X) ,

and that for any b,

φ ◦ f−1
ξ

(
V N × [0, b]×N

)
=

N∑
i=1

∫
v∈V N

Hξ−1(i)

(
b|ξ−1 (v)

)
µ ◦ ξ−1 (dv)

=

∫
v∈V N

H (b|v)µ (dv) = H (b) .

We next observe that
ξ ◦ α−1 = α−1

for every permutation ξ, where we recall that α denotes the average of the N − 1 lowest
values. This is because the average and the maximum are invariant to permutations. As a
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result,

µ̃ ◦ α−1 =
1

N !

∑
ξ∈Ξ

µ ◦ ξ−1 ◦ α−1 =
1

N !

∑
ξ∈Ξ

µ ◦ α−1 = µ ◦ α−1.

Thus, the distribution of the average of the N − 1 lowest values associated with µ, i.e., Q, is
exactly the same as that associated with µ̃.

The final step of the proof is to use φ̃ to construct winning-bid distributions that are
feasible for the relaxed program for the symmetric prior µ̃. We can disintegrate φ̃ (Çınlar,
2011, Theorem IV.2.18) to obtain a probability transition kernel K̃ : V N → ∆ (B ×N ) such
that

φ̃ (X) =

∫
(v,b,i)∈X

K̃ (db, di|v) µ̃ (dv) .

This kernel induces winning-bid distributions

H̃i (b|v) = K̃ ([0, b]× {i} |v) .

Now, consider the left-hand side of (11):∫
v∈V N

(vi − b) H̃ (b|v) µ̃ (dv) =

∫
(v,x,j)∈V N×[0,b]×N

(vi − b) φ̃ (dv, dx, dj)

=
1

N !

∑
ξ∈Ξ

∫
(v,x,j)∈V N×[0,b]×N

(vi − b)
(
φ ◦ f−1

ξ

)
(dv, dx, dj)

=
1

N !

∑
ξ∈Ξ

∫
v∈V N

(
vξ(i) − b

)
H (b|v)µ (dv)

=
1

N

N∑
j=1

∫
v∈V N

(vj − b)H (b|v)µ (dv) .

By a similar sequence of steps, we conclude that the right-hand side of (11) is

∫
v∈V N

∫ b

x=0

(vi − x) H̃i (dx|v) µ̃ (dv) =
1

N

N∑
j=1

∫
v∈V N

∫ b

x=0

(vj − x)Hj (dx|v)µ (dv) .

Since (11) is satisfied for every j = 1, . . . , N for the measure µ and winning-bid distri-
butions Hi, we conclude that (11) will also be satisfied for the symmetrized prior µ̃ and
winning-bid distributions H̃i. Since both induce the same distribution of winning bids, we
conclude that the solution to the relaxed program for µ̃ must be weakly lower than the
solution for µ, and we have argued that the solution for µ̃ is the H defined relative to the
distribution of the average of the N − 1 lowest values for µ. Finally, since any information
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structure S and equilibrium σ (under µ) induce a winning-bid distribution H (S, σ) that is
feasible for the relaxed program for µ, we conclude that H (S, σ) ≤ H.

B.3 Proof of Theorem 2

Proof of Theorem 2. We will show that our proposed strategies are an equilibrium. This is
trivially true when the information structure reveals the entire profile of values, so let us
focus on the case where the highest value v(1) is strictly larger than the second-highest value
v(2). Suppose that bidder i has the highest value. Then he receives a signal, which we can
think of as a recommendation to bid

bi = xv(1) + (1− x)v(2) (1)

for some x ∈ (0, 1). The other bidders are given recommendations:

bj = yjv
(1) + (1− yj)v(2), (2)

where the yj are independent random variables in [0, x] drawn from the cumulative distribu-
tion

F (y |x) =

(
y

1− y
1− x
x

)1/(N−1)

. (3)

We claim that the truthful bidding strategies in which bidders follow their recommenda-
tions bi are an equilibrium for this information structure, even conditional on x ∈ (0, 1) and
conditional on the realized profile of values, v1, ..., vN . Now, if the bid b is a recommendation
for a low-value bidder with value vi, then it is never profitable to deviate to a higher bid
since by construction b ≥ vi. Similarly, lowering the bid below b is not profitable either as
it will not change the outcome of the auction. Next, if the bid b is a recommendation for
the high-value bidder i, then b < vi = v(1) and a bid increase is not profitable as it does
not change the outcome but rather leads to higher sale price. It remains to verify that the
winning bidder has no incentive to lower his bid. Given the equilibrium bid, the payoff for
winning bidder is:

v(1) − b = (v(1) − v(2)) (1− x) .

By deviating to a lower bid b′, the deviator will win whenever the realized yj’s are all below
a critical level defined by b′ = y v(1) + (1− y) v(2). Given the distribution of y as defined by
(3), the payoff from such a deviation is:

(
v(1) −

(
y v(1) + (1− y) v(2)

))( y

1− y
1− x
x

)
=
(
v(1) − v(2)

)
(1− x)

y

x
,
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which is increasing in y. Thus there is no profitable deviation for the winning bidder either.
While our argument that these strategies are an equilibrium has presumed that x is

known, in fact x is not directly observed and it is drawn from a non-atomic and full-support
distribution on [0, 1]. As a result, conditional on the highest and second-highest values,
the distributions of both winning bids and losing bids have support equal to

[
v(2), v(1)

]
.

Moreover, each bidder has a 1/N chance of being the high-value bidder, so that any set of
bid recommendations X ⊆

[
v(2), v(1)

]
for bidder i that has positive probability conditional

on
{
v(1), v(2)

}
also has positive probability when vi = v(1), so that the proposed equilibrium

strategy is not weakly dominated.
Finally, for each x, the expected winning bid is simply a convex combination of the

expected highest and the expected second-highest values, with weights x and 1 − x respec-
tively. As the distribution of x approaches a Dirac measure on one, the expected winning
bid converges to the expected highest value, and bidder surplus must therefore converge to
zero.

B.4 Inefficient Equilibria

We argue that the pure strategies given by

σ (s) =
1

P (s)

∫ s

x=v

xP (dx) (4)

constitute an equilibrium. First, consider a bidder i who observes a signal si. If bidder i fol-
lows the equilibrium strategy and bids σ (si), then they will win with probability 1/ (N − 1)

when they had a high signal, which is when some other bidder had a higher value. But since
bidder i’s value is independent of the highest of others’ values, the posterior distribution
of bidder i’s value on this event is precisely the truncated prior P (vi) /P (si) with support
equal to [v, si]. Thus, the expected valuation conditional on winning is precisely σ (si), and
the bidder obtains zero rents in equilibrium.

Now, consider a bidder i who deviates down to some σ (s′) with s′ < si. We can separately
consider the case of N = 2 and N > 2. In the latter case, there is more than one bidder
who sees a signal is equal to the highest value, and therefore in equilibrium there is a tie for
the highest bid at σ (si). Thus, a downward deviator will always lose the auction and obtain
zero rents. On the other hand, if N = 2, then the bidder wins whenever the other bidder’s
signal was less than s′. But since the other bidder’s signal equal to vi, the event where
bidder i wins is precisely when vi is in the range [v, s′], so that the expectation conditional
on winning is σ (s′), and the deviator still obtains zero rents.
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Finally, let us consider a bidder i who deviates up to σ (s′) with s′ > si. This bidder
will now win outright whenever si was equal to the maximum valuation. Moreover, when si
was a losing signal, the bidder will now win whenever others’ signals were less than s′. But
on this event, others’ signals are equal to vi = max v. Thus, the upward deviator will win
whenever vi ≤ s′, and again the expected value conditional on winning is precisely σ (s′), so
that the deviator’s surplus is still zero.

We observe that the realized value among the winning bidders is exactly given by the
average value among the N − 1 bidders with the lowest values, or

α (v) =
1

N − 1

(
N∑
i=1

vi −max v

)
.

It follows that the revenue of the seller is given exactly by the expectation over the average
value among the N − 1 lowest valuations. We have therefore proven the following:

Theorem 1 (Inefficient Equilibrium).
The strategies (4) are an equilibrium for the information structure in which each bidder
observes si = max v−i. In this equilibrium, revenue and total surplus are both equal to∫ v

w=v

wQ(dw),

and bidder surplus is zero.

We note that this equilibrium construction can be extended well beyond the independent
values case. In such a generalization, the equilibrium bid would be each bidder’s expected
value conditional on it being less than the observed maximum of others’ values. As long as
there is sufficient positive correlation between bidders’ values, e.g., affiliation, this bidding
function will be strictly increasing, and for this more general class, the upward incentive
constraints will be satisfied as strict inequalities.

B.5 Reserve Prices

In this section, we analyze the first-price auction with a minimum bid in the case of pure
common values. Let P denote the distribution of the value on V = [v, v], and let r ∈ V

denote the reserve price. The auction is as described in Section 2, except that

qi (b) =
Ii∈W (b)

|W (b)|
,
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where
W (b) = {i|bi ≥ bj ∀j and bi ≥ r} .

In other words, a bidder only wins if they bid more than the reserve price and have a high
bid, and ties are broken uniformly. Let us construct an equilibrium as follows. Let xi be
i.i.d. draws from F (s) = (P (s))1/N , correlated with the value so that v = maxi xi. Bidder
i’s signal is si = max {v̂, xi}, where v̂ solves

1

P (v̂)

∫ v̂

v=v

vP (dv) = r. (5)

Bidders follow a pure strategy in equilibrium β, defined by β (si) = 0 if si = v̂, and otherwise
bid

β (si) =
1

(P (si))
N−1
N

(
r (P (v̂))

N−1
N +

∫ si

v=v̂

N − 1

N
v
P (dv)

(P (v))
1
N

)
, (6)

which we note for future reference is the solution to the differential equation

β′ (si) =
N − 1

N
(si − β (si))

P (dsi)

P (si)

with the boundary condition β (v̂) = r.
To verify that this is an equilibrium, first observe that a bidder with signal si = v̂ who

deviates up to bi = r will win if and only if sj = v̂ for all j 6= i, which is when v < v̂. The
conditional expectation of the value of the good is no more than r, so that the bidder obtains
non-positive surplus conditional upon winning. Now consider the surplus from bidding as a
type w > v̂ when si = v̂. In this case, surplus is

(
r − β (w)

)
(P (v̂))

N−1
N +

∫ w

v=v̂

(
v − β (w)

) N − 1

N

P (dv)

(P (v))
1
N

.

The marginal change in surplus from an increase in w is therefore

(
w − β (w)

) N − 1

N

P (dw)

(P (w))
1
N

− β′ (w) (P (w))
N−1
N = 0

by definition of the bidding function. Similarly, now consider a bidder with signal si > v̂

who bids β (w) for some w ≥ si. Surplus is

(
si − β (w)

)
(P (si))

N−1
N +

∫ w

v=si

(
v − β (w)

) N − 1

N

P (dv)

(P (v))
1
N

,
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which also has zero derivative. Finally, let us verify that a bidder with signal si > v̂ does not
want to deviate down to a bid β̂ (w) for w ≤ si. It is straightforward to see that β (si) ≤ si

for all si, so that surplus in equilibrium is non-negative. Thus, it is not attractive to deviate
for w = v̂. Otherwise, surplus from the downward deviation is

(
si − β (w)

)
(P (w))

N−1
N

which has derivative

(
si − β (w)

) N − 1

N

P (dw)

(P (w))
1
N

− β′ (w) (P (w))
N−1
N ,

which, using the formula for β′, becomes

(
si − β (w)

) N − 1

N

P (dw)

(P (w))
1
N

−N − 1

N

(
w − β (w)

) P (dw)

P (w)
(P (w))

N−1
N = (si − w)

N − 1

N

P (dw)

(P (w))
1
N

,

which is positive. This completes the proof that the construction is an equilibrium, and we
note that revenue is simply

R =

∫ v

v=v̂

β (v)P (dv) .

Now let us prove that this construction attains a lower bound on revenue. As before, we
set up a relaxed program:

maxH
(
b̂
)

subject to ∫
v∈V

(v − b)H (b|v)P (dv) ≤
∫
v∈V

∫ b

x=r

(v − x)Hi (dx|v)P (dv)

for all b ≥ r, where the Hi are conditional distributions over the high bidder and the highest
bid given the true value, and H (b) is the aggregate distribution of highest bids. Note that
we now distinguish between “highest” and “winning”, since no one wins the good when the
winning bid is less than r, and revenue is only

R =

∫ v

b=r

bH (db) .

The constraint of course represents the uniform upward incentive constraint for deviating
up to b ≥ r. It differs from (11) in that the right-hand side only counts the equilibrium
surplus from winning with the highest bid recommendation when it is at least r, although

9



the left-hand side still counts surplus from winning whenever the highest recommendation
is less than b.

By similar arguments as those provided in Section 4, we can conclude that it is without
loss of generality to look at solutions that are symmetric and monotonic. Thus, there is a
deterministic and increasing highest bid β (v) as a function of the true value. The incentive
constraint thus becomes∫ w

v=v

(v − β (w))P (dv) ≤ 1

N

∫ w

v=v̂

(v − β (v))P (dv) ,

where v̂ is the critical type at which β (v) > r for all v > v̂. Thus, uniform deviations up to
v̂ are not attractive as long as ∫ v̂

v=v

(v − r)P (dv) ≤ 0,

and since we wish to minimize β (by making it zero for as many types as possible), it is
optimal to set v̂ as in the construction, so that (5) holds. Thus, the integral inequality
becomes:

β (w) ≥ 1

P (w)

(
rP (v̂) +

∫ w

v=v̂

(
N − 1

N
v +

1

N
β (v)

)
P (dv)

)
.

Using the same arguments as those employed in the proof of Proposition 1, we can conclude
that there is a lowest β that satisfies this integral inequality, which is the unique fixed point
given by (6). This completes the proof that the construction attains a lower bound on
revenue.

We conclude with a description of minimum bidding in the uniform case, in which V =

[0, 1] and P (v) = v. In that case, v̂ = 2r, and

β (w) =
1

w
N−1
N

(
rv̂

N−1
N +

N − 1

N

∫ w

v=v̂

v
N−1
N dv

)
=

N − 1

2N − 1
w +

1

w
N−1
N

(
r(2r)

N−1
N − N − 1

2N − 1
(2r)

2N−1
N

)
.

Revenue is therefore

R =
N − 1

2N − 1

1

2

(
1− 4r2

)
+

(
r(2r)

N−1
N − N − 1

2N − 1
(2r)

2N−1
N

)
N
(

1− (2r)
1
N

)
.
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For the case of N = 2, this reduces to

R =
1

6

(
1− 4r2

)
+

2
√

2

3
r

3
2

(
1−
√

2r
)
.

Differentiating with respect to r, we obtain

−4

3
r +
√

2
√
r(1−

√
2r)− 2

3
r =
√
r
(√

2− 4
√
r
)

which has zeros at 0 and at 1/8. We leave it as an exercise for the reader to verify second-
order conditions at the positive solution.

References

Çınlar, E. (2011): Probability and Stochastics, New York: Springer.

Engelbrecht-Wiggans, R., P. Milgrom, and R. Weber (1983): “Competitive Bid-
ding and Proprietary Information,” Journal of Mathematical Economics, 11, 161–169.

11


