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Abstract

A single unit of a good is sold to a group of bidders. The seller knows the
expectation of each bidder’s value and a bound on the support of values, but the
seller does not know the correlation structure or bidders’ (common prior) beliefs. We
construct a strong maxmin solution (Brooks and Du, 2020), consisting of

• a maxmin mechanism that maximizes minimum profit across all correlation and
information structures and all equilibria, and

• a minmax correlation and information structure that minimizes maximum profit
across all mechanisms and equilibria.

The maxmin mechanism has the feature that bidders with relatively low expected val-
ues are excluded from the auction, while bidders with high expected values participate
in a “proportional auction”: Bidders submit non-negative real numbers, interpreted
as the share of the good demanded by each bidder. The seller fills the demands if
possible, and otherwise the good is rationed proportional to the bids. We describe
a class of transfer rules that, together with the proportional allocation, complete a
maxmin mechanism. This class of auctions generalizes those described by Brooks and
Du (2020).
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1 Introduction

This paper studies the design of profit-maximizing mechanisms for the sale of goods when
there is ambiguity about both the distribution of bidders’ values and bidders’ higher order
beliefs. Specifically, we consider a setting where there is a fixed set of bidders for a single
unit of a good. The seller of the good designs the auction to maximize profit. The bidders’
values and higher-order beliefs about values are described by a common-prior information
structure. The seller does not know the information structure. Rather, all the seller knows
is the expectation of each bidder’s value and that there is a common upper bound on
bidders’ values.

For this environment, we characterize a set of strong maxmin solutions (Brooks and Du,
2020a). Each strong maxmin solution is a triple of a mechanism, an information structure,
and a strategy profile for the bidders, such that: the strategies are an equilibrium for the
mechanism and information structure; for this information structure, the mechanism and
equilibrium maximize profit among all mechanisms and equilibria; and for this mechanism,
the information structure and equilibrium minimize profit among all information structures
and equilibria, where the information structure satisfies the aforementioned bounds on
values and the known expected value for each bidder. Thus, the first and second components
of the strong maxmin solution are a “max-min” mechanism and a “min-max” information
structure: the mechanism maximizes minimum profit across all mechanisms and equilibria,
subject to the constraint on the mechanism that an equilibrium exists at the min-max
information. Similarly, the information structure minimizes maximum profit across all
mechanisms and equilibria, subject to constraint on the information structure that an
equilibrium exists at the max-min mechanism. We refer the profit at the equilibrium in the
strong maxmin solution as the profit guarantee.1

We study a particular class of strong maxmin solutions that have the following struc-
ture:2 Both the signals in the information structure and the actions in the mechanism are
non-negative real numbers. In addition, the bidders’ strategies are “truthful” (or “obedi-
ent”), in that with probability one, each bidder sends a action equal to their signal. In
other words, the mechanism is a direct mechanism on the information structure, and the
information structure is a Bayes correlated equilibrium (Bergemann and Morris, 2016) of
the mechanism. Thus, the solution satisfies the “double revelation principle” as described
in Brooks and Du (2020a). In addition, the ex ante distribution of bidders’ signals is
independent exponential with an arrival rate normalized to one, and only local incentive
constraints bind at the profit-maximizing direct mechanism.3

Within this class, we identify a particular information structure which is a worst-case
for the seller. First, for bidders whose expected values are below a cutoff, their signals are
completely uninformative (and in fact we could have specified information so that these
bidders do not even receive signals). These bidders are always excluded from the allocation.

1Brooks and Du (2020a,b) have extended discussions on the virtues of this approach to modeling infor-
mationally robust auction design.

2In a discrete setting, Brooks and Du (2020b) show that this structure is without loss of generality.
Similar structure arises in the common-value setting in Brooks and Du (2020a).

3As we discuss below, these are equivalent properties.
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For the remaining “included” bidders, interim expected values depend on a weighted sum of
the included bidders’ signals. These weights are a parameter of the information structure,
and they are chosen to match the known mean of each bidder’s value. When the weighted
sum is above a cutoff (which we normalize to be equal to one), all included bidders’ expected
values are at the upper bound on the value. Otherwise, the bidders’ interim expected values
are exponential functions of the weighted sum. This information structure has the critical
feature that whenever the weighted sum of signals is less than one, the seller is indifferent
between not allocating the good and allocating to each of the included bidders.

For strong maxmin solutions of the aforementioned class and with this constituent in-
formation structure, we have two main results. Theorem 1 gives sufficient conditions on
a mechanism for it to complete a strong maxmin solution. Theorem 2 then constructs a
mechanism that satisfies the sufficient conditions. The conditions concern (i) the sensitivity
of each bidder’s allocation to their own action and (ii) the excess growth of each bidder’s
transfer, i.e., the difference between the sensitivity of the bidder’s transfer with respect to
their own action and the transfer itself. The condition (i) depends on the same weights
which parameterize the information structure. In particular, a bidder’s allocation sensitiv-
ity must be weakly less than their weight, and it must be equal to their weight when the
weighted sum of actions is less than one. With respect to (ii), the transfer rule must have a
particular aggregate excess growth, which is pinned down by the choice of allocation rule.

In general, there are many allocation rules that satisfy condition (i), and holding fixed
the allocation rule, there are many transfer rules satisfying the excess growth equation. The
solution we construct in Theorem 2 has a weighted proportional allocation: The aggregate
allocation is equal to the minimum of the weighted sum and 1, and each bidder’s individual
allocation is proportional to their weighted action.4 Finally, we show constructively that
the excess growth equation always has a solution, as long as the allocation satisfies the
sufficient condition.

An important special case is when the model is symmetric, so that all bidders have the
same expected value. In this case, we find that the min-max information structure is one
in which bidders have pure common values, meaning that the bidders’ values are perfectly
correlated. At a high level, the degree of correlation in bidders’ values has two effects: On
the one hand, the more positively correlated are bidders’ values, the lower is the efficient
surplus. On the other hand, positive correlation reduces bidders’ private information about
the good, which in principle could lead to lower information rents. In the event, the tradeoff
is resolved unambiguously in favor of more correlation, and information rents are derived
from the bidders’ partial and differential information about their common value.

Thus, all bidders have the same weight, and the information structure is exactly that
described by Brooks and Du (2020a). Moreover, there is a max-min mechanism that is
a proportional auction, which consists of the previously described proportional allocation,
and also a proportional transfer, in which the aggregate transfer depends only on the sum
of the signals, and each bidder’s individual transfer is proportional to their action. An
equivalent interpretation is that there is a constant price per unit that depends only on
the aggregate action. A key takeaway from this paper is that proportional auctions, which

4Under a change of units, where each bidder’s action is scaled up by their weight, this is the same
proportional allocation as identified in Brooks and Du (2020a).
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were originally motivated in an environment when values are common, are robustly optimal
even when values are non-common and the correlation structure is ambiguous.5

In addition to these main theorems, we consider three further topics. First, we consider
what happens to the profit guarantee when the number of bidders grows large. When
all bidders have the same expected value, the profit guarantee converges to that expected
value, which is the efficient surplus when all values are perfectly correlated (as they are
in the min-max information). Second, we use our characterizations to show an intuitive
comparative static, that the profit guarantee is non-decreasing in the bidders’ expected
values. Finally, we discuss and give examples of other max-min mechanisms with non-
proportional allocation rules.

As a final topic for this introduction, we discuss the related literature. First and fore-
most, our model can be viewed as a variant of Brooks and Du (2020a). In that paper,
bidders have a pure common value that follows a known distribution. In contrast, we allow
for non-common values and asymmetry across bidders. At the same time, we only constrain
the mean of each bidder’s value, and we endogenize the correlation structure according to
the worst-case criterion. The structure of the solution shares much of the structure of
that in Brooks and Du (2020a), and many of the proofs and analytical techniques carry
over. Also related is Brooks and Du (2020b), which shows that there exist “approximate”
strong maxmin solutions, consisting of finite mechanisms and information structures, and
where all equilibria on the pair have profit that is close to the limit profit guarantee. These
approximate strong maxmin solutions exist in a fairly general class of environments, includ-
ing the one considered here. Moreover, the approximate maxmin mechanism and minmax
information structure have much of the same structure as the strong maxmin solutions
we construct in the present paper, including one-dimensional signals and actions and the
signals are iid censored geometric. Brooks and Du (2020b) also develop a methodology for
computing approximate strong maxmin solutions via linear programming. The results of
this paper were motivated by such simulations.

He and Li (2020) consider a model of auction design when there is a known marginal
distribution of each bidder’s value, which is the same for all bidders, but the correlation
structure is unknown. Che (2020) considers a similar model but where only the mean of
each bidder’s value is known. Both papers further assume that each bidder knows their own
value. These papers find that as the number of bidders grows large, revenue in the truthful
equilibrium of the second-price auction converges to the expectation of a single bidder’s
value. Relative to He and Li (2020) and Che (2020), we drop the hypothesis that bidders
know their own values and we also assume that the seller only knows the expected value.
Even so, the seller can still obtain the same asymptotic profit guarantee using proportional
auctions, regardless of which equilibrium is played. We also completely characterize max-
min auctions with a finite number of bidders within the space of all auctions, both in the
symmetric case that they consider as well as when bidders have different expected values.

5Indeed, as we argue below, even when bidders have different expected values, the seller could still run
a proportional auction and obtain the same profit guarantee as in the symmetric model with the average
of the expected values. Thus, asymmetry in expected values benefits the seller relative to the symmetric
model with the same average expected value.
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More broadly, our work is related to the literature on max-min auction design, including
Chung and Ely (2007), Brooks (2013), Bergemann et al. (2016), Carrasco et al. (2018), Du
(2018), Chen and Li (2018), and Yamashita and Zhu (2018).

The rest of this paper has the following structure: Section 2 describes our mathematical
framework and solution concept. Section 3 gives an informal overview of our results in the
special case when there are two bidders. Section 4 exposits our main results. Section 6
presents extensions and applications of the model. Section 7 is a conclusion. Omitted
proofs are in the Appendix.

2 Model

There are N bidders for a single unit of a good. The bidders are indexed by i “ 1, . . . , N .
Bidder i has a value vi P r0, 1s, and has quasilinear preferences over probability of receiving
the good q and and a transfer to the seller t, represented by the utility index viq ´ t.
The values are uncertain; all that is known is that the expectation of bidder i’s value is
pvi P p0, 1q. Without loss, we assume that bidders are ordered so that pv1 ě pv2 ě ¨ ¨ ¨ ě pvN .

While unknown to the seller, the distribution of bidders’ values and the bidders’ beliefs
are described by an information structure, which consists of the following objects: For each
bidder i, there is a measurable space of signals Si, with S “ ˆNi“1. In addition, there is a
distribution π P ∆pSq, and an interim expected value function w : S Ñ r0, 1sN , such that
for all i,

ż

sPS

wipsqπpdsq “ pvi. (1)

We denote the information structure by I “ pS, π, wq.
The seller of the good chooses a mechanism. This consists of measurable action spaces

Ai for each i and allocation and transfer rules. Let A “ ˆNi“1Ai. The allocation rule is a
function q : AÑ RN

` such that for all a P A,

Σqpaq “ q1paq ` ¨ ¨ ¨ ` qNpaq ď 1.

The transfer rule is a function t : AÑ R. We denote the mechanism by M “ pA, q, tq. We
say that the mechanism is participation secure if for every i, there exists an action 0 P Ai
such that tip0, a´iq “ 0 for all a´i P A´i.

A mechanism and information structure together define a simultaneous-move Bayesian
game pM, Iq. Bidder i’s strategies in this game are measurable mappings βi : Si Ñ ∆pAiq.
A profile of strategies β is identified with a mapping β : S Ñ ∆pAq, where βpsq is simply
the product measure ˆNi“1βipsiq. Bidder i’s expected utility under the strategy profile β is

Uipβq “

ż

sPS

ż

aPA

pwipsqqipaq ´ tipaqq βpda|sqπpdsq

(where we suppress the dependence of the utility on the mechanism and information struc-
ture). The strategy profile β is a (Bayes Nash) equilibrium if Uipβq ě Uipβ

1
i, β´iq for all i

and strategies β1i. The set of equilibria is denoted BpM, Iq.
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Profit of the seller under the strategy profile β is

ΠpM, I, βq “
ż

sPS

ż

aPA

Σtpaqβpda|sqπpdsq.

The solution concept employed in this paper is the strong maxmin solution (Brooks and
Du, 2020a), which is a triple pM, I, βq that satisfies the following conditions:

1. For all M1 and β1 P BpM1, Iq, ΠpM, I, βq ě ΠpM1, I, β1q;

2. For all I 1 and β1 P BpM, I 1q, ΠpM, I, βq ď ΠpM, I 1, β1q;

3. β P BpM, Iq.

We call ΠpM, I, βq the profit guarantee of the strong maxmin solution pM, I, βq.
As discussed in Brooks and Du (2020a), the strong maxmin solution can be inter-

preted as an equilibrium-selection-invariant Nash equilibrium: Consider the simultaneous
move game between seller and Nature, where the seller chooses the mechanism and Na-
ture chooses the information structure. If no equilibrium exists, both players’ payoffs are
´8. Otherwise, there is a fixed equilibrium selection rule. Suppose BpM, Iq ‰ H. Then
pM, Iq is a Nash equilibrium of the mechanism design/information design game for all
equilibrium selection rules if and only if there exists a β such that pM, I, βq is a strong
maxmin solution.

Finally, given a function f : RN Ñ RN , we say that f is own-right-differentiable if for
every i, the limit

∇ifpxi, x´iq ” lim
hÓ0

fipxi ` h, x´iq

h

exists and is finite at every x. We let ∇fpxq denote the vector whose ith element is ∇ifpxq.
We also denote by ∇ ¨ fpxq “

řN
i“1 ∇ifpxq.

3 An illustration of the results

In this section we give an intuitive illustration of our results for the special case of N “ 2.

3.1 Common value

To motivate our analysis, we first give a quick recap of the derivation and intuition of the
strong maxmin solution in the common value model of Brooks and Du (2020a). Suppose
the seller knows that all bidders have the same ex post value (v1 “ v2 with probability 1)
and the expectation of v1 “ v2 is pv P p0, 1q. In this subsection only, we use v P r0, 1s to
denote the common value. For this special case, the strong maxmin solution of Brooks and
Du (2020a) is a tuple pM, I, βq, where:
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1. In the minmax information structure I “ pS, π, wq, each bidder observes a signal
si P Si “ R`. The signals are independently and exponentially distributed with an
arrival rate of 1 (πpsq “ expp´s1´s2qds). All bidders have the same interim expected
value of

wps1, s2q “

#

expps1 ` s2 ´ 1{ηq s1 ` s2 ă 1{η,

1 s1 ` s2 ě 1{η,
(2)

where the parameter η P R` ensures that the interim value has the correct expecta-
tion:

ż

S

wps1, s2q expp´s1 ´ s2qds “ pv.

2. The maxmin mechanism M “ pA, q, tq is the proportional auction: Ai “ R` for each
i,

qipa1, a2q “

#

ηai a1 ` a2 ă 1{η,
ai

a1`a2
a1 ` a2 ě 1{η,

(3)

tipaq “ qipaq ¨ T pa1 ` a2q, (4)

T pxq “

#

0 if x “ 0,
1

g2pxq

şx

y“0
Ξpyqg2pyqdy if x ą 0,

(5)

where g2pxq “ xe´x is the density for the random variable s1 ` s2, and Ξ will be
specified in equations (9)—(10).

3. The strategy profile β is truth-telling: for each signal si P Si, βi bids si with proba-
bility one in the proportional auction.

We now explain the intuition and derivation of the above strong maxmin solution. First,
a salient feature of the information structure I is that the virtual value of every bidder is
the same and is either 0 or 1:

wpsq ´∇iwpsq “

#

0 s1 ` s2 ă 1{η,

1 s1 ` s2 ě 1{η.

The above equation implies that facing I the seller is indifferent between allocating or not
allocating the good when s1` s2 ă 1{η and strictly prefers to fully allocate the good when
s1` s2 ě 1{η; moreover, the seller is always indifferent between allocating to either bidder.
Notice that this rationalizes the allocation rule q in (3), since it is fully allocating the good
if (and only if) s1 ` s2 ě 1{η. Thus, we conclude that q is a profit-maximizing allocation
rule on the information structure I. Since qi is increasing in si, using the envelope theorem
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one can easily construct a transfer rule that makes q incentive compatible under I, and
indeed the transfer rule in (4) accomplishes this and implies that M is a profit maximizing,
incentive compatible direct mechanism on I, with an optimal profit of

Π “

ż

tsPR2
`|s1`s2ě1{ηu

expp´s1 ´ s2qds. (6)

At the same time, I is a profit-minimizing, Bayes correlated equilibrium (BCE) on M,
which implies that M guarantees an expected profit of Π across all information structures
and equilibria. Recall (Bergemann and Morris, 2013, 2016) that a BCE is a direct-revelation
information structure; formally, a BCE is a joint distribution σ P ∆pA ˆ r0, 1sq over the
actions and common value such that (1) the marginal distribution over the common value
has a mean of pv, and (2) if a mediator draws pa, vq according σ and privately recommend
every bidder i to play ai in M, each bidder would do best to obey the mediator. Note that
because we just have a mean constraint on the marginal distribution for value it is without
loss to look at σ such that with probability 1 the common value is either 0 or 1. Moreover,
it is without loss to relax the obedience constraint of BCE to each bidder not wanting
to deviate locally upward from the mediator’s recommendation, since the minimum profit
across BCE with the relaxed constraint will turn out to be Π, which is the best possible
profit guarantee. Therefore, minimizing the profit in M across BCE with local obedience
constraints is equivalent to minimizing the following Lagrangian:

Lpσ, α, λq “
2
ÿ

i“1

ż

Aˆt0,1u

tipaqσpda, dvq

`

2
ÿ

i“1

ż

Aˆt0,1u

αipaiq
“

v∇iqipaq ´∇itipaq
‰

σpda, dvq

`

ż

Aˆt0,1u

λpvq rµpdvq ´ σpda, dvqs ,

where µ P ∆pt0, 1uq, µpt1uq “ pv and µpt0uq “ 1 ´ pv. In the above Lagrangian σ is
a positive measure on A ˆ t0, 1u, αipaiq ě 0 is the (Lagrange) multiplier on the local
obedience constraint of σ given a recommendation of ai for bidder i, λp1q (respectively,
λp0q) is the multiplier on the constraint that σ places a probability of pv (respectively, 1´pv)
on the event v “ 1 (respectively, v “ 0).

In Brooks and Du (2020b) we show that the multiplier αi in the Lagrangian must be
the inverse hazard rate of the signal distribution, which is normalized to be one. Thus, we
set αpaiq “ 1 for every ai. Let us denote the optimal multiplier λ to be λ, which will be
deduced in equations (9) and (11). The first order condition for minimizing Lpσ, α, λq with
respect to σpda, dvq is

Σtpaq ´∇ ¨ tpaq ` v∇ ¨ qpaq ´ λpvq ě 0, (7)

for every a P A and v P t0, 1u, with an equality on the support of the optimal σ. The value
of Lpσ, α, λq given the optimal σ is thus

ş

λpvqµpdvq “ pvλp1q ` p1´ pvqλp0q.
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Using the explicit expressions in (3)—(5), we can simplify the terms in (7) to:

∇ ¨ tpaq ´ Σtpaq “ Ξpa1 ` a2q,

∇ ¨ qpaq “

#

2η a1 ` a2 ă 1{η,
1

a1`a2
a1 ` a2 ě 1{η.

(8)

We can view I as a BCE6 on M, where a signal si P Si is now an action ai “ si P Ai
recommended by a mediator (recall that Si “ Ai “ R`), and wpaq is the probability of
v “ 1 in the BCE conditional on an action recommendation profile a. For this BCE to
be a profit-minimizing BCE on M, we must have (7) holding with an equality for both
v P t0, 1u whenever a1 ` a2 ă 1{η, since for such an action profile wpaq P p0, 1q, so both
v “ 0 and v “ 1 happen with positive probability. Using the expressions in (8), we see
that this amounts to

Ξpaq “ ´λp0q, a1 ` a2 ă 1{η,

λp1q “ λp0q ` 2η.
(9)

Likewise, we must have (7) holding with an equality for v “ 1 whenever a1 ` a2 ě 1{η,
since for such an action profile wpaq “ 1. This amounts to

Ξpaq “ ´λp1q `
1

a1 ` a2

, a1 ` a2 ě 1{η. (10)

Since

∇ ¨ qpaq “ 1

a1 ` a2

ď 2η “ λp1q ´ λp0q,

whenever a1`a2 ě 1{η, (7) holding with an equality when v “ 1 implies that it holds with
an inequality when v “ 0.

Finally, we must have the minimum value of the Lagrangian equal to the expected profit
of I on M (equation (6)):

pvλp1q ` p1´ pvqλp0q “ Π. (11)

Thus, I is a profit minimizing BCE on M, and this concludes the demonstration of our
strong maxmin solution in the common value model.

3.2 Known expected values

We now generalize the common-value derivations and explain our new results in the setting
where the seller knows that bidder i has an expected value of pvi.

First, numerical simulations using the algorithm developed in Brooks and Du (2020b)
suggest the minmax information structure I “ pS, π, wq is the following: Bidder i’s signal

6The obedience constraint of BCE is satisfied since M is an incentive compatible, direct mechanism on
I.
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space is Si “ R`, and the signal distribution is πpdsq “ expp´s1 ´ s2qds, and bidder i’s
interim expected value is

wipsq “

#

exp
´

η1s1`η2s2´1
ηi

¯

η1s1 ` η2s2 ă 1,

1 η1s1 ` η2s2 ě 1,
(12)

where the parameter η P R2
` is chosen to satisfy

ż

S

min

ˆ

exp

ˆ

η1s1 ` η2s2

ηi
´ 1

˙

, 1

˙

expp´s1 ´ s2qds “ pvi (13)

for i “ 1, 2. For now we assume (13) can be satisfied for some η P R2
` and will defer the

case when it cannot be satisfied to the end of this subsection.
When bidders have the same expected value (pv1 “ pv2), we have η1 “ η2 so the above

information structure reduces to the common value information structure in (2). Our result
will show that the common value information structure is the minmax information structure
when all bidders have the same expected value.

Regardless of whether pv1 “ pv2, every bidder’s virtual value in I is the same and is either
0 or 1:

wipsq ´∇iwpsq “

#

0 η ¨ s ă 1,

1 η ¨ s ě 1.

Thus, exactly like the case of common value, any allocation rule satisfying

q1psq ` q2psq “ 1, η ¨ s ě 1, (14)

maximizes profit on I. In particular, the proportional allocation in (3) is profit maximizing.
The optimal profit on I is now

Π “

ż

tsPR2
`|η¨sě1u

expp´s1 ´ s2qds.

Turning to the I being a profit-minimizing BCE on a mechanism M “ pA, q, tq, where
Ai “ R`. As in the common value case, minimizing the profit in M across BCE with local
obedience constraints is equivalent to minimizing the following Lagrangian:

Lpσ, α, λq “
2
ÿ

i“1

ż

Aˆt0,1u2
tipaqσpda, dvq

`

2
ÿ

i“1

ż

Aˆt0,1u2
αipaiq

“

vi∇iqipaq ´∇itipaq
‰

σpda, dvq

`

2
ÿ

i“1

ż

Aˆt0,1u2
λipviq rµipdviq ´ σpda, dvqs
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where µi P ∆pt0, 1uq, µipt1uq “ pvi and µipt0uq “ 1 ´ pvi. In the above Lagrangian σ is a
positive measure on Aˆt0, 1u2, αipaiq ě 0 is the multiplier on the local obedience constraint
for σ, λip1q (respectively, λip0q) is the multiplier on constraint that σ places a probability
of pvi (respectively, 1´ pvi) on the event vi “ 1 (respectively, vi “ 0).

As before, we set αpaiq “ 1 and denote the optimal multiplier λ to be λ, which will
be deduced in equations (18) and (21). The first order condition for minimizing Lpσ, α, λq
with respect to σpda, dvq is

Σtpaq ´∇ ¨ tpaq ` v ¨∇qpaq ´
2
ÿ

i“1

λipviq ě 0, (15)

for every a P A and v P t0, 1u2, with an equality on the support of the optimal σ.
Therefore, for I to be a profit-minimizing BCE on M, we must have (15) holding with

an equality for every v P t0, 1u2 whenever η ¨ a ă 1 (since wipaq P p0, 1q for such an a),
which is equivalent to

∇ ¨ tpaq ´ Σtpaq “ ´
2
ÿ

i“1

λip0q, η ¨ a ă 1. (16)

and

∇iqpaq “ λip1q ´ λip0q, η ¨ a ă 1. (17)

Given our participation security assumption about ai “ 0, is natural to impose additionally
that qip0, a´iq “ 0 for every a´i P A´i. Together with equation (14), this implies that
qip1{ηi, 0q “ 1, and hence

λip1q ´ λip0q “ ηi. (18)

Likewise, whenever η ¨ a ě 1, we have wipaq “ 1 for every i, so (15) must hold with an
equality for v “ p1, 1q, i.e.,

∇ ¨ tpaq ´ Σtpaq “ ∇ ¨ qpaq ´
2
ÿ

i“1

λip1q, η ¨ a ě 1. (19)

Given the above equation, to satisfy (15) for v ‰ p1, 1q and η ¨ a ě 1, we must have

∇iqpaq ď λip1q ´ λip0q “ ηi, η ¨ a ě 1. (20)

Finally, to ensure that I is a profit-minimizing BCE on M we must have the minimum
value of the Lagrangian coincide with the expected profit of I on M; that is,

2
ÿ

i“1

“

pviλip1q ` p1´ pviqλip0q
‰

“ Π. (21)

Our main result (Theorem 1) is that conditions (14) and (16)—(21), together with a
regularity condition that the transfer is a bounded function, imply that I and M form a
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strong maxmin solution. An important step of the argument is to show that these conditions
are sufficient for the truth-telling strategy profile to be an equilibrium on the Bayesian game
defined by pI,Mq. This implies that I is a legitimate BCE on M. Moreover, any bounded
transfer satisfying equations (16) and (19) makes the allocation q incentive compatible on
I.

In the special case of pv1 “ pv2, it is easy to show that the proportional auction satisfies
the above conditions and hence is a maxmin mechanism. In fact, given λp1q and λp0q from
the common value model, we can define λipviq “ λpviq{2 for vi P t0, 1u and i “ 1, 2, and
conditions (16)—(21) almost immediately follow from the corresponding conditions in the
common value model. There are other maxmin mechanisms, for example the mechanism
in Bergemann, Brooks, and Morris (2016), which is also a solution of our conditions.

When pv1 ‰ pv2, a natural generalization of (3), the weighted proportional allocation

qipa1, a2q “

#

ηiai η ¨ a ă 1,
ηiai

η1a1`η2a2
η ¨ a ě 1,

(22)

satisfies the conditions (14), (17) and (20). In Theorem 2 we give a canonical way to define
the transfer to satisfy the rest of the conditions and arrive at a maxmin mechanism.

The above derivations are based on based on the premise that equation (13) is satisfied.
When the two bidders have very asymmetric expected values, equation (13) in fact cannot
be satisfied for any η P R2

`. Suppose pv1 is much larger than pv2 (the precise condition is
(24)). Then the seller naturally wants to exclusively sell to bidder 1, and the problem is
in essence the one-buyer problem of Roesler and Szentes (2017) and Du (2018). In fact,
when η2 “ 0, w1 and q1 in equations (12) and (22) reduce to interim value and allocation
in those papers. Thus, we set η2 “ 0 and fix these interim value and allocation in I and
M. To complete the solution, we exclude bidder 2 from the mechanism (q2paq “ t2paq “ 0)
and set

w2ps1, s2q “

$

&

%

0 η1s1 ă 1,
pv2

ş8

s11“1{η1
expp´s11qds

1
1

η1s1 ě 1.

For this interim value to be feasible, we need

pv2 ď

ż 8

s11“1{η1

expp´s11qds
1
1 “ expp´1{η1q, (23)

that is, bidder 2’s expected value must be less than the profit guarantee of our solution.
Since the mean constraint for bidder 1 (cf. equation (13) for i “ 1 and η2 “ 0) is

pv1 “

ż 1{η1

s1“0

expps1 ´ 1{η1q expp´s1qds1 `

ż 8

s1“1{η1

expp´s1qds1 “
expp´1{η1q

η1

` expp´1{η1q,

condition (23) is equivalent to

pv1 ě pv2 ´ pv2 logppv2q. (24)

12



Since bidder 2’s interim value w2 is independent of his signal, his virtual value always
coincide with his interim value, which is clearly always less than the virtual value of bidder
1 in I. Thus, our allocation that exclusively sells to bidder 1 maximizes the profit on I.
On the other hand, we can set λ2p0q “ λ2p1q “ 0 to satisfy conditions (16)—(21), which
ensure that I is a profit-minimizing BCE on M.

4 Strong maxmin solutions

4.1 Minmax information

We construct an information structure as follows. Let Si “ R` for all i, and let

πpdsq “ expp´Σsqds (25)

i.e., the signals are independent and exponentially distributed random variables with an
arrival rate of 1. The interim value function has the following form: Fix parameters η P RN

` .
Then define

wipsq “

$

’

’

&

’

’

%

mintpexppη ¨ s´ 1qq1{ηi , 1u if ηi ą 0;

0 if ηi “ 0 and η ¨ s ă 1;
pvi

ş

tsPS|η¨sě1u expp´Σsqds
if ηi “ 0 and η ¨ s ě 1.

(26)

A preliminary result is that there exists a vector η such that (1) is satisfied:

Lemma 1. There exists a η P RN
` such that for π and w defined by (25) and (26), I “

pS, π, wq is a well-defined information structure. In particular, it satisfies the moment
conditions (1)

Proof. Let η P R` such that

ż 8

s1“0

mintpexppηs1 ´ 1qq1{η, 1u expp´s1qds1 ě α1.

Such a η exists because as η Ñ 8, the integrand converges monotonically pointwise to 1,
so the Dominated Convergence Theorem converges monotonically to 1, which is strictly
greater than the right-hand side.

Now, let us define the mapping Gi : r0, ηsN Ñ R according to

Gipηq “

$

&

%

ş

sPRN`
min

!

pexppη ¨ s´ 1q1{ηi , 1
)

expp´Σsqds if ηi ą 0;
ş

tsPRN` |η´i¨s´iě1
expp´Σs´iqds´i if ηi “ 0.

Note that Gi is continuous and strictly increasing in ηi for ηi ą 0. Moreover, the Dominated
Convergence Theorem implies that

lim
ηiÑ0

Gipηi, η´iq “ Gip0, η´iq,

13



so that Gi is continuous at ηi “ 0.
Define the mapping F : r0, ηsN Ñ r0, ηsN as follows: For fixed η P r0, ηsN , we define

Fipηq as the solution η1i P r0, ηs to

Gipη
1
i, η´iq “ max tαi, Gip0, η´iqu . (27)

Note Gipηq is strictly increasing in ηi, so if a solution to (27) exists, it is unique. Moreover,
Gi is increasing in η´i, so from how we have defined η, there exists a η1i ą 0 that satisfies
(27) as an equality if and only if Gip0, η´iq is weakly less than αi. Otherwise, the unique
solution is η1i “ 0.

Since the left-hand side of (27) is strictly increasing in η1i, the Implicit Function Theorem
in Kumagai (1980) implies that Fipηq is continuous. The Brouwer Fixed-Point Theorem
then implies that F has a fixed point, which necessarily solves the system (27).

We next claim that for any η that is a fixed point of F . Moreover, ηi “ 0 if and only if
ż

tsPRN` |η¨sě1u

expp´Σsqds ě pvi. (28)

For if this condition is satisfied and ηi ą 0, then Gipηq is strictly greater than the left-hand
side of (28), which is in turn weakly greater than Gip0, η´iq. Thus, Gipηq is strictly greater
than both terms on the right-hand side of (27), which contradicts the hypothesis that η
satisfies (27). (Note that Gip0q “ 0, so there must be at least one i for which ηi ą 0.)

Finally, we can define w according to any fixed point of F . Clearly, wi satisfies (1) for
all i such that ηi ą 0. And since (28) is satisfied for any i such that ηi “ 0, wipsq P r0, 1s
for all s, and also satisfies (1).

Throughout the rest of our analysis, we fix a η as in Lemma 1.

4.2 Characterization of maxmin mechanisms

Our main theorem will characterize maxmin mechanisms of a particular form. For a vi P
t0, 1u, let us define

λipviq ”
1

N

ż

tsPRN` |η¨sě1u

expp´Σsqds` pIvi“1 ´ pviqηi (29)

and

λpvq ”
N
ÿ

i“1

λipviq.

We will consider maxmin mechanisms for which the space of actions is Ai “ R`.
Given an own-right-differentiable allocation rule, let us define

Ξpa; qq “

#

´λp0q if η ¨ a ă 1;

∇ ¨ qpaq ´ λp1q if η ¨ a ě 1.

Our main theorem is the following:

14



Theorem 1. Suppose that M “ pA, q, tq satisfying the following conditions:

1. Ai “ R` for all i;

2. q is own-right-differentiable, qip0, a´iq “ 0, ∇iqpaq is right-continuous in ai and
∇qpaq ě 0 for all a.

3. ∇qpaq “ η if η ¨ a ă 1, ∇qpaq ď η if η ¨ a ě 1, and Σqpaq “ 1 if η ¨ a ě 1.

4. t is own-right-differentiable, t and ∇t are bounded, tip0, a´iq “ 0 for all i and a´i,
and for all a,

∇ ¨ tpaq ´ Σtpaq “ Ξpa; qq.

Define β to be the truthful strategy profile such that βiptsiu|siq “ 1 for all i and si. Then
pM, I, βq is a strong maxmin solution. Moreover, the profit guarantee of this solution is

Π “

ż

tsPRN` |η¨sě1u

expp´Σsqds.

A leading example of an allocation satisfying the hypotheses of Theorem 1 is the pro-
portional allocation:

qipaq “
ηiai

mint1, η ¨ au
. (30)

Conditions 1 and 2 and the first part of condition 3 clearly hold for the above allocation
rule. For the second part of condition 3, we calculate that whenever η ¨ a ě 1,

∇iqpaq “
ηipη´i ¨ a´iq

pη ¨ aq2
ď ηi,

since η´i¨a´i
η¨a

ď 1.
For any allocation rule q that satisfies the hypotheses of Theorem 1, there is a canonical

way to define the transfer as follows. Let Z denote the set of permutations of t1, . . . , Nu
with a typical element ζ. We denote by

rζ ď ks “ tj | ζpjq ď ku,

and analogously define rζ ą ks. Next, let

τζ,kpa; qq “

ż

RN´k`

Ξparζďks, xrζąks; qq expp´Σxrζąksqdxrζąks, (31)

and

ξipa; qq “
1

N !

ÿ

ζPZ

“

τζ,ζpiqpa; qq ´ τζ,ζpiq´1pa; qq
‰

. (32)

Finally, define the transfer rule:

tipaq “ exppaiq

ż ai

xi“0

ξipxi, a´i; qq expp´xiqdxi. (33)

We have the following second main result:
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Theorem 2. There exists a q that satisfies conditions 1–3 of Theorem 1. For any such q,
let t be defined by (31)–(33), and let M “ pA, q, tq. Then pM, I, βq is a strong maxmin
solution. In particular, a strong maxmin solution exists.

In the symmetric case where pv1 “ pv2 “ ¨ ¨ ¨ “ pvN , we clearly have η1 “ η2 “ ¨ ¨ ¨ “ ηN .
In this case the allocation rule in (30) defines the proportional auction. Let us also define
the proportional transfer rule:

tipaq “ qipaq ¨ T pΣaq,

T pxq “

#

0 if x “ 0,
1

gN pxq

şx

y“0
Ξpy; qqgNpyqdy if x ą 0,

where gNpxq “
xN´1e´x

pN´1q!
. Brooks and Du (2020a) show that the hypotheses of Theorem 1

are satisfied for the above mechanism pq, tq; hence we have

Corollary 1. Suppose pv1 “ pv2 “ ¨ ¨ ¨ “ pvN . Let M “ pA, q, tq be the proportional auction
where Ai “ R`, q is given by (30) and t is given by(??). Then pM, I, βq is a strong
maxmin solution.

5 Proof of Theorems 1 and 2

5.1 Proof of Theorem 1

Proposition 1. I is a well-defined information structure. For all mechanisms M and
equilibria β of pM, Iq, ΠpM, I, βq ď Π.

Proof of Proposition 1. Fix an incentive compatible and individually rational direct mech-
anism pq, tq and define

Uipsi, s
1
iq ”

ż

S´i

pwipsi, s´iqqips
1
i.s´iq ´ tips

1
i, s´iqqexpp´Σs´iqds´i,

and Uipsiq ” Uipsi, siq. Incentive compatibility says that for all i, si, and s1i,

Uipsiq ě Uipsi, s
1
iq “ Uips

1
iq `

ż

S´i

pwipsi, s´iq ´ wips
1
i, s´iqqqips

1
i, s´iq expp´Σs´iqds´i.

and individual rationality says that Uipsiq ě 0. Thus, for all ∆ ě 0,

Ui ”

ż

Si

Uipsiq expp´siqdsi

ě

ż

tsPS|siě∆u

rUipsi ´∆q ` pwipsi, s´iq ´ wipsi ´∆, s´iqqqipsi ´∆, s´iqqs expp´Σsqds

“ expp´∆q

ˆ

Ui `

ż

S

pwipsi `∆, s´iq ´ wipsqqqipsq expp´Σsqds

˙

.
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Rearranging, we have

Ui ě
1

expp∆q ´ 1

ż

S

pwipsi `∆, s´iq ´ wipsqqqipsq expp´Σsqds.

Since total surplus is

N
ÿ

i“1

ż

S

wipsqqipsq expp´Σsqds,

we conclude that an upper bound on profit is

N
ÿ

i“1

ż

S

„

wipsq ´
1

expp∆q ´ 1
pwipsi `∆, s´iq ´ wipsqqq



qipsq expp´Σsqds.

To apply the Dominated Convergence Theorem and take ∆ Ñ 0, we just need to show that
the discrete derivative is bounded:

max
sPS

1

expp∆q ´ 1
pwipsi `∆, s´iq ´ wipsqqq

ď max
tsPS|η¨sď1u

1

expp∆q ´ 1
pexpppη ¨ sq{ηi `∆q ´ expppη ¨ sq{ηiq

“ max
tsPS|η¨sď1u

expppη ¨ sq{ηiq

“ expp1{ηiq.

Thus, the limit of the profit upper bound as ∆ Ñ 0 is

N
ÿ

i“1

ż

S

rwipsq ´∇iwipsqs qipsq expp´Σsqds

“

ż

tsPS|η¨sě1u

N
ÿ

i“1

qipsq expp´Σsqds

ď

ż

tsPS|η¨sě1u

expp´Σsqds “ Π.

Proposition 2. Suppose that M satisfies the hypotheses of Theorem 1. Then for any
information structure I and equilibrium β of pM, Iq, ΠpM, I, βq ě Π.

Lemma 2. Suppose that M satisfies the hypotheses of Theorem 1. Then for any informa-
tion structure I and equilibrium β of pM, Iq,

ż

S

ż

A

“

wpsq ¨∇qpaq ´∇ ¨ tpaq
‰

βpda|sqπpdsq ď 0. (34)
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Proof of Lemma 2. For all ∆ ą 0, the fact that β is an equilibrium implies that

ż

S

ż

A

N
ÿ

i“1

rwipsqpqipai `∆, a´iq ´ qipaqq ´ ptipai `∆q ´ tipaqqqqsβpda|sqπpdsq ď 0.

Since ∇iq and ∇it are bounded, we conclude that the integrand in left-hand side of the
preceding inequality is bounded by Kβpda|sqπpdsq for some K. We can divide through by
∆. The limit of the left-hand side as ∆ Ñ 0 must be non-positive as well. Finally, the
Dominated Convergence Theorem implies that the limit is precisely the left-hand side of
(34).

Proof of Proposition 2. First we show that

λpvq “
N
ÿ

i“1

λipviq ď v ¨∇qpaq ´ Ξpa; qq (35)

for all v P t0, 1uN and a P A. When η ¨ a ă 1, we have ∇ ¨ qpaq “ η, Ξpa; qq “ ´λp0q, and
λip1q “ λip0q`ηi for every i, so (35) clearly holds with an equality for all v P t0, 1uN . When
η ¨ a ě 1, (35) holds with an equality for v “ 1 since Ξpa; qq “ 1 ¨∇qpaq ´ λp1q; as each vi
changes from 1 to 0, the left-hand side of (35) is decreased by ηi, while the right-hand side
of (35) is decreased by ∇iqpaq which is assumed to be less than ηi; inductively this implies
that (35) holds for all v P t0, 1uN .

Now fix an information structure I “ pS, π, wq and equilibrium β of pM, Iq. Equation
(35) implies

N
ÿ

i“1

“

wipsqλip1q ` p1´ wipsqqλip0q
‰

ď wpsq ¨∇qpaq ´ Ξpa; qq

for all s P S and a P A. Moreover, from Lemma 2, we know that (34) must be satisfied. As
a result,

ż

S

ż

A

Σtpaqβpda|sqπpdsq ě

ż

S

ż

A

“

Σtpaq ` wpsq ¨∇qpaq ´∇ ¨ tpaq
‰

βpda|sqπpdsq

“

ż

S

ż

A

“

wpsq ¨∇qpaq ´ Ξpa; qq
‰

βpda|sqπpdsq

ě

ż

S

ż

A

N
ÿ

i“1

“

p1´ wipsqqλip0q ` wipsqλip1q
‰

βpda|sqπpdsq.

From (1), we conclude that this is at least

N
ÿ

i“1

“

p1´ pviqλip0q ` pviλip1q
‰

“ Π

as desired.
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Proposition 3. Suppose that M satisfies the hypotheses of Theorem 1. Then the truthful
strategy profile β is an equilibrium of pM, Iq.

Proof of Proposition 3. We first derive an expression for the interim expected transfer in
terms of the allocation (equation (38)). Define the individual excess growth as

ξjpaq “ ∇jtpaq ´ tjpaq.

With the assumption that tjp0, a´jq “ 0, the above equation is equivalent to

tjpaq “ exppajq

ż aj

sj“0

ξjpsj, a´jq expp´sjqdsj. (36)

Therefore, we can write the interim expected transfer of bidder i in pM, Iq as

tipaiq “

ż

A´i

tipai, s´iq expp´Σs´iqds´i

“

ż

A´i

exppaiq

ż ai

si“0

ξipsi, s´iq expp´siqdsi expp´Σs´iqds´i.

Since tj is bounded in equation (36), it must be that

ż 8

sj“0

ξjpsj, s´jq expp´sjqdsj “ 0 (37)

for all j and s´j. Hence, we can rewrite the interim expected transfer as

tipaiq “ ´

ż

A´i

exppaiq

ż 8

si“ai

ξipsi, s´iq expp´siqdsi expp´Σs´iqds´i

“ ´

ż

A

ξipai ` si, s´iq expp´Σsqds

“ ´

ż

A

“

ξipai ` si, s´iq ` Σξ´ipai ` si, s´iq
‰

expp´Σsqds

“ ´

ż

A

Ξipai ` si, s´i; qq expp´Σsqds,

where we applied equation (37) to each j ‰ i in the third line, and used the assumption of
Σξ “ Ξ in the fourth line.

Using the definition of Ξ, we get

tipaiq “ ´

ż

tη¨s`ηiaiě1u

`

∇ ¨ qpai ` si, s´iq ´ λp1q
˘

e´Σsds´

ż

tη¨s`ηiaiă1u

`

´λp0q
˘

e´Σs ds

“ ´

ż

tη¨s`ηiaiě1u

p∇ ¨ qpai ` si, s´iq ´ Σηq e´Σsds` λp0q,

where in the second line we used the fact that λp1q “ Ση ` λp0q, and tη ¨ s` ηiai ě 1u is a
shorthand for ts P S | η ¨ s` ηiai ě 1u.
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Integrating by parts, we have
ż

tη¨s`ηiaiě1u

∇ ¨ qpai ` si, s´iqe´Σsds

“

N
ÿ

j“1

ż

A´j

ż 8

sj“
p1´ηisi´η´j ¨s´jq

`

ηj

∇jqpai ` si, s´iqe
´Σs dsj ds´j

“

ż

A´i

„

´ qi

ˆ

ai `
p1´ ηiai ´ η´i ¨ s´iq

`

ηi
, s´i

˙

e
´
p1´ηiai´η´i¨s´iq

`

ηi
´Σs´i

`

ż 8

si“
p1´ηiai´η´i¨s´iq

`

ηi

qipai ` si, s´iqe
´Σsdsi



ds´i

`
ÿ

j‰i

ż

A´j

„

´ qj

ˆ

ai ` si,
p1´ ηiai ´ η´j ¨ s´jq

`

ηj
, s´i´j

˙

e
´
p1´ηiai´η´j ¨s´jq

`

ηj
´Σs´j

`

ż 8

sj“
p1´ηiai´η´j ¨s´jq

`

ηj

qjpai ` si, s´iqe
´Σsdsj



ds´j

“´

ż

A´i

qi

ˆ

ai `
p1´ ηiai ´ η´i ¨ s´iq

`

ηi
, s´i

˙

e
´
p1´ηiai´η´i¨s´iq

`

ηi
´Σs´ids´i

´
ÿ

j‰i

ż

A´j

p1´ ηiai ´ η´j ¨ s´jq
`e
´
p1´ηiai´η´j ¨s´jq

`

ηj
´Σs´j

ds´j `

ż

tη¨s`ηiaiě1u

e´Σsds,

where in the last line, we used the facts that qj

´

ai ` si,
p1´ηiai´η´j ¨s´jq

`

ηj
, s´i´j

¯

“ p1 ´

ηiai ´ η´j ¨ s´jq
` and

řN
j“1 qjpai ` si, s´iq “ 1 whenever η ¨ s` ηiai ě 1.

Therefore, we have the following expression for the interim expected transfer:

tipaiq “

ż

A´i

qi

ˆ

ai `
p1´ ηiai ´ η´i ¨ s´iq

`

ηi
, s´i

˙

e
´
p1´ηiai´η´i¨s´iq

`

ηi
´Σs´ids´i

loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

X

`
ÿ

j‰i

ż

A´j

p1´ ηiai ´ η´j ¨ s´jq
`e
´
p1´ηiai´η´j ¨s´jq

`

ηj
´Σs´j

ds´j

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

Y

(38)

´

ż

η¨s`ηiaiě1

p1´ Σηqe´Σsds
looooooooooooooomooooooooooooooon

Z

`λp0q.

Next, we show there is no incentive to locally deviate from truthtelling (equation (39)).
We calculate

BX

Bai
“

ż

tη´i¨s´i`ηiaiě1u

∇iqpai, s´iqe
´Σs´ids´i

`

ż

tη´i¨s´i`ηiaiă1u

p1´ η´i ¨ s´iqe
´

1´ηiai´η´i¨s´i
ηi

´Σs´ids´i,
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where we used the fact that qi

´

ai `
p1´ηiai´η´i¨s´iq

`

ηi
, s´i

¯

“ 1´η´i ¨s´i if η´i ¨s´i`ηiai ă 1.

Likewise,

BY

Bai
“
ÿ

j‰i

«

ż

tη´j ¨s´j`ηiaiă1u

p´ηiqe
´

1´ηiai´η´j ¨s´j
ηj

´Σs´j
ds´j

`

ż

tη´j ¨s´j`ηiaiă1u

p1´ ηiai ´ η´j ¨ s´jqe
´

1´ηiai´η´j ¨s´j
ηj

´Σs´j ηi
ηj
ds´j

ff

and

BZ

Bai
“
B

Bai

«

ż

A´i

˜

ż 8

si“
p1´ηiai´η´i¨s´iq

`

ηi

p1´ Σηqe´sidsi

¸

e´Σs´ids´i

ff

“

ż

tη´i¨s´i`ηiaiă1u

p1´ Σηqe
´

1´ηiai´η´i¨s´i
ηi

´Σs´ids´i.

In the expression for BY
Bai

, we change the variables from s´j “ ps´i´j, siq to s´i “

ps´i´j, sjq by leaving s´i´j unchanged and defining sj “
1´ηiai´ηisi´η´i´j ¨s´i´j

ηj
. This change

of variable implies:

ż

tη´j ¨s´j`ηiaiă1u

p´ηiqe
´

1´ηiai´η´j ¨s´j
ηj

´Σs´j
ds´j

“

ż

tη´i¨s´i`ηiaiă1u

p´ηjqe
´

1´ηiai´η´i¨s´i
ηi

´Σs´ids´i

and
ż

tη´j ¨s´j`ηiaiă1u

p1´ ηiai ´ η´j ¨ s´jqe
´

1´ηiai´η´j ¨s´j
ηj

´Σs´j ηi
ηj
ds´j

“

ż

tη´i¨s´i`ηiaiă1u

ηjsje
´

1´ηiai´η´i¨s´i
ηi

´Σs´ids´i.

Combining the above expressions of BX
Bai

, BY
Bai

and BZ
Bai

with equation (38), we get

t
1

ipaiq “

ż

tη´i¨s´i`ηiaiě1u

∇iqpai, s´iqe
´Σs´ids´i

`

ż

tη´i¨s´i`ηiaiă1u

ηie
´

1´ηiai´η´i¨s´i
ηi

´Σs´ids´i (39)

“

ż

A´i

∇iqpai, s´iqwipai, s´iqe
´Σs´ids´i,

where in the second equality we used the fact that ∇iqpai, s´iq “ ηi and wipai, s´iq “

e
ηiai`η´i¨s´i´1

ηi if η´i ¨ s´i ` ηiai ă 1, and wipai, s´iq “ 1 if η´i ¨ s´i ` ηiai ě 1.
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Finally, suppose a bidder receives a signal si in I; by bidding s1i instead of si in M, his
interim expected transfer is changed by

tips
1
iq ´ tipsiq “

ż s1i

ai“si

t
1

ipaiqdai

“

ż

A´i

ż s1i

ai“si

∇iqpai, s´iqwipai, s´iqdai e
´Σs´ids´i

ě

ż

A´i

ż s1i

ai“si

∇iqpai, s´iqwipsi, s´iqdai e
´Σs´ids´i

“

ż

A´i

pqips
1
i, s´iq ´ qipsi, s´iqqwipsi, s´iqe

´Σs´ids´i

where we applied (39) and exchanged the order of integration in the second line, and the
inequality in the third line follows because ∇iqpai, s´iq ě 0 and wipai, s´iq increases with
ai. This shows that the truthtelling β is an equilibrium of pM, Iq.

Proof of Theorem 1. Fix a tuple pM, I, βq that satisfies the hypotheses of Theorem 1.
Proposition 1 implies condition 1 for pM, I, βq to be a strong maxmin solution, Proposition
2 implies condition 2, and Proposition 3 implies condition 3.

5.2 Proof of Theorem 2

Lemma 3. Suppose that q satisfies the hypotheses of Theorem 1. Then

ż

A

Ξpa; qq expp´Σaqda “ 0.

Proof of Lemma 3. The paragraph following equation (35) implies that

N
ÿ

i“1

“

wipaqλip1q ` p1´ wipaqqλip0q
‰

“ wpaq ¨∇qpaq ´ Ξpa; qq

for all a P A, since wpaq “ 1 whenever η ¨ a ě 1.
The ex ante expectation of Ξ is therefore the sum over i of the integrals

ż

A

wipaq∇iqipaq expp´Σaqda´ pviλip1q ´ p1´ pviqλip0q.

Integrating by parts and using the fact that qip0, a´iq “ 0 and the definition of λ, this is

ż

A´i

ˆ
ż

Ai

pwipaq ´∇iwpaqqqipaq expp´aiqdai

˙

expp´Σa´iqda´i ´
Π

N
.
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Summing across i, we get

ż

A

N
ÿ

i“1

pwipaq ´∇iwpaqqqipaq expp´Σaqda

“

ż

taPA|η¨aě1u

N
ÿ

i“1

qipaq expp´Σaqda´ Π “ 0,

since wipaq ´∇iwpaq “ 0 when η ¨ a ă 1, and Σqpaq “ 1 when η ¨ a ě 1.

Proof of Theorem 2. We show that condition 4 of Theorem 1 is satisfied. Equation (33)
implies that

ξipa; qq “ ∇itpaq ´ tipaq

for all a P A. Given the definition of ξipa; qq in (32), ∇ ¨ tpaq ´ Σtipaq “ Ξpa; qq follows by
telescoping the summation over i for each fixed permutation ζ and noticing that τζ,Npa; qq “
Ξpa; qq and τζ,0pa; qq “ 0 (by Lemma 3). Finally, to show that t is bounded, by equation
(33) and the fact that Ξ is bounded it suffices to show that

ż 8

xi“0

ξipxi, a´i; qq expp´xiqdxi “ 0,

for every a´i P A´i. The above equation follows from the definition of ξ in (32) since it is
easy to see that

ż 8

xi“0

τζ,ζpiqpxi, a´i; qq expp´xiqdxi “ τζ,ζpiq´1pai, a´i; qq,

where the right-hand side does not depend on ai.

6 Discussion

In this section, we discuss three further topics: What happens as the number of bidders
grows large, how the profit guarantee varies with the bidders’ expected values, and the set
of maxmin mechanisms.

6.1 The many-bidder limit

Consider the symmetric model, in which all bidders have the same expected value, equal
to pv1. What happens to the profit guarantee as we take the number of bidders to infinity?
Theorem 2 shows that for every N , the min-max information structure has pure common
values. In fact it is the min-max information structure for the pure common value model in
which all bidders have a value of 0 with probability 1´pv1 and a value of 1 with probability
pv1. Proposition 7 of Brooks and Du (2020a) shows that as the number of bidders grows
large, optimal profit in this information structure converges to the expected value, which is
pv1. A fortiori, in the present model where we only know each bidder’s expected value, the
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profit guarantee must also converge to pv1. Since the model is symmetric, this asymptotic
guarantee is obtained by proportional auctions.

Note that this bound is unimprovable: Clearly, it is always possible for Nature to pick
an information structure such that bidders’ values are perfectly correlated, in which case
the efficient surplus is pv1. For such an information structure, optimal profit can never be
greater than pv1, so this is an upper bound on the profit guarantee.

This finding is closely related to results of He and Li (2020) and Che (2020). Both of
these papers consider max-min auction design when the correlation between bidders values
is ambiguous. In contrast to the present paper, they assume that values are private, i.e.,
for every bidder i, the signals of bidders ´i are uninformative about vi conditional on
si. He and Li (2020) assume a fixed and symmetric marginal distribution of each bidder’s
interim expected value, whereas Che (2020) only constrains the expectation of each bidder’s
value (as in the present paper). These papers conclude that the truthful equilibrium of the
second price auction asymptotically attains the optimal profit of pv1.7 In comparison, the
proportional auctions have the same asymptotic profit guarantee, but this guarantee is
attained in all equilibria and even if values are not private.

6.2 Varying expected values

Suppose that the mechanism pq, tq is a maxmin mechanism for the profile of expected values
pv “ ppv1, . . . , pvNq. We may ask, how would this mechanism perform if instead the expected
values changed to pv1? As previously observed in Brooks and Du (2020a,b), there is a simple
way to bound the performance of the mechanism as we change the expected values. Careful
examination of the proof of Proposition 2 shows that the argument goes through when the
expected values are pv1, but we arrive at the lower bound on profit

N
ÿ

i“1

“

p1´ pv1iqλip0q ` pv1iλip1q
‰

, (40)

where λ is defined by (29) using pv. This expression is a continuous and linear function of
pv1. Thus, the profit guarantee for pq, tq varies smoothly as we vary pv.

This argument has a further implication for how the profit guarantee varies with pv.
Suppose pq, tq is the maxmin mechanism with value multiplier λ. Now suppose that the
expected values increase to pv1 ě pv. Since λip1q ě λip0q for each i, it must be that the
lower bound on profit in pq, tq is higher at expected values pv1 than at pv. A fortiori, maxmin

7A subtle difference is that He and Li (2020) use the second-price auction without reserve price, whereas
Che (2020) uses a random reserve price.
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profit at pv1 must be greater than (40).8 We therefore conclude that the profit guarantee is
non-decreasing in pv.

The value multiplier λ plays a similar role in the common value case studied in Brooks
and Du (2020a). In that setting as well, λ is a non-decreasing of the common value, so that
the profit guarantee is non-decreasing in the distribution of the common value in the sense
of first-order stochastic dominance. More broadly, we conjecture that the profit guarantee
is non-decreasing in the value distribution.

6.3 Other maxmin auctions

In the discussion preceding Theorem 2, we constructed a particular strong maxmin solution
in which the mechanism has the weighted proportional form, and the transfer is given by
(31)–(33). As Corollary 1 shows, there are generally other solutions to the excess growth
equation, and in fact the proportional transfer is a distinct solution to that defined by
(31)–(33). Moreover, there also exist strong maxmin solution with distinct allocation rules.
In fact, the argument in Theorem 2 shows that as long as the allocation rule q satisfies
conditions 2 and 3 of Theorem 1, then the transfer rule defined by (31)–(33) will complete
a mechanism that is part of a strong maxmin solution.

An example of such an allocation is the following Shapley rule: Each bidder submits a
message ai. Bidders are then randomly ordered, with all orders being equally likely. Let
us denote by ik the kth bidder in the realized order. Then bidder ik’s allocation is equal to

min

#

ηiai,max

#

1´
ÿ

k1ăk

ηik1aik1 , 0

++

.

In words, each bidder i “requests” ηiai units of the good. Bidders are “served” in order,
and a bidder either receives the lesser of their request and the remaining amount of the
good. Clearly, if η ¨ a ă 1, then all bidders demands are met, regardless of the order, and
∇q “ η. If η ¨ a ě 1, then under every order, some bidder will not receive their demanded
amount. When this happens, the bidder’s allocation is insensitive to their action. Hence,
for every action profile, ∇qpaq ď η.

It is interesting to note that this allocation is also part of a maxmin mechanism in the
common value model. This was shown by Bergemann, Brooks, and Morris (2016) when
there are two bidders, and generalized to many bidders in an early working paper version
of Brooks and Du (2020a) (available from the authors upon request).

Another example is the “consistent” rule of Aumann and Maschler (1985), which re-
duces to the Shapley rule when N “ 2 but differs for N ą 2. In particular, if we let

8To make this statement rigorous, we need to show that the mechanism pq, tq has an equilibrium at the
min-max information structure for pv1. A minor complication is that the action and signal spaces are non-
compact. It is straightforward to compactify the signal space in the min-max information structure, since
the interim expected value is constant when η ¨ s ě 1. The max-min auction is only slightly more subtle,
since the proportional rule used in Theorem 2 is not continuous at infinity (although the transfer rule is
continuous at infinity). However, as we observe in Section 6.3, there are other max-min allocations that
satisfy the hypotheses of Theorem 1 and are continuous at infinity, so that equilibrium existence follows
immediately from the results of Milgrom and Weber (1985).
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fipd1, . . . , dNq denote the share of agent i under the consistent rule when there is a unit
surplus to be divided among the N agents, and each agent i demands di. As shown by
Aumann and Maschler, Bfipdq{Bdi P t0, 1{2, 1u. Thus, if we define the allocation rule
qipaq “ fipη1a1, . . . , ηNaNq, then ∇iqpa P t0, ηi{2, ηiu, as required by Theorem 1.

Brooks and Du (2020a) also shows that when the distribution of the value does not have
an atom at the top, we select for the proportional rule as the unique max-min allocation
when actions are sufficiently large. Whether it is possible to select for the proportional
allocation in the present setting is an interesting question for future work.

7 Conclusion

This paper has considered optimal auction design according to a notion of profit maxi-
mization that is robust to both the bidders’ information and the correlation between their
values. In contrast to prior work on informationally-robust auction design, we have as-
sumed that bidders have arbitrary interdependent values, with the only restriction being
that each bidder’s valuation for the good has a known expectation. We have constructed
an information structure that minimizes maximum equilibrium profit. We have also char-
acterized and constructed mechanisms that maximize minimum equilibrium profit across
all information structures. These statements remain true regardless of how an equilibrium
is selected.

In previous work, we identified the novel class of proportional auctions. We showed
that these mechanisms are max-min optimal when bidders have common values. A no-
table conclusion of the present paper is that proportional auctions continue to be max-min
mechanisms when bidders have arbitrary interdependent values, as long as all bidders have
the same expected value. This is a strong argument in favor of the robust optimality of
proportional auctions.

More broadly, we have characterized maxmin mechanisms when bidders are asymmetric.
The maxmin allocation rules are essentially the same as those in the symmetric case, except
that we weight each bidder’s action. In extreme cases, bidders are given zero weight, in
which case they are excluded from the auction altogether. Otherwise, this is merely a
change of units for actions. The transfer rules are different. For example, the proportional
transfer is no longer part of a maxmin mechanism, even under a change of units. An
important direction for future work is to identify simple and tractable maxmin transfer
rules when bidders are asymmetric.
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