
Surveying and selling:

Belief and surplus extraction in auctions

Job market paper

Benjamin A. Brooks∗

December 18, 2013

Abstract

I consider the mechanism design problem of a seller who is uninformed about demand, while

potential buyers are well-informed. The seller knows that (1) values are private, (2) buyers’

beliefs are consistent with a common prior, and (3) the support of values is bounded relative

to the expected efficient surplus. The seller’s goal is to maximize the minimum ratio between

expected revenue and the expected efficient surplus, which I term the extraction ratio.

I characterize simple mechanisms that maximize the minimum extraction ratio. In these

mechanisms, the seller runs a second-price auction and simultaneously surveys the beliefs of

buyers about others’ values. Losing bidders’ responses to the survey are used to set the reserve

price for the winner. Such mechanisms guarantee the seller a substantial share of the efficient

surplus, with the share parametrized by the bound on the highest value. If values can be up

to ten times the expected efficient surplus, the seller is guaranteed a 20% revenue-share; up to

1,000 times, and the seller is guaranteed 10%.
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1 Introduction

1.1 Motivation

Consider a small municipality that is replacing a public school building. The replacement of schools

is generally a rare event, with the average age of public schools in the U.S. being 42 years.1 As

such, it is reasonable to suppose that municipal officials do not have great expertise in assessing

construction costs. On the other hand, the firms that bid for the contract are likely to have

detailed knowledge of one another’s costs and capabilities. Is it possible for the municipality to get

the contractors to truthfully reveal what they know about one another’s costs, even though the

information they reveal will influence the award?

The elicitation of potential buyers’ opinions by a seller is more than just a theoretical possibility.

After the use of auctions for allocating radio spectrum was authorized by the U.S. Congress, the

Federal Communications Commission (FCC) elicited feedback on its proposed rules from potential

bidders and industry experts. The FCC received “written comments from 222 parties and reply

comments from 169 parties” (FCC, 1997, p. 9). Such feedback was no doubt crucial to gauging the

welfare effects of the new mechanism. The FCC does not specify when and how it incorporated this

feedback into the auction design, but surely the responses of the interested parties were influenced

by their strategic concerns vis-à-vis the ultimate allocation and costs of licenses.

In this paper, I will consider such situations, in which the seller of a good is uninformed about

demand, whereas the potential buyers are well-informed. By well-informed, I mean that each each

agent knows their own private valuation for the good, and in addition, they have a belief about

others’ values which is derived from a common prior. The buyers’ private valuations and beliefs

can be thought of as being induced by informative signals, with the common prior corresponding

to the ex-ante distribution over the signals. The set of signals together with the prior specify a

type space, where a buyer’s “type” is precisely the realized signal.2 The seller could greatly benefit

from knowing the type space: At the very least, such knowledge could facilitate the selection of a

revenue enhancing reserve price, and in particular cases, the seller can even use variation in bidders’

1According to the National Center for Education Statistics, as of 1999.
2Aside from requiring the common prior and that the set of types is finite (for tractability), I impose no additional

restrictions on the type space. The set of possible environments is therefore quite general, and in fact includes type
spaces for which there is no known characterization of the revenue maximizing Bayesian mechanism. See Farinha Luz
(2013) for probably the most general characterization to date.
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beliefs to extract all of the potential surplus as revenue. However, the seller in my model does not

know the type space, and therefore he cannot build such detail-dependent features directly into

the mechanism. Moreover the seller only interacts with the buyers after their types have been

realized, and thus cannot easily incentivize them to reveal the prior. The remaining option, which

the seller takes advantage of, is to use a mechanism that determines the allocation and transfers

while simultaneously eliciting the buyers’ interim beliefs, i.e., their beliefs after they learn their

types but without knowing others’ types. In this way, the outcome of the mechanism can be made

to depend on the true type space. The buyers are of course aware of the effects of their reports, and

will take advantage of any opportunity to misreport in order to favorably influence the outcome of

the mechanism.

Given such large uncertainty about the type space, it is natural for the seller to use a worst-case

criterion: The seller seeks a mechanism that will perform well irrespective of the true distribution

of values and beliefs. Since it is possible for the buyers’ valuations to be arbitrarily small, every

mechanism has zero expected revenue in the worst-case. As a result, worst-case expected revenue is

not a useful criterion to distinguish between mechanisms. Instead, I posit that the seller evaluates

the performance of a mechanism by its expected revenue relative to the expected surplus that could

be generated by allocating the good efficiently. I term this metric the extraction ratio: The ratio

of expected revenue to expected efficient surplus. In addition, the seller makes no presumption

that the buyers will behave according to his preferred equilibrium, so he evaluates a mechanism

by its lowest extraction ratio over all type spaces and over all equilibria. Similar criteria have

been considered in the literature, most notably by Neeman (2003) and by the computer science

literature on mechanism design, surveyed in Hartline (2012). I will revisit the connections with

these and other papers below and in some detail. By using a mechanism that maximizes the

minimum extraction ratio, the seller will be guaranteed at least a minimum share of the expected

efficient surplus, regardless of the true distribution of buyers’ values and beliefs.

1.2 Overview of main results

My main result is that there is a simple class of mechanisms that the seller can use to achieve the

max min extraction ratio. Moreover, this max min extraction ratio is economically substantial, as

I will elaborate upon shortly. These mechanisms are essentially modified second-price sealed-bid
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auctions, in which the buyers simultaneously submit bids as well as respond to a survey of their

beliefs about the values of others. The high bidder will be “offered” the good at a price determined

using others’ reports and ultimately receives the good if this price is less than the high bid. Because

each buyer’s bid does not affect the price of the good, but only whether or not the good is received at

an exogenously chosen price, truthful bidding is a weakly dominant strategy. A slight perturbation

makes bidding one’s value strictly dominant. Also, given that others’ will bid truthfully, buyers

can be incentivized to report their true beliefs about others’ values using a scoring rule. The use of

scoring rules to elicit beliefs in mechanism design has also been considered by Azar et al. (2012).

To calculate the price offered to the high bidder, the seller uses one of the losing bidders’ survey

reports as a “consultation” about the conditional distribution of the highest value. This consult,

together with the second-highest bid, is used to compute an optimal price to offer the winner. I

give these mechanisms the descriptive moniker of belief survey auctions (BSA), since the seller uses

a survey of losing bidders’ beliefs to set the winner’s price.

I derive the minimum extraction ratio for the BSA, and I show that no other mechanism could

achieve a greater extraction ratio in the worst-case. The strict incentives to bid one’s value and

report beliefs truthfully can be provided at arbitrarily small cost to the extraction ratio, so the BSA

virtually achieves the max min. It turns out that if the support of valuations is unbounded, the

max min extraction ratio is zero: It is possible to have arbitrarily large expected efficient surplus

while holding the seller to finite expected revenue. However, these type spaces are extreme in that

they have a lot of mass in the tail of the distribution of the highest value. A natural assumption

is that the support of the highest value is bounded by a constant multiple of the expected efficient

surplus, effectively limiting the dispersion of the highest value around its mean. I study how the

max min extraction ratio changes with the bound on the dispersion of values. For any bound,

the max min extraction ratio is strictly positive, and even for very generous bounds on values, the

max min is economically substantial. As an example, if buyers’ values cannot be more than 10

times the expected efficient surplus, then the seller is guaranteed an extraction ratio of at least

20%. If values can be 1,000 times larger, the seller is still guaranteed a 10% extraction ratio.

It is particularly interesting that the seller is able to achieve these bounds with such simple

mechanisms. The seller never recovers the prior distribution over values, but rather sets reserve

prices using bidders’ interim beliefs. As I will argue below, this is actually a virtue of the mechanism;
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bidders’ interim beliefs are weakly more informative than the prior, and thus allow the seller to

set better reserve prices at the interim stage. Moreover, the seller does not even need to elicit

beliefs about the entire distribution of buyers’ values; it is sufficient for the seller to ask bidders

the conditional distribution of the top two valuations of other bidders and the number of bidders

who tie for the highest value.

In addition to guaranteeing the seller a minimum extraction ratio, the BSA has desirable revenue

properties away from the worst case. Aside from the small cost of providing strict incentives, the

BSA guarantees the seller at least the revenue of a second-price auction with an optimal anonymous

reserve price, i.e., a uniform reserve price for all bidders that maximizes expected revenue. As such,

the BSA virtually maximizes expected revenue over all Bayesian mechanisms when the distribution

of values is independent, symmetric, and regular, as in Myerson (1981).

A potential concern with the max min extraction ratio is that the seller seems to be indifferent

between outcomes with very different expected revenues, as long as the expected efficient surplus

varies proportionally. However, no such comparisons are necessary to justify the use of the BSA.

An alternative way to model the seller’s preference over mechanisms is the following conditional

ordering: The seller prefers greater worst-case expected revenue conditional on the level of the

expected efficient surplus, but he will not compare revenue outcomes between type spaces in which

the social value of the good varies. As a result, one mechanism is preferred to another only if it

has greater worst-case expected revenue conditional on every possible level of the expected efficient

surplus. Observe that this ranking is only a partial order on the set of mechanisms, because the

seller does not compare mechanisms whose worst-case revenue ranking switches depending on the

surplus level. It turns out that the BSA is maximal with respect to this partial ordering: If the

seller’s wishes to maximize the minimum expected revenue conditional on a particular level of the

expected efficient surplus, then he can select no better mechanism than the BSA.

1.3 The logic behind the BSA

Here I will give a brief summary of how my results are obtained. The BSA offers the good to the

high bidder, so on average, the winner’s valuation is drawn from the distribution of the highest

value among the n bidders. If the seller knew the prior distribution over values, he could set the

reserve price which maximizes revenue without knowing the identity of the winner, which is the
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optimal anonymous reserve price. By assumption, the seller does not know the prior distribution

over values, but the reports of the losing bidders allow the seller to set reserve prices conditional

on more detailed information. Specifically, the seller learns the distribution of the winner’s value

conditional on (1) the winner not being the bidder who was consulted, (2) the realization of the

second-highest bid, and (3) any extra information the consulted bidder has about the distribution,

as encoded in his type. Conditional on (1)-(3), the seller can always set a reserve price that generates

weakly more revenue than could be achieved with an optimally chosen anonymous reserve price.

Thus, the BSA performs better on average than any second-price auction with an anonymous

reserve, in spite of the fact that the seller never recovers the prior nor does he know the optimal

anonymous reserve price.

There is an analogy to be made with third-degree price discrimination, in which a monopolist

receives information that divides a market into segments. If the monopolist can set different prices

in different segments, then this information must be weakly revenue increasing, since it is always

feasible to set the optimal uniform price. A similar property holds in the auction setting. More

informative reports by losing bidders allows the seller to set better reserve prices, and hence the

worst-case environments for the BSA are ones in which (1)-(3) are minimally informative. These

type spaces exhibit the property that bidders get no information beyond their private values, which

minimizes the informativeness of (3). Moreover, the worst-case type spaces are lopsided, in the

sense that at any time there is only one “serious” bidder who submits the high bid, and the other

bidders know that they will not win, which minimizes the learning from (1) and (2). In a sense, this

reduces the seller’s problem to designing a mechanism for selling to a single serious buyer. Even so,

multiple bidders will participate in the auction, and their reports are used by the seller to set an

optimal reserve price for that single buyer. Finally, I derive the distribution for the serious bidder’s

value that minimizes revenue, subject to a given level of the efficient surplus.

With additional restrictions on the environment, the seller can achieve the same goals with

mechanisms that are even simpler. Throughout the analysis, careful attention is paid to the pos-

sibility of multiple bidders having the same valuation, so that the winner is determined by a tie

break. The tie break induces a selection effect: Conditional on winning the auction, the winner is

less likely to have a valuation at which ties are likely to have occurred. For this reason, the seller

must survey bidders’ beliefs about the likelihood of ties. One might think of ties as being a non-
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generic phenomenon, for example if values are drawn from a non-atomic distribution. If attention

is restricted to type spaces in which ties do not occur with positive probability, the conditional

distribution of the high bidder’s value can be calculated much more simply. Also, as mentioned in

the previous section, the seller elicits the buyers’ beliefs about the top two valuations among other

buyers. By leveraging the information about the highest value contained in the second-highest

value, the BSA always perform better than a second-price auction with an optimal reserve price.

However, if the seller is only concerned about worst-case extraction ratio, then the same bounds

can be achieved with a mechanism that only elicits beliefs about the highest value of others.

1.4 Related literature

The results described above have a tight connection to the work of Neeman (2003), who studies the

worst-case extraction ratio of the second-price auction. Neeman considers a seller who has three

different levels of sophistication with regard to reservation prices. At the most basic level, the

seller cannot set any reserve price. At the next level, the seller can use a fixed reserve price that

is independent of the true type space. At the highest level of sophistication, the seller knows the

distribution of values and is able to set the optimal anonymous reserve price for the true type space,

although the seller is not sufficiently sophisticated to design and run the optimal auction. It is this

last case that is the most relevent to the present paper. For this setting, Neeman derives bounds

on the extraction ratio that are equal to my own, albeit with a slightly different parametrization of

the set of type spaces. Indeed, since the BSA always generates as much revenue as a second-price

auction with an anonymous reserve, and since the revenue of these two mechanisms coincides on

the worst-case type spaces derived by Neeman, it is necessarily the case that both have the same

minimum extraction ratio. However, I will give a direct proof of worst-case type spaces for the

BSA, to better illuminate the connection with third-degree price discrimination described above.

Another paper which is closely related is that of Azar et al. (2012). They also consider a seller

who is uninformed about the type space while the agents are well-informed, and they look for

general mechanisms that achieve a favorable worst-case performance relative to the benchmark of

maximum revenue in a dominant strategy ex-post individually rational mechanism. Similar to the

present work, they extract buyers’ beliefs using scoring rules. They consider a restricted class of

environments, for which the gap between first-order beliefs and the prior distribution is relatively
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small.3 By eliciting the buyers’ first-order beliefs, the seller is able to recover a truncated view of

the prior, and this is used as an input into a dominant strategy mechanism. In comparison, the

present work is in much more general environments, in which buyers can have arbitrary conditional

beliefs about the distribution of values. As such, very different arguments are required to arrive at

my results. Also, I use a different benchmark which does not assume a restriction to a particular

implementation concept. Nonetheless, to achieve the max min extraction ratio, it is sufficient for

the seller to use simple mechanisms that only extract first-order beliefs about statistics of others’

values.

More broadly, my work is part of the large literature on robust mechanism design (Bergemann

and Morris, 2012b, provide an overview). At least since the critique of Wilson (1987), the mech-

anism design literature has held as a desideratum that mechanisms should be detail-free, in the

sense that the rules of the game should not vary with fine details of the environment. This is in

contrast to classical auction design, e.g., Myerson (1981) and Crémer and McLean (1988), in which

the mechanism can be tailored to specific and highly structured type spaces. A more recent con-

tribution of Farinha Luz (2013) considers very general type spaces but still allows the mechanism

to depend on the type space.

The robust mechanism design literature has explored various ways to operationalize the Wilson

critique. Much of the literature focuses on more stringent implementation concepts. For example,

Bergemann and Morris (2009, 2011) require that a particular social choice function be implemented

regardless of the beliefs of the agents. I consider auction formats that are compatible with with a

slightly different interpretation of the detail-free criterion: The mechanisms that the uninformed

seller can use are detail-free in that the distribution of values and beliefs of the agents cannot be

hard-wired into the mechanism. However, the outcome of the mechanism can depend on details of

the environment through equilibrium behavior, if these details are known to the agents.

Other authors have considered criteria akin to max min extraction ratio. As discussed above,

the closest such related work is that of Neeman (2003). Bergemann and Schlag (2011) consider

a monopolist facing unknown demand from a single buyer, and characterize the pricing rule that

3Specifically, they consider environments in which bidders’ beliefs are derived from a common prior in the following
manner: Each bidder is associated with a partition of others’ values, and bidders learn their own value and the cell
of the partition containing other bidders’ values. The first-order beliefs of different types of the same bidder have
disjoint supports, and beliefs are always proportional to the prior distribution on their support.
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achieves min max regret, which is the absolute difference between expected revenue and expected

efficient surplus. Chassang (2011) studies dynamic incentive contracts, and solves for contracts

that achieve a target that is analogous to max min extraction ratio. Carroll (2012) also considers

max min preferences over contracts in a static setting. Chung and Ely (2007) give a foundation for

dominant strategy mechanisms by positing a seller with worst-case preferences and who knows the

distribution of private values but not the beliefs of the agents, which may be inconsistent with a

common prior.

The criterion of max min extraction ratio is similar to the competitive ratios studied by computer

scientists (see Hartline (2012) for a comprehensive survey). This literature looks at worst-case

revenue ratios, with a variety of benchmarks in the denominator. The benchmark is often tailored

to a specific solution concept, such as maximum revenue over all dominant strategy mechanisms.

The efficient surplus is in a sense a more demanding benchmark, as it does not presume a restriction

to a particular class of mechanisms. An assumption throughout some of the literature is that

mechanisms can only elicit one-dimensional bids, which precludes the belief extraction approach

of the present model. Chawla et al. (2007) and Hartline and Roughgarden (2009) study worst-

case competitive ratios for the second-price auction with optimal reserve prices, which presumes

that the seller knows the prior. Goldberg et al. (2004) and Goldberg and Hartline (2003) look at

mechanisms which do not depend on the prior, with a benchmark which is the revenue the seller

could generate selling k ≥ 2 units of the good at the kth highest price. Such a benchmark could

be zero in cases where the efficient surplus is positive.

Others have considered how a seller can learn about demand. Baliga and Vohra (2003) and Segal

(2003) consider a seller who forecasts the distribution of values using past realizations. In contrast,

I will look at a situation where the seller asks agents for their beliefs, rather than dynamic learning

based on reported values. Caillaud and Robert (2005) construct detail-free mechanisms that use

agents’ beliefs to partially implement the optimal auction of Myerson (1981). Choi and Kim (1999)

consider belief extraction in the context a public goods problem, but assume the existence of an

ex-ante stage at which the seller can extract prior beliefs, before the realization of agents’ private

information.

Finally, this work is part of my broader investigation into mechanisms that harness the agents’

beliefs about the environment, to make up for a lack of knowledge on the part of the designer.
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I see the present model as a midpoint in the tradeoff between the simplicity of the mechanism

and the strength of the optimality criterion. In Brooks (2013a), I investigate the limits of how

much the seller could learn about the environment. This relates to a classic “folk argument” in

the mechanism design literature, that if a common prior were known to the agents and not to the

designer, then the designer could recover the prior for free (Bergemann and Morris, 2012a), in the

sense that the need to recover the prior does not restrict the social choice functions that the seller

can implement once the prior is known. I show that the designer can indeed extract the prior,

without compromising on how the prior will be used, by using a mechanism which elicits bidders’

infinite hierarchy of beliefs. While complexity is not explicitly modeled, it is safe to say that this

mechanism would be much more challenging to implement than the BSA. At the other end of the

spectrum, Brooks (2013b) looks at mechanisms in which the seller runs a second price auction and

simply asks each bidder to suggest a reserve price for the other bidders. The seller incentivizes

truth-telling by sharing revenue generated through a bidder’s suggestion. In more structured type

spaces, this mechanism has a natural equilibrium in which bids are close to values, and bidders

suggest reserve prices that are approximately optimal. I revisit the broader agenda in Section 5.

The rest of this paper is organized as follows. In Section 2, I describe the model and the seller’s

mechanism design problem. In Section 3, I present a simple example that illustrates some of the

main ideas of the paper. Section 4 presents the main results. Section 5 is a discussion, and Section

6 concludes. Omitted proofs are in the Appendix.

2 Model

There are n potential buyers for a single unit of a private good, indexed by i ∈ N = {1, . . . , n}. I

adopt the usual convention that −i = {j ∈ N |j 6= i}, and vectors xS denotes the sub-vector of x

containing indices in S, e.g., t = (ti, t−i) ∈ T is a profile of types. For real vectors x, x(1) denotes

the highest value in x, x(2) denotes the second-highest value, and x(1,2) is the ordered pair of the

highest and second-highest values. If x only has a single coordinate, then x(2) = −∞.

The values and beliefs of the bidders are modeled with the language of type spaces. In particular,

there is a finite set of types T = ×i∈NTi and a joint distribution π ∈ ∆(T ). The notation ∆(X)

denotes the set of probability measures on X with finite support. Each type ti ∈ Ti is associated
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with a private value

φi(ti) ∈ R.

Together, a type space is the triple T = (T, π, φ). I will write π(t−i|ti) for the conditional distribu-

tion of types given ti, and πi(ti) for the marginal distribution on Ti. For each type space T , the

expected surplus generated if the good were allocated efficiently is

S(T ) =
∑
t

φ(1)(t)π(t). (1)

I write v and v for smallest and largest values in the support of the measure over values induced

by π under the mapping φ. For easy reference, all notation is compiled in Table 1, which appears

at the end of the paper.

A type space is symmetric if (Ti, φi) is the same for all bidders, and π is exchangeable in the

types, i.e., π(t1, . . . , tn) = π(tψ(1), . . . , tψ(n)) where ψ is a permutation of N . A payoff type spaces

has the property that
∣∣φ−1
i (vi)

∣∣ ≤ 1 for all vi ∈ R+. In other words, each valuation is associated

with at most one type, so all bidders with a given valuation have the same conditional beliefs about

other bidders’ types as well as other bidders’ valuations. I will say that a type space is lopsided if

with probability one, at most one bidder has a valuation above the minimum of the support. These

type spaces are lopsided in the sense that the winner’s valuation tends to be much larger than the

second-highest value.

The seller must design an auction for the sale of the good. A mechanism consists of a measurable

space of messages Mi for each player, M = ×i∈NMi, and mappings q : M → Rn and p : M → Rn.

These are respectively the allocation rule and net transfer to the seller: qi(m) is the probability

that agent i is allocated the good and pi(m) are agent i’s net transfer when the message profile m

is sent. Naturally, qi(m) is required to be non-negative and
∑

i∈N qi(m) ≤ 1. A mechanism is the

triple M = (M, q, p).

A mechanism and a type space together define a Bayesian game, in which each player’s strategy

set is Σi(M, T ) = {σi : Ti → ∆(Mi)}. I write σi(dmi; ti) for the probability measure over bidder i’s

messages mi given type ti. For a strategy profile σ ∈ Σ(M, T ) = ×i∈NΣi(M, T ) and type ti ∈ Ti,
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bidder i’s payoff is

ui(σ, ti) =
∑

t−i∈T−i

π(t−i|ti)
∫
m∈M

[φi(ti)qi(m)− pi(m)]σ(dm; t).

where σ(dm; t) = ×i∈nσi(dmi; ti) is the product measure on M . A profile σ is a Bayesian Nash

equilibrium if

σi ∈ arg max
σ′i∈Σi(M,T )

∑
ti∈Ti

πi(ti)ui
(
(σ′i, σ−i), ti

)
.

I denote by BNE(M, T ) the set of all Bayesian Nash equilibria. Note that this set may be empty

for particular choices of (M, T ). The revenue of M under a particular type space T and strategy

profile σ is

R(M, T , σ) =
∑
t∈T

π(t)

∫
m∈M

∑
i∈N

pi(m)σ(dm; t). (2)

The corresponding extraction ratio is

E(M, T , σ) =
R(M, T , σ)

S(T )
, (3)

with the convention that when S = 0, E = 1.

The seller’s goal is to select find mechanisms that solve

sup
M

inf
T

inf
σ∈BNE(M,T )

E(M, T , σ). (4)

The interpretation of this problem is: The seller must select a mechanism M, following which

Nature4 will select both the type space T and the equilibrium σ ∈ BNE(M, T ). If BNE(M, T ) is

empty, then our convention is that the infimum is zero. I will refer to the value (4) as the max min

extraction ratio.

The formulation of (4) is quite demanding: If the seller chooses a mechanism for which there

are multiple equilibria, Nature will select the one with the lowest extraction ratio. The exposition

4Throughout, I use Nature as the personification of all minimization operations beyond the control of the designer.
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is simplified by initially allowing the seller to choose the equilibrium, which permits us to achieve

a “partial” max min extraction ratio. The results will later be strengthened to “full” max min

by allowing Nature to select the equilibrium with the lowest ratio. This terminology is modeled

after the partial and full implementation concepts in mechanism design, although to be clear, full

max min does not require equilibrium uniqueness, but just that the extraction ratio be maximized

in the worst type space and worst equilibrium. When it is clear which equilibrium is used, I will

simply write E(M, T ) for the extraction ratio.

3 Example

Let us start by considering a simple example that will illustrate some of the main ideas. There are

two potential buyers i = 1, 2, and each buyer could be of type L or type H. Type L thinks the

good is worth v, an type H thinks the good is worth 2v. The distribution of types is given by the

table below.

L H

L 1− 2ρ− ψ ρ

H ρ ψ

Relative to the general model, I have assumed that the type space is a symmetric and payoff

type space, and that the support of values is of the form {v, 2v}. These features are common

knowledge among the buyers and the seller. However, the parameters ρ, ψ, and v are known to the

buyers and unknown to the seller. These assumptions are made for the simplicity of the example,

and will be relaxed for the main results.

The maximum surplus that can be generated by allocating the good efficiently is:

S = v(2(ψ + 2ρ) + 1− 2ρ− ψ)

= v(1 + 2ρ+ ψ).

The seller has to select a mechanism to sell the good which is independent of v, ρ, and ψ, and

therefore independent of S as well. As discussed in the introduction, the seller is highly uncertain

about S, and lacks beliefs about which parameters are likely to obtain. As a result, the seller
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compares mechanisms by a worst-case performance metric which is scale free in S: the minimum

extraction ratio. Our seller will first pick a mechanism, and then Nature will choose the parameters

to minimize the extraction ratio.

For starters, let us consider what would happen if the seller were to use a second-price auction.

If there is a positive reserve price r > 0, then Nature could always select v such that 2v < r. S would

be positive, but R = 0 (since the reserve is greater than the highest value). This is an important

observation: introducing a positive reserve price that is totally unresponsive to the parameters of

the model leads to extremely unfavorable outcomes in the worst-case. With a reserve price of zero,

revenue is

R = v(2ψ + 1− ψ)

= v(1 + ψ).

Hence, the extraction ratio would be

E =
1 + ψ

1 + 2ρ+ ψ
.

Clearly, to minimize the ratio, Nature should make ψ as small as possible and ρ as large as possible,

so ψ = 0 and ρ = 1
2 . The resulting extraction ratio is E = 1

2 . Note well that it does not actually

matter what level v Nature chooses: The model is “scale-free” in v.

L H

L 0 1
2

H 1
2 0

The second-price auction with no reserve is of course just one mechanism. Let us consider a

simple modification. In addition to accepting bids bi, the seller canvasses the bidders for what they

believe about the distribution of others’ bids. Each bidder’s response to the survey will be used to

set the reserve price only if that bidder does not win. Specifically, bidders submit a quantity wi,

which is the bidder’s report for the value of v, and a quantity µi, which is the bidder’s reported

probability that bj = 2v. If bidder i has the high bid, or if bids are equal and i wins a uniform tie

break, then bidder i will be “offered” the good at a reserve price ri that only depends on (bj , wj , µj).
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Moreover, this price is always at least bj . Thus, bidder i is facing an exogenous distribution of prices,

depending on the other bidder’s reports, and he will receive the good and pay the price as long as

bi ≥ ri. As in the second-price auction, truthful bidding is a weakly dominant strategy: bi = vi. In

the following, I impose that bidders follow this strategy.

Bidders will receive a small side reward for their survey response (wi, µi). In particular, bidder

i is paid according to the scoring rule

ε bj

(
µiIbj=2wi + (1− µi)Ibj=wi −

(µi)
2 + (1− µi)2

2

)
. (5)

Given a report wi = v, then there is a strict incentive to report µi = Pr(bj = 2v|vi), and in fact

the bidder receives a positive net payment from the seller. Moreover, any report other than wi = v

induces a smaller payoff: If wi 6= 2v as well, then the bidder always makes a net transfer to the

seller, and if wi = 2v, bidder i only gets paid when bj = 2v, and not when bj = v. Thus, in

any equilibrium in which the buyers bid their values, they must also truthfully report wi = v and

their conditional belief that bj = 2v. Note that the payment is scaled by bj = vj > 0, so that in

expectation, the transfer to bidder i from (5) is no more than εE[vj ] ≤ εS.

The seller offers the winner the good at the revenue maximizing price, conditional on the winner

being the high bidder and winning any tie breaks, and also conditional on the loser’s reported

beliefs. Suppose bidder i has the high bid and wins a tie break. Clearly, if the second-highest bid

is bj = 2wj = 2v, then the seller should set i’s price at 2v. If bj = v, then the probability of vi = 2v

is

2µj
3

=
2

3

ρ

1− ρ− ψ
,

and the conditional probability of vi = v is

1− µj
3

=
1

3

1− 2ρ− ψ
1− ρ− ψ

.

These formulae exhibit the selection effect of the tie: The “raw” probability of both players having

valuation v is 1−µj , and one having 2v is µj . But if both have a low value, bidder i only wins half

the time, thus leading to the formulae above. The optimal price in this case is 2v if ρ ≥ 1−ψ
4 and
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v if ρ ≤ 1−ψ
4 .

Thus, Nature has two options. If ρ ≤ 1−ψ
4 , then revenue is R1 = v(1 + ψ), and the extraction

ratio is

E1 ≥
R1

S
=

1 + ψ

1 + 2ρ+ ψ
,

which is minimized by making ρ as large and ψ as small as possible. Hence, E1 is minimized at

ρ = 1
4 and ψ = 0. At these values, E1 = 2

3 .

If ρ ≥ 1−ψ
4 , then the price is always 2v, and revenue is R2 = 2v(2ρ+ψ) and the extraction ratio

(not counting transfers associated with (5) is

E2 ≥
R2

S
=

2(2ρ+ ψ)

1 + 2ρ+ ψ
.

The ratio is decreasing in ρ and ψ. Substituting in ρ = 1−ψ
4 , the ratio is decreasing in ψ, so again

the optimal values are ρ = 1
4 and ψ = 0. Hence, E2 = 2

3 . Taking into account at most εS in lost

revenue for each bidder due to (5), the extraction ratio for this mechanism is at least 2
3 − 2ε.

L H

L 1
2

1
4

H 1
4 0

Note that this type space is lopsided, in the sense introduction in Section 2: With probability one,

at most one bidder has a valuation greater than v, which is the bottom of the support.

The bottom line: A simple modification of the second-price auction yields a substantial im-

provement in the worst-case extraction ratio from 1
2 to 2

3 . This mechanism accepts bids and also

surveys bidders’ beliefs about the distribution of others’ bids, with the truthful revelation of this

information being incentivized with a scoring rule. Each bidder’s survey response is used to set the

reserve price when the other bidder wins, which protects the seller from low revenue when there is

a large gap between the highest and second-highest values.

It is worth noting that this mechanism, while a significant improvement over the second-price

auction with no reserve, does not maximize the minimum possible extraction ratio. It is easy to

see that in the worst-case distribution, bidders’ beliefs determine their preferences in the sense of
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Neeman (2004), since H puts zero probability on the other bidder being of type H. With a more

complicated mechanism in which the seller elicits second-order beliefs and introduces side-bets, this

property could be exploited to extract all of the efficient surplus. The only type spaces which do

not have this property are those in which types are drawn independently, for which the extraction

ratio is minimized when Pr(vi = 2v) =
√

2− 1, and the max min extraction ratio is approximately

0.7071.

This wedge is entirely due to the assumption that the support of values is restricted to being of

the form {v, 2v}. In the rest of the paper, I will pursue a similar analysis but in the more general

setting of Section 2, without restrictions on the number of bidders, on the support of valuations,

or on the kinds of information that bidders might learn about the distribution. It will turn out

that the worst-case type spaces approach a continuous distribution of values, in contrast to this

inherently discrete example. A straightforward generalization of the mechanism described above

achieves the max min extraction ratio for this more general problem.

4 Characterizing the maxmin extraction ratio

4.1 Preamble

I now proceed to characterize the max min extraction ratio and present simple mechanisms that

achieve the max min. I begin by defining a particular auction, the belief survey auction (BSA).

This mechanism is a modified second-price auction in which the seller accepts bids and also elicits

reports of first-order beliefs. A bidder’s reported belief is used to set the reserve price when one of

the other bidders wins the auction. I show that truthful reporting of values and beliefs is incentive

compatible, and in this truthful equilibrium, the seller is guaranteed a tight lower bound on the

extraction ratio. In particular, Lemma 1 shows that there is a small subset of type spaces, namely

symmetric and lopsided payoff type spaces, within which the extraction ratio for the BSA can be

minimized. The argument proceeds by taking a given type space as input, and producing a new

symmetric and lopsided payoff type space with the same efficient surplus and weakly lower revenue,

and hence a lower extraction ratio. These type spaces have a simple interpretation: The reports

of losing bidders allow the seller to set reserve prices, and the more informative the losers’ reports

are, the better reserves the seller is able to set. In these worst-case type spaces, bidders’ reports are
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minimally informative: Since they are symmetric and payoff type spaces, bidders beliefs contain no

information beyond the value, and all bidders’ reports are equally informative. And since all losing

bidders have the same value equal the bottom of the support, there is just one belief that is used

to set the reserve price.

The extraction ratio of the BSA on such type spaces is completely determined by the distribution

of the highest value. I show that for a given level of revenue, the efficient surplus is maximized by

drawing the highest value from a particular Pareto distribution. If the support of the distribution

is unbounded, the highest value has infinite expected value, and the resulting extraction ratio is

zero. As a result, I consider type spaces in which the support of the highest value is bounded as a

constant multiple γ of the efficient surplus. This constant parametrizes the set of type spaces, and

for each value of γ I characterize the max min extraction ratio.

In addition, the BSA turns out to be an optimal auction on symmetric and lopsided payoff type

spaces. As a result, the bound on the extraction ratio is tight: No mechanism can have a higher

extraction ratio in the worst case. This establishes the partial max min extraction ratio result of

Theorem 1. Finally, I show that if the seller rewards bidders for their reported beliefs using a scoring

rule, truthful reporting can be made the unique strategy profile that survives iterated deletion of

dominated strategies. Hence, the partial result is strengthened to full max min in Theorem 2.

I note that there are in fact many mechanisms which approach the solution to (4). The mech-

anisms I consider are notable for their simplicity, but in Section 5 I will discuss some alternatives.

4.2 The belief survey auction

Our foundation for constructing the BSA is the second-price auction. This auction has an important

property: each bidder is facing a random price at which he could purchase the good, where the

distribution of the price is completely determined by the strategies of other bidders. In the second-

price auction, this price is the highest bid made by other bidders, b
(1)
−i . The own bid bi is the cutoff

such that bidder i would like to purchase the good if the realized price is less than bi. Since it

is optimal to buy the good at any price below the bidder’s value, bi = vi is a weakly dominant

strategy.

The BSA will retain this property: Each buyer submits a bid bi which is the cutoff at which

they accept a price which is a function of other buyers’ reports. Our point of departure is that this
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price is not b
(1)
−i , but rather incorporates more information that is elicited from the other bidders.

Specifically, in addition to a bid, each bidder will submit a report of their beliefs about the joint

distribution of (1) the highest bid of others b
(1)
−i , (2) the second-highest bid of others b

(2)
−i , and (3)

the number k of high bidders amongst the other players, i.e., the number of players j such that

bj = b
(1)
−i . Naturally, if b

(1)
−i > b

(2)
−i , then under a truthful report, k = 1 with probability 1. Assuming

the report is truthful, bidder j’s reported beliefs allow the seller to determine an optimal price to

charge the winning bidder conditional on the winner not being bidder j, and conditional on the

second-highest bid of others. The report of the number of tied bidders allows the seller to control

for the selection effect induced by tie breaking.

This mechanism strikes a balance between the amount of information about the environment

that the seller elicits from bidders and the range of type spaces in which the mechanism maximizes

revenue. In particular, by canvassing beliefs about b
(2)
−i in addition to b

(1)
−i , the seller is able to set

reserve prices that are better on average than the optimal anonymous reserve price in the second-

price auction (Proposition 2). If the seller collected less information, namely beliefs about b
(1)
−i and

the number of high bidders, he could still achieve max min extraction ratio (Theorems 1 and 2) but

would no longer be guaranteed to do as well as the second-price auction.

More formally, I define a mechanism MBSA as follows. Each message mi consists of a bid bi

and a distribution µi in ∆
(
R2

+ × N
)
, where R+ = [0,∞) and N is the set of positive integers. For

a vector x, let

W (x) =
{
i
∣∣∣xi = x(1)

}
(6)

denote the set of maximal indices in x. The interpretation is that µi is bidder i’s reported beliefs

about the distribution of b
(1,2)
−i and |W (b−i)|. Thus, Mi = R+×∆(R2

+×N). A typical message will

be written mi = (bi, µi). The allocation rule is specified as follows. Suppose bidder i submits the

highest bid, bi = b(1). If there are ties, the mechanism selects i uniformly from the set of high bidders

W (b). We will then pick a bidder j 6= i uniformly to calibrate the price rj

(
mj , b

(2)
−j

)
≥ b(2) = b

(1)
−i

for bidder i. If bi ≥ rj

(
mj , b

(2)
−j

)
, bidder i wins the good and pays rj

(
mj , b

(2)
−j

)
. Otherwise, the
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good remains unallocated. Hence,

qBSAi (m) =
1

|W (b)|
1

n− 1

∑
j 6=i

I
bi≥rj

(
mj ,b

(2)
−j

),

pBSAi (m) =
1

|W (b)|
1

n− 1

∑
j 6=i

I
bi≥rj

(
mj ,b

(2)
−j

)rj (mj , b
(2)
−j

)
,

where IC is the indicator function, equal to one if condition C is met and zero otherwise. The

price rj

(
mj , b

(2)
−j

)
in fact does not depend on mi when i is allocated the good, since bi ≥ b(2).

Thus, bidding one’s value is a weakly dominant strategy and for now I impose that this occurs in

equilibrium.

Also, note that bidder i’s report of µi has no effect on any price rj

(
mj , b

(2)
−j

)
when bidder j 6= i

is consulted, nor does it affect whether or not i is offered the good at any price. Hence, any report

of µi is incentive compatible. I consider the “truth-telling” equilibrium in which bidders report

µi

(
v

(1,2)
−i , k

)
=

∑
{
t−i

∣∣∣∣∣φ(1,2)−i (t−i)=v
(1,2)
−i ,

|W (φ−i(t−i))|=k

}ψ(t−i|ti).

In plain language, bidders report the conditional joint distribution of the first two order statistics

of others’ bids, and the number of high bidders among the other players. We will subsequently see

that this strategy can be made the unique equilibrium, for any T , at an arbitrarily small cost to

the extraction ratio.

I still have to specify the prices that bidders are offered. What I would like to implement is a

“monopoly” price with respect to the conditional distribution of the winner’s value when bidder j is

consulted. Each bidder reports their beliefs µj conditional on tj , but the seller only consults bidder

j in particular situations, namely when j is not a high bidder or when j is a high bidder but loses a

tie break. Hence, µj is not the distribution of
(
v

(1,2)
−j , |W (v−j)|

)
conditional on j being consulted.

Rather, the mechanism takes into account the fact that v
(1)
−j ≥ bj and that j must have lost any

and all tie breaks. Finally, since the price can depend on any information from losing bidders, the

mecahnism additionally uses the fact that v
(1)
−j ≥ b

(2)
−j . As previously discussed, by conditioning

on the second highest bid of −j, the seller makes sure that the auction generates weakly greater

revenue than a second-price auction with the optimal reserve price. These computations result in
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an upper cumulative conditional distribution of the winner’s value when j is consulted, which is

Gj

(
r;mj , b

(2)
−j

)
=

∑
{
v
(1,2)
−j ,k

∣∣∣∣∣v
(1)
−j≥max{r,b(2)},

v
(2)
−j=b

(2)
−j

}
k

I
bj=v

(1)
−j

+ k
µj

(
v

(1,2)
−j , k

)
. (7)

This is the probability that the winner’s value is at least r, conditional on bidder j being consulted

and on b
(2)
−i . The price induced by bidder j’s report is a monopoly price with respect to this

distribution:

rj

(
mj , b

(2)
−j

)
∈ arg max

r
r Gj

(
r;mj , b

(2)
−j

)
. (8)

Note that rj

(
mj , b

(2)
−j

)
is always at least b(2), since Gj

(
r;mj , b

(2)
−j

)
is constant for r ≤ b(2) =

max
{
bj , b

(2)
−j

}
.

4.3 Worst-case extraction ratio for the BSA

In this section, I characterize the minimum extraction ratio and the minimizing type spaces for the

BSA under the truth-telling equilibrium. I will give an informal argument, with a rigorous proof

in the Appendix.

The reports of the losing bidders contain information that the seller uses to optimally set the

winner’s price. In particular, the seller conditions on

(1) Bidder j is not being offered the good, i.e., v(1) ≥ vj and j loses any tie breaks;

(2) The winner’s value is greater than the realized values bj = vj and b
(2)
−j = v

(2)
−j ;

(3) The consulted bidder j’s realized type tj .

These three pieces of information are incorporated into Gj and the optimized price rj .

Note that the distribution of v
(1)
−j conditioning on (1)-(3) will on average be the distribution of

v
(1)
−j , given that j is not being offered the good, which is just (1). The fact that j is not offered the

good means that v
(1)
−j ≥ vj and j loses any tie breaks. This average distribution does not condition

on the fact that vj and v
(2)
−j have particular realized values bj and b

(2)
−j , respectively, and it does not

incorporate the additional information contained in tj .
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An analogy with third-degree price discrimination highlights the impact of (1)-(3). The aggre-

gate market is the distribution of v
(1)
−j conditional on (1). Instead of having to price with respect

to this aggregate market, the seller sees demand broken up into pieces conditional on (2) and (3).

Such price discrimination is always beneficial to the seller, since the seller could ignore the extra

information and set uniform prices. Hence, it is weakly worse for the seller to have less information,

which is when bj , b
(2)
−j , and tj are less informative about v(1).

Given a particular type space T with S(T ) = S, the seller generally learns more from (1)-(3)

than from just (1). However, it is possible to find another type space T ′ in which the distribution

of v(1) conditional on (1) is the same, but in which the seller learns nothing from (2) and (3).

This alternative type space T ′ has the same efficient surplus, but revenue must be weakly lower

R(MBSA, T ′) ≤ R(MBSA, T ), since the seller does not benefit by setting discriminatory reserve

prices based on (2) and (3). Hence, the extraction ratio is lower as well.

How is this type space obtained? First, if bidders have more than one type tj associated with a

particular realization vj , then T ′ can be defined so that these types are effectively merged. In other

words, bidder j’s types tj ∈ φ−1
j (vj) are replaced with a single type, so that bidder j only learns

that he has one of the types such that φj(tj) = vj , i.e., T ′ is a payoff type space with the same

marginal distribution over values as T . This makes bidder j’s report µj weakly less informative.

Second, the realized values bj and b
(2)
−j are also informative. We can modify the type space so that

every bidder except the winner has the minimum valuation in the support v, meaning the type

space is lopsided. Thus, the losing bidders’ values are completely uninformative as lower bounds on

the winner’s valuation. Finally, there may be asymmetries wherein one bidder’s losing report is on

average more informative than others’. We can “symmetrize” the distribution so that all bidders’

losing reports are equally informative. This is formalized in the following:

Lemma 1 (Worst-case type spaces). For any ε > 0, there exists a symmetric and lopsided payoff

type space T such that

E
(
MBSA, T

)
< inf
T ′
E
(
MBSA, T ′

)
+ ε,

Any type space within the class described in Lemma 1 is of the following form: Pick one

bidder i ∈ N uniformly, and set vj = v for j 6= i. Bidder i’s value is drawn from the distribution
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F (1) ∈ ∆(R+), which is the unconditional distribution of v(1). Losing bidders j always report the

conditional belief that v
(1)
−j ∼ F (1), and bj = b

(2)
−j = v. The reserve price r∗ is a solution to

max
r≥0

r G(1)(r),

where G(1)(r) = 1−limv↑r F
(1)(v) is the probability of the offered price of r being “accepted” by the

high bidder, when the bidder buys whenever indifferent. Revenue R(T ) is simply this maximum.

The spirit of Lemma 1 is that holding fixed the expected efficient surplus, there is a certain class

of type spaces within which revenue can be minimized. It is now instructive to reverse the question:

Suppose we wanted to maintain R(T ) ≤ R. Which distributions F (1) will maximize S(T ) subject

to this revenue constraint? It must be that for ever r ≥ 0, r G(1)(r) ≤ R, so F (1) ≥ 1 − R
r . On

the other hand, pushing down the cumulative distribution of v(1) always increases E[v(1)] = S(T ).

Thus, the supremum of E(MBSA, T ) will be attained when F (1) is precisely

F (1)(v) =


0 if v < R

1− R
v if R ≤ v < v

1 if v ≥ v

, (9)

where v is the largest valuation in the support, which is a truncated Pareto distribution with scale

R and shape of 1. An example of such a distribution is given in Figure 1.

If the distribution of v(1) is given by (9), then the efficient surplus is given by the Riemann-

Stieltjes integral

S =

∫ v

v=R
v
R

v2
dv + v

R

v

= R (1 + log(v)− log(R)) .

(10)

Note that (9) implies a mass point on v of size R
v . It is evident that S is increasing without bound

in v. If the distribution of values can be unbounded, then a fixed level of revenue is consistent with

arbitrarily large efficient surplus. However, this requires putting a lot of mass on extremely large

valuations, far from the efficient surplus. It is natural to ask how the extraction ratio behaves when

there are limits to how dispersed values can be. One way to accomplish this goal is to require that

values not be too much larger than S. This is formalized in Assumption 1:
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Distribution of v(1) when R=1 and γ=2

Figure 1: An example of the lower bound on F (1) for R = 1 and v = 2. The efficient surplus in this
case is approximately 2.68, and the extraction ratio is approximately 0.37.

Assumption 1 (Bounded support). The support of values is contained in [0, γS(T )]n for some

γ ≥ 1.

Let

T(γ) = {T | supp(φ∗π) ⊂ [0, γS(T )]n} ,

where φ∗π is the pushforward measure on values, i.e., the distribution on values induced by the

distribution π and the mapping φ. Under this assumption, γS and E can be substituted for v and

R
S , so that (10) becomes

E(1 + log(γ)− log(E)) = 1. (11)

This equation represents an accounting identity. When the highest value is drawn from (9), the

expected efficient surplus S must be equal to the Riemann-Stieltjes integral with respect to (9),

where γS is the upper limit of the integral. As shown in the proof of the following proposition, this

equation has a unique solution, denoted E∗(γ). We have the following:
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Proposition 1 (min extraction ratio for BSA). For any γ > 0, the worst-case extraction ratio for

the BSA under the truth-telling equilibrium when type spaces are restricted to T(γ) is the unique

E∗(γ) which solves (11). This extraction ratio is attained by type spaces of the form described in

Lemma 1, with the distribution of the highest value approaching (9).

This concludes the characterization of the worst-case extraction ratio for the BSA.

4.4 maxmin extraction ratio

In fact, for the worst-case type spaces, in which at most one bidder has a positive value, MBSA is

an optimal auction. On these type spaces, the seller’s problem is formally equivalent to the selling

of a single unit to a single buyer. It is well known that the optimal mechanism is a posted price,

and the reports of the losers allow the seller to set the optimal price (cf. Riley and Zeckhauser,

1983).

This implies that the lower bound of E∗(γ) is tight. In general,

sup
M

inf
T ∈T(γ)

E(M, T ) ≤ inf
T ∈T(γ)

sup
M

E(M, T ),

since any mechanism that the seller chooses when forced to move first could also be chosen when

moving second, and therefore guarantee at least as large of a payoff. For many problems, it turns

out that the inequality is in fact an equality, as in the minimax theorems of zero sum games. This

is not automatically the case here since the setup does not satisfy the regularity conditions of the

minimax theorems known to the author.5

However, a solution to the LHS is given by the seller using MBSA and Nature choosing a type

space satisfying the conditions of Lemma 1. Moreover, for the RHS, Nature could always use the

same type spaces, and the seller can do no better than with MBSA. Hence, the two sides are in

fact equal. This observation, combined with Proposition 1 gives us the following:

Theorem 1 (Partial max min extraction ratio). The solution to (4) restricted to T ∈ T(γ) is no

greater than E∗(γ). Hence, the BSA under the truth-telling equilibrium partially solves (4).

5Specifically, von Neumann’s minimax theorem only applies to finite domains, and Sion’s minimax theorem requires
the domains to be linear topological spaces. This structure is lacking on type spaces and mechanisms.
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4.5 Characterizing performance

The number E∗(γ) gives the max min extraction ratio that the seller is guaranteed by using the

BSA. But is this lower bound economically meaningful? It would be useful to know that the lower

bound guarantees the seller a substantial revenue-share of the efficient surplus. On the right panel of

Figure 2, E∗(γ) is plotted for values ranging from 1 to 50. The left hand panel gives E∗ for six values

of γ. We see that E∗(γ) is monotonically decreasing, quickly for small γ, with the rate of decrease

falling rapidly. For example, going from γ = 1.1 to γ = 2 entails a decreasing from E∗ = 0.67 to

E∗ = 0.37, whereas the difference between γ = 100 and γ = 1, 000 is only 3 percentage points. In

the latter case, the seller is guaranteed at least a 10% revenue-share of the efficient surplus. Even

for γ = 10, 000, 000, the seller is guaranteed approximately a 5% revenue-share.

The slow rate of decay of E∗(γ) can be formalized as follows. Asymptotically,

E∗(γ) = O

(
1

log(γ)

)
,

This follows from (11), since

1 = lim
γ→∞

1
E∗(γ) + log(E∗(γ))

1 + log(γ)

= lim
γ→∞

1
E∗(γ) + log(E∗(γ))

log(γ)

since the expression inside the limit is equal to 1 for all γ. It is easy to see that limγ→∞E
∗(γ) = 0,

since if it were bounded away from 0, the left hand side of (11) would blow up. Hence, by L’Hôpital’s

rule,

lim
γ→∞

1
E∗(γ)

1
E∗(γ) + log(E∗(γ))

= lim
γ→∞

1

1 + E∗(γ)
= 1

where the derivative exists because of the implicit function theorem. Since both limits exist, the
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γ E∗(γ)

1.1 0.6656
2 0.3734
10 0.2045
100 0.1309
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Maxmin extraction ratio as a function of γ

Figure 2: E∗(γ) for a range of values.

limit of the product is equal to the product of the limits, and

1 = lim
γ→∞

1
E∗(γ) + log(E∗(γ))

log(γ)

1
E∗(γ)

1
E∗(γ) + log(E∗(γ))

= lim
γ→∞

1
log(γ)

E∗(γ)

which proves the result. In sum, E∗(γ) goes to zero exponentially slower than the rate of growth of

γ, so even for very generous bounds on the dispersion in values, the seller will still be guaranteed

a substantial share of the efficient surplus.

Another potential concern is that the type spaces uses to achieve the lower bound are highly

stylized. Symmetry of the type space is not necessary, but what is necessary is the consequence

of the lopsided property, that there is a large gap between the average highest and second-highest

values. In some situations, this property could be quite natural. In the school construction example

from the introduction, it is possible that there is one dominant contractor that tends to have the

lowest cost, and this asymmetry is common knowledge among the firms. Nonetheless, in many

situations one would not expect to find such a large gap. Is the extraction ratio in the worst-case

radically different from extraction ratios in the kinds of environments that are more frequently

modeled?

Figure 3 gives examples of four different distributions over values in which the gap between

highest and second-highest values is modest. Each type space has a different efficient surplus and
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0 1
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1

Independent uniform
r*=0.50, E=0.625, E*(γ)=0.457

0 1
0

4

Independent with CDF v4

r*=0.67, E=0.827, E*(γ)=0.638

0 1
0

2.4576

Independent distributed B(2,5)
r*=0.24, E=0.590, E*(γ)=0.321

0

5

0

5
0

0.095

Truncated bivariate normal
r*=2.08, E=0.714, E*(γ)=0.367

Figure 3: Examples of the extraction ratio on particular type spaces in T(γ) versus E∗(γ). For the
first three frames, values are i.i.d. and drawn from the depicted PDF. In the fourth frame, values
are correlated and drawn from the depicted joint PDF. In each case, E∗ is on the same order of
magnitude as the actual extraction ratio that would obtain with the second-price auction with an
optimal anonymous reserve.

consequently different γ = v
S . For example, in the first panel values are independent and uniformly

distributed on [0, 1]. With two bidders, the efficient surplus is 0.67, so γ = 1.5. For each of these

type spaces, the extraction ratio the seller obtains with a second-price auction and the optimally

chosen anonymous reserve price is compared to the lower bound guaranteed by the BSA for the

same γ. In the uniform example, the seller could set the optimal reserve of 0.5 and obtain the

optimal extraction ratio of 0.625. In contrast, E∗(1.5) = 0.4569. The point of these examples is

that although the worst-case type spaces are stylized, the lower bound is not orders of magnitude

different from the extraction ratio on “typical” examples with similar γ.

In fact, there are classes of environments, namely symmetric payoff type spaces with regular

and independent distributions, in which the BSA will implement the optimal auction. The reason

is simply that each bidder will report the independent distribution from which other bidders’ values
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are drawn, and the seller will set the winner’s price equal to the maximum of the second-highest

bid and the optimal reserve price, which is where the virtual valuation is zero. More generally, in

any type space the BSA has to generate at least as much revenue as a second-price auction with an

optimal uniform reserve price. The seller’s pricing problem in the BSA is broken up into a bunch

of conditional pricing problems. For each of these problems, it is always feasible for the seller to

set the price equal to max
{
r∗, b(2)

}
, where r∗ is an anonymous reserve price. Hence, the optimal

pricing rule for each of these problems must generate weakly more revenue than the fixed reserve

rule. We have the following:

Proposition 2 (Comparison with second-price auction). Expected revenue in the BSA when the

seller does not know the prior is weakly greater than expected revenue of the second-price auction

when the seller knows the prior and sets the optimal anonymous reserve price. If the distribution

of values is independent, symmetric, and regular, then the BSA is an optimal auction.

The bottom line is that the BSA guarantees the seller a relevant lower bound on the worst-

case extraction ratio, and also does not greatly disadvantage the seller away from the worst-case.

Revenue is always weakly better than in the second-price auction with anonymous reserve, which is

probably the most widely used auction format in the world and is known to be an optimal auction

in benchmark environments.

4.6 Equilibrium uniqueness

In this section, I extend the partial max min result of Theorem 1 to full max min. This is facilitated

by simple perturbations of MBSA that make the truth-telling equilibrium unique. Specifically, I

will construct a mechanism Mε for every ε > 0 with the message space MBSA. This mechanism

implements the same allocation and transfers asMBSA with probability 1− ε, but is perturbed in

such a way that truth-telling is the unique strategy profile that survives iterated deletion of strictly

dominated strategies. In particular, the message space is M ε = MBSA, and the allocation and

payoff rules are

qε(m) = (1− ε)qBSA(m) + εq1(m),

pε(m) = (1− ε)pBSA(m) + εp1(m) + εp2(m),

29



where q1, p1, and p2 will be defined presently.

Truthful bidding is a weakly dominant strategy of MBSA. The functions q1 and p1 make it

strictly dominant, by adding a small probability event that each bidder is selected to be offered

the good at a price drawn from a distribution G(r) with positive density g(r) and support equal to

R+. Specifically, define

q1
i (m) =

1

n

∫ bi

r=0
g(r)dr,

p1
i (m) =

1

n

∫ bi

r=0
r g(r)dr.

Since p2 will not depend on bi at all, bi = vi is uniquely optimal. This trick is similar to that used

by Bergemann and Morris (2012a).

The second new component of the transfer p2 is a modified scoring rule that rewards bidders

for correctly guessing the distribution of
(
b
(1,2)
−i , |W (b−i)|

)
. I say a modified scoring rule, as the

transfer is weighted it so that the seller never has to pay too much in expectation to incentivize

bidders to report their beliefs. In particular,

p2
i (m) =

1

n

 ∑
v−i∈Rn−1

+

v
(1)
−i

(
µ
(
v

(1,2)
−i , |W (v−i)|

))2

2
− b(1)
−iµi

(
b
(1,2)
−i , |W (b−i)|

) .

Since bidders report b−i = v−i in equilibrium, by reporting µi, bidder i’s expected payoff is

E[p2
i (m)|ti] =

1

n

∑
v−i∈Rn−1

+

v
(1)
−i


(
µ
(
v

(1,2)
−i , |W (v−i)|

))2

2
− π

(
v

(1,2)
−i , |W (v−i)|

∣∣∣ ti)µi (v(1,2)
−i , |W (v−i)|

) ,

so the first-order condition implies (as long as v
(1)
−i > 0) that the type ti reports

µi

(
v

(1,2)
−i , k

)
= π

(
v

(1,2)
−i ,

∣∣∣ ti) ,
for all v

(1,2)
−i and k. There is a unique v−i such that v

(1)
−i = 0. Since bidders must report a distribution,

they report the probability of this event accurately as well. Thus, Mε has a truth-telling as the

unique equilibrium for all T .
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Finally, observe that in equilibrium, it must be that

E[p2
i (m)] = − 1

n

∑
ti

πi(ti)
∑

v−i∈Rn−1
+

v
(1)
−i

(
π
(
v

(1,2)
−i , |W (v−i)|

∣∣∣ ti))2

2

≤ − 1

n

∑
t

φ
(1)
−i (t)π(t)

≤ − 1

n

∑
t

φ(1)(t)π(t)

= − 1

n
S(T ).

On average, the seller makes such a transfer for each of the n bidders, at a total cost of at most

−S(T ). Since E[p1(m)] ≥ 0, it will be true that

E(Mε, T ) ≥ E(MBSA, T )− 2ε.

The results of Proposition 1 and Theorem 1, together with the fact thatMε has a unique equilibrium

that always has an extraction ratio within 2ε of the truth-telling equilibrium of MBSA imply the

following theorem:

Theorem 2 (Full max min extraction ratio). E∗(γ) is the solution to (4), and the mechanismsMε

guarantee the seller an extraction ratio that is at least E∗(γ)− 2ε.

4.7 Conditional preferences

The max min extraction ratio criterion implicitly assumes that the seller compares expected rev-

enues for different type spaces not one-for-one, but relative to the expected efficient surplus. I

regard this as reasonable if the seller uses the expected efficient surplus as the target for revenue.

However, the manner in which the seller compares revenue on type spaces with different surpluses

is not essential to my results.

In this Section, I consider a much weaker preference in which the seller does not compare

outcomes across different levels of the efficient surplus. Define

T(S, γ) =
{
T
∣∣∣ S(T )=S
supp(φ∗π)⊆[0,γS]n

}
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Consider the incomplete preference over mechanisms, where mechanism M is weakly preferred to

mechanism M′ (denoted M�M′) if for every (S, γ),

inf
T ∈T(S,γ)

inf
σ∈BNE(M,T )

R(M, T , σ) ≥ inf
T ∈T(S,γ)

inf
σ∈BNE(M′,T )

R(M′, T , σ) (12)

This preference is a partial ordering, since two mechanisms M and M′ are incomparable if (12)

holds for one (S, γ), but not for (S′, γ′). However, M �M ′ indicates a strong notion of dominance

in that for every efficient surplus,M performs better in terms of worst-case revenue. A mechanism

is maximal in the ordering � if it solves

sup
M

inf
T ∈T(S,γ)

inf
σ∈BNE(M,T )

R(M, T , σ) (13)

for every (S, γ). Denote the solution to this problem by R∗(S, γ). My next result is that the

mechanisms Mε are virtually maximal according to �:

Proposition 3. The solution to (13) is R∗(S, γ) = E∗(γ)S. For every (S, γ),

inf
T ∈T(S,γ)

inf
σ∈BNE(Mε,T )

R(Mε, T , σ) ≥ (E∗(γ)− 2ε)S.

The proof is quite straightforward.

Proof. For the first part, clearly it cannot be that R∗(S, γ) < E∗(γ)S, since this implies that

sup
M

inf
T

inf
σ∈BNE(M,T )

R(M, T , σ)

S
≤ sup
M

inf
T ∈T(S,γ)

inf
σ∈BNE(M,T )

R(M, T , σ)

S
< E∗(γ).

Moreover, if R∗(S, γ) > E∗(γ)S for some (S, γ), then it would have to be strictly larger for every

(S, γ), since every type space T = (T, φ, π) ∈ T(γ) with strictly positive S(T ) can be mapped

to some T ′ = (T ′, φ′, π′) ∈ T(S, γ) by defining T ′ = T , π′ = π, and φ′(t) = φ(t) S
S(T ) . Hence, if

R∗(S, γ) > (E∗(γ) + ε)S for some S, then R∗(S,γ)
S > E∗(γ) for all S, a contradiction.

The second part follows almost directly, since the extraction ratio is invariant to scaling of

valuations as in the previous paragraph. As Mε achieves E∗(γ) − 2ε for some value of S, it must

achieve the same extraction ratio for all S, and therefore revenue is at least (E∗(γ)− 2ε)S.
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In sum, it does not matter how the seller compares revenue across environments in which the

expected social value of the good is different. As long as the seller has max min preferences over

revenue for a fixed expected efficient surplus, the BSA is an optimal auction.

5 Discussion

5.1 Belief extraction

This paper has been focused on the selection of a mechanism by a seller who evaluates mechanisms

by their worst-case extraction ratio. Under such preferences, the seller is tolerant of suboptimal

extraction ratios on particular type spaces, as long as this ratio is greater than the worst-case. The

BSA can result in such suboptimal extraction ratios, since it collects rather limited information

about the environment and therefore will not maximize revenue on most type spaces. In particular,

the seller only asks each bidder to estimate the distribution of the top two order statistics of other

bidders’ values, and the number of ties. In principle, the seller could have collected information

more ambitiously. Is there a limit to how much the seller could learn, by asking the bidders more

complicated questions? Could the seller, for example, collect enough information and in such a way

that a revenue maximizing auction is always implemented?

This question is related to a folk argument that has existed in the mechanism design literature:

If a common prior is known to the agents, but not to the designer, then the prior could be extracted

by the designer for free (Bergemann and Morris, 2012a). By “free”, I mean that having to incen-

tivize truthful revelation of the prior does not restrict the class of social choice functions that can

be implemented, according to any solution concept. There is an obvious partial implementation

solution to this problem: Ask all of the agents to simultaneously announce the prior, and if they

disagree, punish all of the agents severely. Of course, this is not entirely satisfactory because this

mechanism would also enforce coordinated misreporting of the prior, which is counter to the full

implementation philosophy of the present work.

However, in a related paper, Brooks (2013a) provides a stronger resolution of the folk argument.

In general, it is possible for the seller to extract agents’ beliefs in such a way that the common prior is

revealed to the seller in every equilibrium. A caveat is that the general mechanism accomplishing

this goal is quite complicated, and requires the seller to elicit each agent’s infinite hierarchy of
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beliefs. Infinite iterated deletion of strictly dominated strategies forces the agents to report their

hierarchy truthfully in any equilibrium. Nonetheless, if such complex mechanisms are permitted,

then it is possible for the seller to implement a revenue-maximizing mechanism for every realized

type space, as long as the common prior is known to the agents.

The folk argument is also related to the works of Neeman (2003) and Azar et al. (2012). If the

seller can extract the prior for free, then it is possible to implement any mechanism, including the

second-price auction with an optimally chosen anonymous reserve price or the optimal dominant

strategy and ex-post individually rational mechanism. The distinct contribution of this paper is

to show that for a particular criterion, i.e., max min extraction ratio, the seller need not use such

an elaborate mechanism. It is sufficient for the seller to extract simple statistics, and use these

statistics to guard against the downside risk associated with a large gap between the highest and

second-highest values, as in lopsided type spaces.

5.2 Simpler mechanisms

The previous section discussed more complicated mechanisms that the seller could use to achieve

optimal performance in a wider range of environments. But what about the other direction: Are

there classes of environments in which the BSA can be further simplified, without greatly compro-

mising performance?

There are at least two dimensions along which the BSA can be easily simplified. First, because

of the selection effect induced by ties, the BSA needs to extract bidders beliefs about the number

of bidders who will make high bids. Ties would not occur with positive probability if valuations

were drawn from a non-atomic distribution, or if the finite supports of values were non-overlapping.

Furthermore, ties do not occur with positive probability in the worst-case type spaces for extraction

ratios. If attention is restricted to type spaces in which ties occur with zero probability, then clearly

the seller can get away with just extracting bidders beliefs about b
(1,2)
−i . Second, extracting beliefs

about b
(2)
−i is necessary to make sure that the BSA does as well as the second-price auction. If the

seller is purely concerned with max min extraction ratio, then the seller could extract beliefs about

the just highest bid of others, and set an optimal reserve price conditional on b(1) = b
(1)
−j ≥ bj . The

same analogy with third-degree price discrimination applies, and the seller must obtain at least as

much revenue as if the seller sold the good to the high bidder at the optimal monopoly price with
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respect to F (1).

Perhaps the most natural method of aligning the incentives of the seller and buyers would be to

give buyers a direct stake in the revenue generated by their reports. The seller could for example

share a small portion of revenue with bidder j whenever a sale is made with a price based on bidder

j’s report. However, this creates complicated incentives to influence the allocation of the good: For

example, in the BSA, the marginal event affected by bidding bi = vi is when the bidder is allocated

the good at a price equal to vi. In this case, the marginal surplus from being allocated the good is

zero. The bidder may have an incentive to “throw” the auction at such marginal events, so as to

instead obtain a positive share of revenue from selling to others at price vi. Brooks (2013b) studies

auctions of this form, and shows that in reasonably structured environments, an equilibrium exists

in which the bidding strategy equates the marginal surplus from the allocation and the marginal

surplus from sharing in revenue.

Finally, the BSA sets a price using the interim beliefs of a single losing bidder, combined

with the relatively sparse information of the second-highest bid amongst all other bidders. It

is natural to ask if there is a straightforward way to aggregate all of the losers’ information, so

that the seller sets an optimal price for the winning bidder i conditional on t−i. This could

easily be accomplished by having bidders report their entire hierarchy of beliefs as described above.

Unfortunately, there is not an obvious simpler solution. One possibility would be to allow the losing

bidders to “converse” about the optimal price, by iteratively reporting their conditional beliefs

about the winner’s value. Arguments in the vein of Geanakoplos and Polemarchakis (1982) would

show that if such communication was allowed over multiple rounds, the bidders would eventually

agree on a posterior. However, this posterior need not coincide with the true posterior conditional

on t−i. Moreover, if only losing bidders can have this conversation and receive the rewards that

incentivize truth-telling, then these rents could create an incentive for bidders to throw the auction.

Even so, such mechanisms are a promising direction for future research.

5.3 Common values

The assumption of private values is more appropriate in some settings than others. In the moti-

vating example of a school construction project, it is reasonable to suppose there are private value

components to firms’ costs, such as prior commitments, worker abilities, etc. However, the firms
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might also have a common value in the idiosyncrasies of the project, such as the suitability of the

land on which the school is to be built. Auction design with interdependent values can be chal-

lenging due to the buyers updating their preferences upon winning the auction. I briefly sketch the

scope for generalizing my results to this broader setting. I have concluded that given reasonable

assumptions on the interdependence, the same max min extraction ratio obtains even if Nature is

allowed to choose type spaces with interdependent preferences, although a much more complicated

mechanism is required than the BSA.

As in much of the literature, I distinguish between “information” types ti and “payoff” types

θi ∈ Θi. A buyer’s valuation is a function φi(θ) of the profile of payoff types but does not depend on

t. Thus, the definition of a type space is expanded to T = (Θ, T, π, φ). With interdependent values,

the seller needs to elicit not just bidders’ beliefs about θ, but also the form of the interdependence,

i.e., φ(θ).

Let us suppose for the moment that the seller knows Θ and φ. Many of the positive results in

the literature require the assumption that Θi is one-dimensional, and that φi(θ) is monotonically

increasing.6 This assumption, combined with a single-crossing property on φ, is sufficient for the

existence of an efficient equilibrium of the English auction (Dasgupta and Maskin, 2000; Maskin,

1992; Krishna, 2003; Birulin and Izmalkov, 2011). Starting from this efficient equilibrium, the

seller can partially implement a mechanism similar to the BSA, where bidders report θi and beliefs

about θ−i. These reported beliefs can be used to find the reserve price for when bidder i wins that

maximizes

r Pr
({

θ̃i

∣∣∣φi (θ̃i, θ−i) ≥ r}∣∣∣ θ−i, t−i)

The seller only sells the good to bidder i at this price if the realized value conditional on θ is at

least r. Since the seller optimally accepts this price on behalf of the winning bidder, and the price

does not depend on bidder i’s report, truthful reporting is still an equilibrium. I will call this the

interdependent belief survey auction (IBSA).

Under this mechanism, the efficient surplus and revenue with an interdependent value type

space T = (Θ, T, v, π) are the same as under the BSA with a particular private value type space

6For multi-dimensional Θi, existence of mechanisms with efficient equilibria becomes problematic. See Jehiel and
Moldovanu (2001).
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T ′ = (T ′, φ′, π′). Intuitively, I would like to find a private value type space which has the same

distribution of the winner’s value conditional on losers’ information. The bidders cannot simply

be told their ex-post values are, since they will reveal this to the seller, who might then be able

to identify the winner’s value from losers’ reported values. However, a buyer can be told his value

φi(θ) on events where he wins, while losing bidders observe θi but receive private values values of

zero. Under such a private value type space, losers’ beliefs about the winner’s value are the same

as under T , and the distribution of the highest value is the same. This discussion implies that

the IBSA achieves the same extraction ratio with T as the BSA achieves on the private value type

space T ′. Hence, when minimizing the extraction ratio for this richer mechanism, it is sufficient to

look at private value type spaces, and therefore the same lower bound E∗(γ) obtains.

Finally, I return to the issue of extracting the form of the interdependence. The seller needs

a general “detail-free” language in which to have the buyers communicate what they know. The

preference hierarchies of Bergemann et al. (2011) are just such a language, in which bidders report

a sequence of state-dependent preferences over Anscombe-Aumann acts. At the first level, the

preference is over a state space with a single element corresponding to (θi, ti). This preference

is the player’s willingness to pay for the good unconditional on other buyers’ information. The

second-order preference is over acts that depend on the first-order preferences of other buyers, and

so on. At each level, types are separated by their preferences conditional on what others have

revealed about their types, and these separated types can then be used to separate more types,

in a manner analogous to Abreu and Matsushima (1992). It turns out that bidders can be given

strict incentives to truthfully reveal their interdependent preferences in this language, using the

techniques of Subsection 4.6, and these reports can be used as an input to construct the IBSA. It

is important to note that the seller can only provide strict incentives to recover a coarsened state

space which corresponds to the distinguishable types of Bergemann et al. (2011, 2012).

5.4 The role of the common prior

I have assumed throughout that the buyers’ beliefs are derived from a common prior. A natural

question to ask is whether or not my results can be extended to environments in which beliefs do

not satisfy this restriction. The meaning of the common prior has been debated and critiqued in

the literature (see Aumann, 1987; Morris, 1995; Gul, 1998). There are two possible interpretations:
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One is that there is some ex-ante stage before private information is realized, at which point there

is common knowledge of the distribution over future private information. With such a temporal

structure, the consistency of interim beliefs with a common prior is a consequence of ex-ante

common knowledge. In the other interpretation, there is no ex-ante stage, but rather the common

prior is a restriction on agents’ higher-order beliefs (see Samet (1998) for a characterization of the

common prior in terms of interim beliefs).

In my model, even if there is an ex-ante stage, the seller only interacts with the potential

buyers after private information is realized. Hence, anything the seller learns about the prior must

be obtained through the buyers’ interim beliefs. The most natural interpretation is that there is

some physical process which generates signals that the buyers see, and this process is know to the

buyers but not the seller. As such, all of the bidders’ interim beliefs about the profile of valuations

are distributed around the average belief generated by this signal structure.

The prior distribution provides is a neutral perspective from which the seller can calculate

expected revenue and efficient surplus. Also, since the buyers’ reported beliefs will average to the

prior, their interim reports give the seller access to a “segmentation” of the prior distribution of

the highest valuation. Without a common prior, it would still be possible to elicit interim beliefs

from the agents, but these reports would require a more complex interpretation to be useful to the

seller. Thus, there is no immediate generalization of my result to non-common prior type spaces.

However, as discussed by Azar et al. (2012), the result does not require each agent’s entire hierarchy

of beliefs to be consistent with a common prior. A similar result would obtain as long as the agents’

first-order beliefs average to the same prior over values, and the seller uses this prior to calculate

expected revenue and the expected efficient surplus.

6 Conclusion

This paper has considered the mechanism design problem faced by an uninformed seller, who

believes that agents are well-informed. The seller uses mechanisms that survey bidders’ beliefs in

addition to their private values. This information is used to optimize the prices offered to winning

bidders. Such mechanisms achieve an optimal lower bound on the share of the efficient surplus that

the seller can extract as revenue, and also perform well away from the worst-case.
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In practice, auctions are much more complicated than the stylized models studied by economists.

For example, in the case of auctions for government contracts or natural resources, the auction de-

signers conduct extensive research into demand, and surely engage in informal discussion with

potential buyers about the pros and cons of different formats. This paper has characterized par-

ticular ways in which the seller can elicit useful information from the buyers without distorting

incentives to bid truthfully. But there is a more general message to be gleaned: If the seller has

sufficient commitment power with regard to how information will be used, then it is indeed possible

to have these informal discussions without allowing for adverse manipulation of the auction format.
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A Proofs

Proof of Lemma 1. Fix a type space T . I will show that there exists a payoff type space T̂ such

that S(T ) = S(T̂ ) and R(T ) ≥ R(T̂ ). To that end, define Rj(tj) to be the revenue generated when

bidder j is consulted. Since bidders report truthfully, this is

Rj(tj) =
1

n− 1

∑
v
(2)
−j

max
r
r

∑
v
(1)
−j≥r,k

k

I
φj(tj)=v

(1)
−j

+ k
π
(
v

(1,2)
−j , k

∣∣∣ tj) ,

where

π
(
v

(1,2)
−j , k

∣∣∣ tj) =
∑

{
t−j∈T−j

∣∣∣∣∣φ(1,2)−j (t−j)=v
(1,2)
−j ,

|W (v−j)|=k

}π (t−j |tj) .

Consider the payoff type space in which T̂ = φ(T ), φ̂i(ti) = ti, and π̂(t) =
∑

t′∈φ−1(t) π(t′). The

type space T̂ =
(
T̂ , π̂, φ̂

)
. Since the marginal distribution over values is the same between the two

type spaces, clearly the same efficient surplus obtains. Also, the revenue generated by consulting

bidder j when φj(tj) = vj is

∑
tj∈φ−1

j (vj)

πj(tj)Rj(tj) =
∑

tj∈φ−1
j (vj)

πj(tj)

n− 1

∑
v
(2)
−j

max
r
r
∑
v
(1)
−j ,k

k

I
φj(tj)=v

(1)
−j

+ k
π
(
v

(1,2)
−j , k

∣∣∣ tj)

≥ 1

n− 1

∑
v
(2)
−j

max
r
r
∑
v
(1)
−j ,k

k

I
φj(tj)=v

(1)
−j

+ k

∑
tj∈φ−1

j (vj)

πj(tj)π
(
v

(1,2)
−j , k

∣∣∣ tj)

=
1

n− 1

∑
v
(2)
−j

max
r
r
∑
v
(1)
−j ,k

k

I
φj(tj)=v

(1)
−j

+ k
π̂(v−j |vj)

= R̂j(vj).

Thus, it is without loss of generality to consider payoff type spaces.

Symmetry follows. For a payoff type space T can always be made symmetric by uniformly

randomizing over the n! permutations ξ : N → N of the players’ identities. Let the set of such
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permutations be denoted Ξ. Players types are T̂i = Ξ× ∪i∈N Ti, φ̂i(ξi, vi) = vi, and

π̂(ξ, v) =

 0 if ξi 6= ξj for some i and j

1
n!π(vξ) otherwise

,

where vξξ(i) = vi. Clearly, revenue and the efficient surplus are the same under the type space T̂ ,

but if the new types ξi are integrated out, S stays the same and R weakly decreases, and we are

left with the symmetric and payoff type space T̃ which has the distribution over values

π̃(v) =
1

n!

∑
ξ∈Ξ

π(vξ),

types T̃ = ∪i∈NTi and φ̃i(vi) = vi.

Finally, a similar argument shows that revenue can always be lowered by giving every bidder

except the winner have a value of v. Starting with a symmetric and payoff type space T , define T̂

that has the same support for values Ti, but distribution

π̂(v) =


f(x) if Vi = x, vj = v∀j 6= i

π(v) if vi = v ∀i

0 otherwise

,

where

f(x) =
∑

{ṽ|vi=ṽ(1)=x}

π(v)

|W (v)|
,

which is independent of i by symmetry.

I verify that T and T̂ have the same efficient surplus by checking that the probability that
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v(1) = x is the same for both type spaces:

∑
{v|v(1)=x}

π(v) =
∑

{v|v(1)=x}

∑
i

Ivi=x
π(v)

|W (v)|

=
∑
i

∑
{v|vi=v(1)=x}

π(v)

|W (v)|

=
∑
i

∑
{v|vi=x,vj=v ∀j 6=i}

π̂(v)

=
∑

{v|v(1)=x}
π̂(v).

Revenue revenue is lower, as

∑
vj

πj(vj)Rj(vj) =
∑
vj

∑
y

max
r≥0

r
∑

x≥max{vj ,r}

∑
{
ṽ
∣∣∣ṽj=vj ,ṽ(1,2)−j =(x,y)

}
|W (ṽ)| − Iṽj=x
|W (ṽ)|

π(ṽ)

≥ max
r≥0

r
∑
vj

∑
y

∑
x≥max{vj ,r}

∑
{
ṽ
∣∣∣ṽj=vj ,ṽ(1,2)−j =(x,y)

}
|W (ṽ)| − Ivj=x
|W (ṽ)|

π(ṽ)

= max
r≥0

r
∑

x≥max r

∑
{ṽ|ṽ(1)=x}

|W (ṽ)| − Iṽj=x
|W (ṽ)|

π(ṽ)

= max
r≥0

r
∑
x≥r

|W (ṽ)| − Iṽj=x
|W (ṽ)|

f(x)

= max
r≥0

r
∑

{ṽ|ṽj=v,v(1)≥r}
π̂(ṽ) = R̂j .

Proof of Proposition 1. It is clear that symmetric payoff type spaces in which at most one bidder

has a positive value are defined by the distribution of the highest value F (1). Moreover, for a given

R, it must be that (9) is a lower bound on the distribution. Thus, it must be that

S(T ) =

∫ γS(T )

v=0
v dF (1)(v)

≥ R(1 + log(γ) + log(S(T ))− log(R)),
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and therefore

1 ≥ E(MBSA, T )(1 + log(γ)− log(E(MBSA, T )))

for any T . Now let us consider the quantity

h(x) = 1− x(1 + log(γ)− log(x)).

It is straightforward to derive

h′(x) = −(1 + log(γ)− log(x)) + 1 = log(x)− log(γ) < 0,

since x ∈ [0, 1] and γ > 1, and h is strictly decreasing. Also,

lim
x→0

h(x) = 1− lim
x→0

1 + log(γ)− log(x)

x−1

= 1− lim
x→0

−x−1

−x−2
= 1

via L’Hôpital’s rule and h(1) = 1− (1 + log(γ)) = − log(γ) < 0. Thus, there exists a unique point

x∗ at which h(x∗) = 0, and h(x) > 0 iff x < x∗. This implies that E(MBSA, T ) ≥ E∗(γ) for every

γ > 1.

All that remains to be seen is that there is a sequence of type spaces T k such that E(MBSA, T k)→

E∗(γ). We are careful to make sure each T k has support in [0, γS(T k)]. Take Sk any sequence

converging to R
E∗(γ) , and V k = {v0, . . . , vmk} is the support of T k with vl = l

mk
γSk. We use the

CDF of the highest value F
(1)
k defined by F

(1)
k (v) = F (1)(vl+1) for all v ∈ [vl, vl+1) with F (1) as in

(9). For each k, as mk →∞,

∫ γSk

v=0
v dF

(1)
k (v)→mk→∞ R(1 + log(γ) + log(Sk)− log(R)) > Sk,

since h
(
R
Sk

)
< 0. Thus, mk can be taken large enough so that S(T k) > Sk, and therefore satisfies

Assumption 1. Moreover, S(T k) ≤ R
E∗(γ) by the argument of the previous paragraph, so S(T k)→

R
E∗(γ) by the squeeze theorem.
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Proof of Theorem 1. I show that for the sequence T k constructed in the proof of Proposition 1,

the supremum of E(M, T k, σ) over all M and σ converges to E∗(γ). Since the supremum over

σ is weakly greater than the infimum over σ, this will prove the lemma. The rest of the proof is

standard, and follows Myerson (1981) or Börgers (2013).

Since the designer is allowed to pick σ, it is sufficient to look at direct revelation mechanisms

where M = T . We can divide profiles of valuations into those in which bidder i has a positive value,

and all other bidders have a zero valuation. Let qi(v) and pi(v) be bidder i’s allocation and transfer

if i has a positive value v, and other bidders have zero values. Let qi
j
(v) and pi

j
(v) be bidder j’s

allocation and transfer when j has a zero value, and bidder i has a positive value v. If v > v′, then

it must be

v qi(v)− pi(v) ≥ v qi(v′)− pi(v′)

v′ qi(v
′)− pi(v′) ≥ v′qi(v)− pi(v)

=⇒ v(qi(v)− qi(v′)) ≥ pi(v)− pi(v′) ≥ v′(qi(v)− qi(v′)),

so qi(v) ≥ qi(v′), and the allocation must be weakly increasing. Moreover, it must be that

ui(v)− ui(v′) = v qi(v)− pi(v)− v′ qi(v′) + pi(v
′)

≥ v qi(v′)− pi(v′)− v′ qi(v′) + pi(v
′)

= (v − v′)qi(v′),

and thus, if the support of values is indexed by {v0 = 0, . . . , vL = v}, then

ui(v
l) ≥ ui(0) +

l−1∑
m=0

(vm+1 − vm)qi(v
m),

and thus

pi(v
l) = vl qi(v

l)− ui(vl)

≤ vl qi(vl)− ui(0)−
l−1∑
m=0

(vm+1 − vm)qi(v
m).
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Finally, individual rationality tells us that ui(0) ≥ 0.

Also, since the utility of the low type is always 0qi
j
(v) − pj

i
(v) = −pj

i
(v), which must be non-

negative to satisfy individual rationality, it follows that pj
i
(v) ≤ 0. It is never beneficial for the

seller to allocate the good to a bidder with valuation zero, since they will never pay a positive

amount. The seller might as well leave the good unallocated.

Hence, an upper bound on the seller’s revenue is

∑
i∈N

L∑
l=0

pi(v
l)πi(v

l),

which is a linear function of the qi(v
l), as shown above. The set of weakly increasing qi(v

l) is a convex

set and its extreme points are those functions for which qi(v
l) ∈ {0, 1}. These are precisely the

allocations that are implemented by posted price rules, where there are bidder specific reservation

prices r∗i . But since each bidder’s valuation has distribution proportional to F
(1)
k when positive,

an optimal reserve price is by construction r∗i = R. At this price, revenue is exactly R, since the

bidder with the high value always buys. This proves the result.

Proof of Proposition 2. The seller would achieve the same revenue as in a second-price auction with

anonymous reserve r∗ if the price set for winning bidders is max{r∗, b(2)}. Observe,

Rj(tj) =
1

n− 1

∑
v
(2)
−j

max
r
r

∑
v
(1)
−j≥r,k

k

I
φj(tj)=v

(1)
−j

+ k
π
(
v

(1,2)
−j , k

∣∣∣ tj)

≥ 1

n− 1

∑
v
(2)
−j

max
{
r∗, vj , v

(2)
−j

} ∑
v
(1)
−j≥max

{
r∗,vj ,v

(2)
−j

}
,k

k

I
φj(tj)=v

(1)
−j

+ k
π
(
v

(1,2)
−j , k

∣∣∣ tj)

=
1

n− 1

∑
{
t−j

∣∣∣φ(1)−j (t−j)≥max{φj(tj),r∗}
}max

{
r∗, φ(2)(t)

} |W (φ(t))| − Iφj(tj)=φ(1)(t)
|W (φ(t))|

π(t−j |tj).
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Hence, the total revenue from the auction satisfies

∑
j

∑
tj∈Tj

πj(tj)Rj(tj)

≥
∑

j,tj∈Tj

πj(tj)

n− 1

∑
{
t−j

∣∣∣φ(1)−j (t−j)≥max{r∗,φj(tj)}
}max

{
r∗, φ(2)(t)

} |W (φ(t))| − Iφj(tj)=φ(1)(t)
|W (φ(t))|

π(t−j |tj)

=
1

n− 1

∑
j

∑
{t∈T |φ(1)(t)≥r∗ }

max
{
r∗, φ(2)(t)

} |W (φ(t))| − Iφj(tj)=φ(1)(t)
|W (φ(t))|

π(t)

=
1

n− 1

∑
{t∈T |φ(1)(t)≥r∗ }

max
{
r∗, φ(2)(t)

}
π(t)

∑
j

|W (φ(t))| − Iφj(tj)=φ(1)(t)
|W (φ(t))|

=
∑

{t∈T |φ(1)(t)≥r∗ }
max

{
r∗, φ(2)(t)

}
π(t),

since

|W (φ(t))| − Iφj(tj)=φ(1)(t)
|W (φ(t))|

π(t−j |tj)

is zero if φj(tj) > φ
(1)
−j (t−j) and also

∑
j

|W (φ(t))| − Iφj(tj)=φ(1)(t)
|W (φ(t))|

= n− 1.

Since
∑
{t∈T |φ(1)(t)≥r∗ }max

{
r∗, φ(2)(t)

}
π(t) is revenue under a second-price auction with the

anonymous reserve r∗, this proves the result.
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Table 1: Notation.

Symbol Page Meaning

∆(X) 10 Set of distributions on a measurable space X with finite sup-
port.

x(1), x(2), x(1,2) 10 The highest, second-highest, and vector of highest and
second-highest values of the vector x.

W (x) 19 The set of indices i such that xi = x(1).

Ti, T 11 Set of types.

φi : Ti → R 11 Mapping from type to private value.

π ∈ ∆(T ) 11 Prior distribution over types.

T = (T, π, φ) 11 Type space.

v, v 11 Smallest and largest values in the support.

Mi, M 11 Set of messages

q : M → Rn, p : M → Rn 11 Allocation and transfer rules (net to seller).

M = (M, q, p) 11 Mechanism.

BNE(M, T ) 12 Bayes Nash equilibria with mechanismM and type space T .

S(T ) 11 Efficient surplus.

R(M, T , σ) 12 Revenue.

E(M, T , σ) 12 Extraction ratio.

MBSA 19 The belief survey auction (BSA).

rj

(
mj , b

(2)
−j

)
21 Reserve price when bidder j is consulted.

Gj

(
·;mj , b

(2)
−j

)
21 Upper cumulative distribution of winner’s value when bidder

j is consulted.

γ 23 Bound on the ratio between values and the efficient surplus.

E∗(γ) 25 max min extraction ratio for the parameter γ.

Mε 29 The perturbed BSA.
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