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Abstract

A large number of buyers with single unit demand have a common value for the good
being sold. We describe a new class of mechanisms, which we refer to as participation-
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good, available goods are rationed among those who wish to purchase, and the market
price is an increasing function of the number of buyers who wish to purchase. We
characterize a class of pricing rules for which, as the number of buyers grows large,
the expected market price converges to the expected value, regardless of the buyers’
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1 Introduction

Economists have long extolled the virtues of prices to aggregate private information and
efficiently coordinate trade. But an element that is often missing from this story is a de-
tailed mechanism by which the private information of large numbers of individual traders is
incorporated into prices. In particular, the standard models of competitive markets take as
a premise that traders are price takers, meaning that each individual trader has no effect on
the price, even though the price incorporates the traders’ information in the aggregate. A
seemingly more natural approach would be to model an economy with a large but finite num-
ber of traders, where each trader makes strategic choices based on their private information
and has the ability, however small, to influence the market price. But are there reasonable
models of the game in the finite market such that equilibrium behavior approximates the
competitive model, when the market is large?

In a classic article, Wilson (1977) argued that a simple mechanism, the first-price auction,
achieves that approximate aggregation of private information through prices in large finite
markets. The setting is one in which a single unit of a good is available, the buyers all have
the same value for that good, but each buyer only observes the value with conditionally
independent noise, i.e., the so-called “mineral rights” model. If the distribution of the value
and the noise term are held fixed as the number of buyers grows large, the market price
converges to the true value.

Wilson’s finding suggested that first-price auctions can microfound the aggregation of
private information through prices, and provide a model for price discovery in competitive
markets. Subsequent work by Milgrom (1979), Pesendorfer and Swinkels (1997), Kremer
(2002) and Bali and Jackson (2002) delivered similar conclusions for second-price auctions,
English auctions, and other “standard” mechanisms. However, these results rely on the
assumption that the individual buyers are “informationally small,” in the sense that as the
market grows large, each individual buyer’s information is negligible compared to the rest
of the market. Moreover, there are settings for which the expected price does not converge
to the expected value, even when the number of buyers grows large (Engelbrecht-Wiggans,
Milgrom, and Weber, 1983; Bergemann, Brooks, and Morris, 2017).

More recently, Du (2018) and Brooks and Du (2021) constructed different classes of
mechanisms, distinct from the first-price auction, for which the expected price does converge
to the expected value, regardless of the form of the buys’ information, and regardless of
which equilibrium is being played. In the case of Brooks and Du (2021), the mechanisms
have the form of “proportional auctions,” in which each buyer’s probability of receiving the
good is proportional to their bid, and the market price depends on the sum of the bids.

In this paper, we demonstrate that an even simpler class of mechanisms suffices to mi-
crofound information aggregation through prices in competitive markets, regardless of the
information structure and equilibrium. We enrich the setting to allow for uncertainty about
the value, the number of buyers, as well as the number of units that are available For exam-
ple, our model accommodates scenarios in which there are enough units to serve a constant
fraction of the potential buyers, even as the number of potential buyers grows large. All
we assume is that the fraction of the market that can be served is bounded away from one.
In the mechanism, each buyer simply indicates whether or not they wish to buy the good
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at a market price.1 If more buyers wish to buy than there are units, then ties are broken
randomly, and otherwise all orders are filled. The market price, in turn, is determined as a
function of the number of buyers who wish to buy. We characterize pricing rules for which,
in the limit as the number of buyers goes to infinity (in probability), all of the goods are
sold, and the expected price is equal to the expected value. This limit is attained regardless
of the sequences of buyers’ information structures and the equilibria being played.

In fact, the optimal pricing rules have an astonishingly simple form, that does not depend
at all on the fundamentals of the economy, except through an upper bound on the support
of the value and an upper bound on the fraction of the market that can be served. Let
us suppose that there is enough of the good to satisfy the demand of at most a fraction
κ P p0, 1q of the market. The pricing rule depends on two parameters, α P pκ, 1q and
ε ą 0. We define the participation rate to be the share of potential buyers who wish to buy.
The price is zero until the participation rate exceeds α ´ ε. Moreover, if the participation
rate is greater than α ` ε, then the price is equal to the given upper bound on the value.
For intermediate participation rates, the price rises linearly from zero to the upper bound.
We refer to the mechanism consisting of the aforementioned allocation and pricing rules as
participation-adaptive pricing.

Our main result is that if we take a sequence of markets where the number of potential
buyers N is going to infinity in probability, then as long as ε goes to zero slower than 1{N ,
then the expected price will converge to the expected value. Moreover, the optimal rate,
which is achieved when ε is on the order of 1{

?
N , is unimprovable, and is the same rate as

achieved by the proportional auctions of Brooks and Du (2021).
Participation-adaptive pricing induces a competitive outcome in large markets, by which

we mean that that the expected price is equal to the expected value, and trade occurs
with probability arbitrarily close to one. However, it is not necessarily the case that the
equilibrium price aggregates private information. For one thing, in contrast with Wilson
(1977), it need not even be the case that the join of the players information identifies the
value, even in the limit when the number of buyers grows large. More than that, it could be
that some buyers have information about the value that is not incorporated into the price,
though these buyers have a negligible effect on the equilibrium outcome. The distinction
between competitive pricing and information aggregation was previously made by Kremer
(2002) in the context of the mineral rights model.

There are two features of participation-adaptive pricing that are essential to achieving
the competitive limit. One is that the price rises continuously, as a function of the fraction
of the buyers who participate. As a result, the price that a buyer expects to pay if they opt
in is close to the price if they opt out; the buyers are essentially price takers. This ensures
that when the market is large, the interim expected values of buyers who are opting out
cannot be above the equilibrium market price with high probability. The second property is
that intermediate prices occur for only a narrow window of participation rates. This ensures
that there is little uncertainty about the participation rate when the market is large. In
particular, if the participation rate were too low, the price would be extremely low, and
more buyers would want to opt in, and if the participation rate were too high, then the price

1In other words, a buyer submits a market order to buy one unit of the good. A market order is
distinguished from a limit order which buys or sells at a specific price.
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would be extremely high, and more buyers would want to opt out. This feature eliminates
the possibility of a winner’s curse: All else equal, a buyer is more likely to be allocated the
good if the participation rate is low, so if buyers are more likely to opt in when their interim
values are high, being allocated would be a negative signal about the value. But because
there is little uncertainty about the participation rate when the market is large, any such
inference is negligible. Somewhat surprisingly, participation-adaptive pricing also rules out
any winner’s curse that might arise through correlation between the number of potential
buyers and the value, such as that described in Lauermann and Wolinsky (2017, 2022). Our
main result shows that the competitive outcome is still obtained even when the number of
potential buyers and the value are both uncertain and correlated.

Methodologically, the present paper is an application of the framework for informationally-
robust mechanism design described in Brooks and Du (2023). In particular, the proof of our
main result procedes by computing a lower bound on the performance of participation-
adaptive pricing, where the lower bound is the expected (over states) lowest (over action
profiles) strategic virtual objective. This object was introduced in Brooks and Du (2023),
and represents a kind of dual counterpart of the virtual value that is familiar from auction
theory.2 In general, the strategic virtual objective is defined, for each given action profile
and payoff-relevant state, to be the designer’s objective plus the changes in agents’ utilities
from “local” deviations away from the action that corresponds to opting out. In the present
setting, there is a single such deviation, which is deviating from opting out to opting in,
which leads to an especially simple and tractable form for the strategic virtual objective.

The rest of this paper is organized as follows. Section 2 describes our model. Section
3 presents two examples illustrating potential problems that are avoided by participation-
adaptive pricing. Section 4 presents our main result. Section 5 is a discussion and conclusion.

2 Model

Let the state space be Θ “ r0, 1sˆZ`ˆZ`. A state θ “ pv,N,Kq P Θ means that there are
K units of a good, and there are N buyers with a unit-demand and a pure common value v
for the good. Let µ P ∆pΘq be a distribution over the states. We suppose µptN ď Nuq “ 1
for some N P Z`.3

The buyers’ private information about the state is described by an information structure

I “ pS, σq, where Si is a finite set of signals (or types) for buyer i, S “
śN

i“1 Si, and
σ P ∆pΘ ˆ Sq is the joint distribution of the states and signals such that margΘ σ “ µ.
Moreover, we require each Si contains a null type H; if si “ H, then buyer i is not present.
Thus, for consistency we also require that for every pv,N,K, sq in the support of σ, we have
N “ |ti : si ‰ Hu|.

A market mechanism is a tuple M “ pA, q, tq, where Ai is a set of actions for buyer i,

A “
śN

i“1Ai are the action profiles, and qi : AÑ r0, 1s is the allocation rule, and ti : AÑ R
is the transfer rule. The allocation rule must satisfy

ř

i qipaq ď K for all a P A. Buyer

2More precisely, the strategic virtual objective is the dual counterpart to the informational virtual objec-
tive, which is a generalization of the virtual value that was introduced in Brooks and Du (2023).

3In Theorem 1 below, we will consider a sequence of priors µl where the number of buyers goes to infinity
in probability, and the corresponding upper bounds N l go to infinity as well.
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i’s utility is ui “ vqipaq ´ tipaq. We assume for every buyer i there exists an opt-out (or
participation secure) action 0 P Ai such that qip0, a´iq “ tip0, a´iq “ 0 for all a´i P A´i.

4

To model the absence of some buyers, for every i we also include a null action H in Ai; if
ai “ H then buyer i is not present in the mechanism, and hence qipH, a´iq “ tipH, a´iq “ 0
for all a´i P A´i.

The opt-out action is a strategic choice in the mechanism, while the null action is a
modeling device to represent the absence of a buyer. Thus we restrict the (behavioral)
strategy for buyer i to be a mapping bi : Si Ñ ∆pAiq such that bipH | Hq “ 1 and
bipH | siq “ 0 for si ‰ H, where bipai|siq is the probability of action ai given signal/type si.

Buyer i’s expected utility given a strategy profile b is

UipM, I, bq “

ż

v,N,K,s,a

pvqipaq ´ tipaqq
ź

i

bipai|siqσpdv, dN, dK, dsq.

A (Bayes-Nash) equilibrium for the Bayesian game pM, Iq is a strategy profile b such that
UipM, I, bq ě UipM, I, pb1i, b´iqq for all strategy b1i and all buyer i. Let EpM, Iq be the set of
equilibria for pM, Iq. Because M and I are finite the set of equilibria is always non-empty.

Let RpM, I, bq be the expected revenue at an equilibrium b:

RpM, I, bq “

ż

v,N,K,s,a

ÿ

i

tipaq
ź

i

bipai|siqσpdv, dN, dK, dsq.

Define the revenue guarantee of a mechanism M as the minimum expected revenue over all
information structures I and all equilibria b of pM, Iq:

GpMq “ inf
I

inf
bPEpM,Iq

RpM, I, bq.

The efficient surplus is
ż

v,N,K

Kv µpdv, dN, dKq.

In this paper we focus on a particular class of mechanisms, Mppq “ pA, q, tq, where
Ai “ tH, 0, 1u, (1 means to opt in, and 0 means to opt out)

qipaq “

#

minpK{npaq, 1q ai “ 1,

0 ai P t0,Hu,

tipaq “ qipaqppxq, x “ npaq{Npaq,

(1)

where npaq “ |ti : ai “ 1u| is the number of buyers who opt in, Npaq “ |ti : ai ‰ Hu| is
the potential number of buyers, x is the participation rate, and p : r0, 1s Ñ R is a pricing
function. For mechanisms of this form, one can interpret opting in as a market order to buy
one unit of the good, at whatever is the prevailing market price. In contrast, the bid in a
first-price or second-price auction should be interpreted as a limit order to buy a unit at a
fixed price (cf. Jovanovic and Menkveld, 2022).

4The notion of participation security is adapted from Brooks and Du (2021) and Brooks and Du (2023),
as are other features of the model.
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Figure 1: Pricing rules.

3 Examples

Before describing the pricing functions that attain the competitive limit, let us first consider
two natural candidates, and explain why they would fail to induce competitive outcomes
even when N is large. We assume K “ 1 and a commonly known N in this section for
simplicity. This will serve to motivate the pricing rules that we propose.

3.1 Posted Price

The first candidate is a class of “posted price” rules:

pαpxq “

#

0 x ď α,

p x ą α,

where α is a participation cutoff and p P r0, 1s is a posted price. This rule is depicted in
Figure 1. It can be viewed as a generalization of the conventional posted price mechanism,
which is obtained when α “ 0.

Taking this pricing rule as given, we now exhibit an information structure for which
the expected price is bounded away from the expected value, no matter how large is the
market. First, consider the case where p ă 1. Suppose v P t0, 1u, both values equally likely.
Furthermore, assume that the buyers have full information, meaning that for all i, si “ 1
when v “ 1 and si “ 0 when v “ 0. An equilibrium is that all buyers opt in if and only if
v “ 1. Therefore, regardless of N , revenue is p{2, which is strictly below the expected value
of 1{2, no matter how large is the market.
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Now consider the case where p “ 1. Suppose the information structure is such that only
tαN u buyers have a full information about the value, and the rest of the buyers have no
information beyond the prior distribution. Then it is an equilibrium for the tαN u buyers
with full information to opt in if v “ 1 and opt out otherwise, and the buyers with no
information always opt out. Under such an equilibrium, the participation rate is always just
below α, and hence the market price is 0.

The reason for the low revenue in these cases is that the pricing function has a sudden
jump from 0 to p, and the limited number of prices precludes price discovery. To remedy
these flaws, the pricing rules that we propose vary continuously in the participation rate.

3.2 Linear Pricing

Another natural pricing function is the linear rule ppxq “ x. For comparison, this rule is
also depicted in Figure 1.

Let us construct an information structure where the linear pricing fails to obtain the
efficient surplus even when N is large. Again, suppose that v P t0, 1u and both are equally
likely. Suppose N is even and let Si “ t0, 1, uu. If v “ 1, then exactly 1{2 fraction of the
buyers (uniformly drawn from the set of all buyers) observe the uninformative signal si “ u,
and the other 1{2 of the buyers observe the perfectly informative signal si “ 1. Likewise, if
v “ 0, then exactly 1{2 fraction of the buyers (uniformly drawn from the set of all buyers)
observe the uninformative signal si “ u, and the other 1{2 observe the perfectly informative
signal si “ 0.

We claim that for this information structure, it is an equilibrium for the buyers to opt
in if si “ 1 and to opt out otherwise. The equilibrium constraints for si “ 1 and si “ 0 are
trivial, because under the proposed strategies, the price for the si “ 1 types is just 1{2, so
they strictly prefer to opt in, whereas for the si “ 0 types the price is 0, but the value is zero
too, so they are happy to opt out. For the uninformed si “ u types, the payoff from opting
in is

1

2

ˆ

1´

ˆ

1

2
`

1

N

˙˙

1
N
2
` 1

`
1

2

ˆ

0´
1

N

˙

ă
1

4

2

N
´

1

2

1

N
“ 0.

As this payoff is non-positive, opt out is optimal for the si “ u types in equilibrium.
In this equilibrium, the price is positive only if v “ 1, but the price is 1{2 ă 1, so the

expected price is bounded away from the expected value regardless of N . In effect, there is a
winner’s curse that keeps the si “ u types from opting in. Were an uninformed buyer to opt
in, they would win with probability 1 when v “ 0 and obtain a net payoff of ´1{N , but they
would only win with probability 2{pN ` 2q when v “ 1 and obtain a net payoff of 1{2´ 1{N
conditional on winning. The net payoff is negative. In contrast, the rules we propose in the
next section force the equilibrium participation rate to be in a narrow window with high
probability. This effectively shuts down any updating about the value from the fact that one
is allocated the good, and thereby precludes a winner’s curse.
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4 Main result

We now present pricing rules that guarantee competitive outcomes in large markets. Let

pα,εpxq “

$

’

&

’

%

0 x ď α ´ ε,
x´pα´εq

2ε
α ´ ε ď x ď α ` ε,

1 x ě α ` ε,

(2)

where 0 ď α´ε and α`ε ď 1. We call the mechanism Mppα,εq (cf. equation (1)) participation-
adaptive pricing. An example of such a rule is depicted in Figure 1 for comparison. Note
that linear pricing is a special case of participation-adaptive pricing, and so is posted price
when the price is 1.

The following is our main result:

Theorem 1. Let tµl : l P Z`u be a sequence of state distributions and let pvl, Nl, Klq be the
corresponding sequence of random variables. Consider a sequence of participation-adaptive
pricing tMppα,εlq : l P Z`u. Suppose εl converges to 0 and εlNl converges in probability to
8 as l Ñ 8, and Kl{Nl ă α with probability one for every l. Then there exists a sequence
of random variables tδl : l P Z`u such that GpMppα,εlqq ě ErKlpvl ´ δlqs for every l, and δl
converges in probability to zero as l Ñ 8.

The proof of Theorem 1 relies on methodology that was previously developed in Du
(2018), Brooks and Du (2021), and related work. In particular, Brooks and Du (2023)
present a general theory for informationally robust mechanism design. For any mechanism, a
lower bound on performance can be computed using an object known as the strategic virtual
objective. In the present context, the strategic virtual objective depends on an arbitrary
parameter β ą 0, and is defined as

λppv,N,Kq, aq “
ÿ

i

tipaq ` β
ÿ

i

Iai“0 rvpqipai ` 1, a´iq ´ qipaqq ´ ptipai ` 1, a´iq ´ tipaqqs . (3)

The strategic virtual objective is essentially the objective in a Lagrangian for minimizing
expected revenue subject to obedience constraints. Importantly, we drop all obedience con-
straints except those for buyers who are “recommended” in equilibrium to opt out, and β is
the Lagrange multiplier on those obedience constraints. The following result is an immediate
consequence of Theorem 1 of Brooks and Du (2023):

Lemma 1. The revenue guarantee of participation-adaptive pricing is at least
ż

v,N,K

min
a:Npaq“N

λppv,N,Kq, aqµpdv, dN, dKq. (4)

For the sake of completeness, we will sketch the logic behind the lower bound (4). In
any information structure and equilibrium, whenever buyer i chooses to opt out, they must
prefer opting out to opting in. Thus, the difference in expected utility utility
ż

v,N,K,s,a

Iai“0pvpqipai ` 1, a´iq ´ qipaqq ´ ptipai ` 1, a´iq ´ tipaqqq
ź

j

bjpaj|sjqσpdv, dN, dK, dsq
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must be non-positive. As a result, for any β ě 0, we can obtain a lower bound on revenue by
adding these terms multiplied by β to expected revenue. This is equivalent to the assertion
that in any information structure and equilibrium, expected revenue is at least

ż

v,N,K,s,a

λppv,N,Kq, aq
ź

j

bjpaj|sjqσpdv, dN, dK, dsq.

This expression must be weakly greater than what we obtain by, for each pv,N,Kq, replacing
the integrand with the minimum of λppv,N,Kq, aq across all a with Npaq “ N , which is
precisely (4).

We can now complete the proof of our main result.

Proof of Theorem 1. Consider a state distribution µ and a participation-adaptive pricing
rule pα,ε. The strategic virtual objective of the mechanism is:

λppv,N,Kq, aq

“ npaqmin

ˆ

K

npaq
, 1

˙

pα,ε

ˆ

npaq

N

˙

` βvpN ´ npaqqmin

ˆ

K

npaq ` 1
, 1

˙

´ βpN ´ npaqqmin

ˆ

K

npaq ` 1
, 1

˙

pα,ε

ˆ

npaq ` 1

N

˙

“ βvpN ´ npaqqmin

ˆ

K

npaq ` 1
, 1

˙

`

ˆ

npaqmin

ˆ

K

npaq
, 1

˙

´ βpN ´ npaqqmin

ˆ

K

npaq ` 1
, 1

˙˙

pα,ε

ˆ

npaq

N

˙

´ βpN ´ npaqqmin

ˆ

K

npaq ` 1
, 1

˙ˆ

pα,ε

ˆ

npaq ` 1

N

˙

´ pα,ε

ˆ

npaq

N

˙˙

.

Let us write n ” npaq. Clearly, λppv,N,Kq, aq depends only on n, so with a slight abuse
of notation, we will write it as λppv,N,Kq, nq, which we minimize over n P t0, 1, . . . , Nu.

When pn` 1q{N ď α ´ ε, pα,ε is zero, and λppv,N,Kq, nq is decreasing in n. Thus,

min
nďNpα´εq´1

λppv,N,Kq, nq “ vβK
N ´ n

n` 1

ˇ

ˇ

ˇ

ˇ

ˇ

n“tNpα´εqu´1

ě Kv ´K

ˇ

ˇ

ˇ

ˇ

1´ β
N ´ n

n` 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n“tNpα´εqu´1

,

where we used the fact that tNpα ´ εqu ě K with probability 1 in µ, and hence the min
constraint in the allocation is not binding.

Likewise, when n{N ě α` ε, pα,ε is one, and λppv,N,Kq, nq is increasing in n, and hence

min
něNpα`εq

λppv,N,Kq, nq “ K

ˆ

1´ p1´ vqβ
N ´ n

n` 1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

n“rNpα`εqs
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ě Kv ´ 2K

ˇ

ˇ

ˇ

ˇ

1´ β
N ´ n

n` 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n“rNpα`εqs

.

When pn` 1q{N ą α ´ ε and n{N ă α ` ε, we have

λppv,N,Kq, nq ě βvK
N ´ n

n` 1
´

ˇ

ˇ

ˇ

ˇ

K ´ βK
N ´ n

n` 1

ˇ

ˇ

ˇ

ˇ

´ βK
N ´ n

n` 1

1

Nε

ěKv ´ 2K

ˇ

ˇ

ˇ

ˇ

1´ β
N ´ n

n` 1

ˇ

ˇ

ˇ

ˇ

´ βK
N ´ n

n` 1

1

Nε
.

We set5

β “
α

1´ α
.

Then for tNpα ´ εqu´ 1 ď n ď rNpα ` εqs, we have
ˇ

ˇ

ˇ

ˇ

1´ β
N ´ n

n` 1

ˇ

ˇ

ˇ

ˇ

“
|p1´ αqpn` 1q ´ αpN ´ nq|

p1´ αqpn` 1q

ď
|n´ αN | ` p1´ αq

p1´ αqpn` 1q

ď
εN ` 2

p1´ αqpNpα ´ εq ´ 1q
“

ε` 2{N

p1´ αqpα ´ ε´ 1{Nq
.

We now set v “ vl, N “ Nl, K “ Kl and ε “ εl, according to the hypotheses of the
theorem. Define

δl “ 2 ¨
εl ` 2{Nl

p1´ αqpα ´ εl ´ 1{Nlq
`

ˆ

1`
εl ` 2{Nl

p1´ αqpα ´ εl ´ 1{Nlq

˙

1

Nlεl
. (5)

Clearly δl converges in probability to zero as l Ñ 8. Moreover, the previous arguments
imply that

λppvl, Nl, Klq, nq ě Klpvl ´ δlq.

The theorem then follows from Lemma 1.

Consistent with our previous discussion, the error bound (5) demonstrates that there are
tradeoffs in choosing ε for a fixed N . In particular, making ε smaller reduces uncertainty
about the participation rate, but it also increases the size of the price jump when another
buyer opts in. In fact, examining (5), it is clear that the optimal balance between these two
forces is achieved when ε is on the order of 1{

?
N . This observation immediately yields the

following corollary:

5Thus, the value of the multiplier β is tightly connected to the parameters of the pricing rule and the
participation rates that minimize the lower bound on revenue. At first glance, this seems at odds with the
analysis of Brooks and Du (2023), who emphasize that the Lagrange multiplier on obedience constraints
corresponds to a choice of units for actions, and can be normalized to any value. But Brooks and Du (2023)
analyze a limit of mechanisms in which the number of actions can be arbitrarily large, whereas participation-
adaptive pricing has only two actions. When we constrain the number of actions in the mechanism, the
nominal value of the Lagrange multiplier matters.
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Corollary 1. Consider a sequence of state distributions tµN : N P Z`u where the number
N of buyers and units KN of good are commonly known in µN , and KN{N ď κ for some
κ P p0, 1q. Let εN “ 1{

?
N and α P pκ, 1q. Then there exists a constant C ą 0 such that

ˇ

ˇ

ˇ

ˇ

ErvN s ´
GpMppα,εN qq

KN

ˇ

ˇ

ˇ

ˇ

ď
C
?
N

(6)

for every N .

In Corollary 1, the distribution of value in µN may vary with N . Nonetheless, the
difference between the market price and the value is still guaranteed to vanish in expectation
as N gets large, and the constant C in (6) is independent of the value distribution. Moreover,
the convergence rate of 1{

?
N is unimprovable, since it is the rate given by the guarantee-

maximizing mechanisms of Brooks and Du (2021) (i.e., proportional auctions) for a fixed
distribution of the common value, a commonly known number of buyers, and a single unit
of the good.6 The 1{

?
N convergence rate to full surplus is significantly better than the

1{ logpNq rate for the exponential price auction in Du (2018).7 Needless to say, participation-
adaptive pricing also achieves the optimal rate even when multiple units are for available, a
case which is not covered in the prior literature.

As an illustration, in Figure 2, we have plotted the revenue guarantees of participation-
adaptive pricing for a setting in which v „ U r0, 1s, K “ 1, N is deterministic, α “ 1{2,
and ε “ 1{

?
N . For comparison, we have also plotted the revenue guarantees of the optimal

proportional auction of Brooks and Du (2021), the exponential-price auction of Du (2018),
and the first-price auction. As we can see, even for moderate values of N , participation-
adaptive pricing outperforms the first-price auction, although it is still outperformed by
the exponential-price auction. Around N “ 100, participation-adaptive pricing overtakes
the exponential-price auction. Although it is still dominated by proportional auctions (as
it must be), the gap is reduced to about 20% of the efficient surplus. As Theorem 1 and
Corollary 1 show, this gap must go to zero as N goes to infinity, at a rate of 1{

?
N , as the

revenue guarantees of both proportional auctions and participation-adaptive pricing converge
to full surplus.

5 Discussion

Our contention is that participation-adaptive pricing, of the form described in Theorem 1,
provides a robust link between finite-agent models where agents have price impact and large
market models where agents are price takers. Moreover, this linkage is obtained regardless
of the structure of private information and the equilibrium being played. While the same
can be said of the exponential-price and proportional auctions, in the special case of a single
good, it is quite striking that competitive outcomes can also be obtained with mechanisms in

6It is interesting to note that participation-adaptive pricing can be viewed as a kind of “restricted”
proportional auction, where bids are only allowed in t0, 1u, and the pricing rule has the simple piecewise-
linear form.

7Du (2018) proves that 1{ logpNq is a lower bound on the rate of convergence for the exponential-price
auction. The true rate could be higher.
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Figure 2: Comparison of revenue guarantees.

which the buyers have just two actions, opt in or opt out, and the pricing rule has the simple
form that is a piecewise linear approximation of a step function. Moreover, participation-
adaptive pricing also achieves competitive outcomes in large markets even when many units
are available and when there is potentially correlation between the value, the number of
participants, and the number of units. One can either interpret these mechanisms literally,
as a formal institution that could be implemented by a market designer, or as a metaphor for
the process by which the market price is aggregated in a large, decentralized market. To our
knowledge, the prior literature has not identified mechanisms that guarantee approximate
competitive outcomes in large markets for such a diverse array of environments.

In practice, the simple structure of participation-adaptive pricing might make it easier
for buyers to optimize and for the economy to converge to an equilibrium. In particular,
the only equilibrium constraints used in the proof of Theorem 1 are that buyers who opt
out should not want to deviate to opting in. This deviation is obviously equivalent to
abandoning one’s equilibrium strategy altogether and just opting in, regardless of one’s
private information. More broadly, the same argument would apply for any coarse Bayes
correlated equilibrium under participation adaptive pricing, by which we mean any joint
distribution over fundamentals and actions such that each player prefers their equilibrium
strategy to any alternative strategy that always plays a fixed action. As Hartline, Syrgkanis,
and Tardos (2015) show, no-regret learning dynamics are guaranteed to converge to a coarse
Bayes correlated equilibrium in the long run. Thus, no-regret learning by buyers who face
participation-adaptive pricing in a large market setting will necessarily lead to a competitive
outcome.8

8It is natural to ask, what would actually happen in equilibrium? This obviously depends on the particular
form of information. However, the proof of Theorem 1 shows that if the participation rate is not in the band
rα´ ε, α` εs, then the lower bound on revenue would be higher than the value. As a result, in equilibrium
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One apparent limitation of participation-adaptive pricing is its dependence on the number
of potential buyers N , through the participation rate. In contrast, the first-price auction’s
rules do not depend on the number of potential buyers. However, there is a way of weakening
this dependence, while still obtaining competitive outcomes in the large market limit. In
particular, for the conclusion of Theorem 1 to hold, it would suffice to know some integer M
that is a lower bound on N , as long as M becomes arbitrarily large, and K{M is bounded
away from one. The market price can be set as a function of npaq{M , and if that quantity
is greater than one, the market price is v. Under these assumptions, it is straightforward to
extend our proof to show that the competitive outcome obtains if M goes to infinity.

A more substantive limitation of the current analysis is that the supply of the good is
treated as exogenous. A natural direction for future work would be to consider two-sided
markets, consisting of buyers and sellers, and where both sides must choose to participate in
order for trade to take place. It is our hope that participation-adaptive pricing can be used
to construct market mechanisms will facilitate efficient trade in such settings.

with a large market, the probability that the participation rate is outside rα´ ε, α` εs must be close to zero,
and the economy spends most of its time with intermediate prices.
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