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Abstract

A profit-maximizing Seller has a single unit of a good to sell. The bidders have a
pure common value that is drawn from a distribution that is commonly known. The
Seller does not know the bidders’ beliefs about the value and thinks that beliefs are
designed adversarially by Nature to minimize profit. We construct a strong maxmin
solution to this joint mechanism design and information design problem, consisting
of a mechanism, an information structure, and an equilibrium, such that neither
the Seller nor Nature can move profit in their respective preferred directions, even
if the deviator can select the new equilibrium. The mechanism and information
structure solve a family of maxmin mechanism design and minmax information design
problems, regardless of how an equilibrium is selected. The maxmin mechanism
takes the form of a proportional auction: each bidder submits a one-dimensional bid,
the aggregate allocation and aggregate payment depend on the aggregate bid, and
individual allocations and payments are proportional to bids. We report a number
of additional properties of the maxmin mechanisms, including what happens as the
number of bidders grows large and robustness with respect to the prior over the value.
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1 Introduction

1.1 Background and motivation

We study the design of profit-maximizing mechanisms when the bidders have a pure com-
mon value for the good being sold, but partial and differential information about that value.
Potential applications include the sale of natural resources or financial assets, where to a
first order all bidders have the same preferences over the market value of the resource or
the future cash flows of the asset.

Although common-value auctions have been studied since the early days of auction
theory, relatively little is known about optimal common-value auctions. When bidders’
signals are independent and one-dimensional, Bulow and Klemperer (1996) have argued
that a variation of the English auction is optimal under a condition that signals associated
with higher expected values are not too precise. In the perhaps more natural case where
signals are correlated through the common value, such as in the mineral rights model,
McAfee, McMillan, and Reny (1989) and McAfee and Reny (1992) construct mechanisms
that extract virtually all of the surplus by having the bidders bet on other bidders’ infor-
mation. While the full-surplus extracting mechanisms are theoretically interesting, there
are a number of reasons why they may not be practically useful, including that the designer
may not know exactly how information is correlated, and the optimal mechanism may be
too complicated for bidders to use.

This discussion points to some conceptual challenges in optimal auction design. First,
optimal mechanisms vary widely with the model of bidders’ information, e.g., whether
and how signals are correlated. At the same time, it is hard to determine, either through
measurement or introspection, which model of information is empirically relevant, and
hence which of the potentially optimal mechanisms is appropriate. Moreover, relatively
little is known about how optimal mechanisms behave if the model is misspecified, which
raises the question of whether Bayesian optimal mechanisms should be used in the presence
of such model uncertainty. Note that these problems also arise in non-common value
mechanism design. When values are private, these concerns are partially allayed by the
broad consensus that the independent private value model is a useful benchmark. In
contrast, there is no comparably canonical model when values are common.

To address these issues, we model a Seller who knows the distribution of the common
value, but regards bidders’ beliefs and higher-order beliefs about the value as ambiguous.
These beliefs are modeled as a common-prior information structure. The Seller is con-
cerned about model misspecification, and believes that the information structure is chosen
adversarially by Nature to minimize equilibrium profit.

1.2 Main results

This joint mechanism design and information design problem is not a standard zero-sum
game, as a given mechanism and information structure need not have a unique equilibrium.
What is the resulting profit level when there are multiple equilibria, or, for that matter, if
no equilibrium exists? We address the issues of equilibrium multiplicity and existence by
employing a new solution concept: A strong maxmin solution is a triple of a mechanism, an



information structure, and an equilibrium strategy profile, with the property that neither
the Seller nor Nature can move equilibrium profit in their respective preferred directions
by changing the mechanism or information structure, respectively, even if the deviator can
select the equilibrium. In other words, the mechanism and equilibrium maximize profit
holding the information structure fixed, and the information structure and equilibrium
minimize profit holding the mechanism fixed, and these statements remain true regardless
of how an equilibrium is selected. This solution can be interpreted as Nash equilibrium of
the game in which the Seller chooses mechanisms and an adversarial Nature chooses infor-
mation structure and a particular equilibrium is played, and it remains a Nash equilibrium
regardless of which equilibrium is selected. The solution has an associated profit guaran-
tee, which is both a tight lower bound on equilibrium profit for the mechanism across all
information structures, and a tight upper bound on equilibrium profit for the information
structure across all mechanisms.

Our main result (Theorem 1) is the construction of a strong maxmin solution. The
maxmin mechanism is what we term a proportional auction: Bidders submit one-dimensional
bids. The aggregate allocation (the total probability the good is allocated) and the ag-
gregate transfer (the sum of the bidders’ payments) depend only on the aggregate bid.
Individual allocations and transfers are proportional to bids.! In benchmark cases, the
aggregate allocation is linearly increasing in the aggregate bid until it hits one and is con-
stant thereafter. An interpretation is that bids are “demands” for a quantity of the good,
which are completely filled when the aggregate demand is less than the available supply,
and otherwise the good is rationed proportionally. Bidders pay a constant price per-unit
that depends only on the aggregate bid.

In the minmax information structure, bidders’ signals are i.i.d. draws from the standard
exponential distribution, and the expectation of the value given the signals depends only
on the aggregate signal. Finally, in equilibrium, each bidder submits a bid that is equal to
their signal.

When the number of bidders is large, the profit guarantee is approximately the entire
ex ante gains from trade, i.e., the expectation of the value under the prior minus the cost of
production (or zero if the expected value is less than the cost). The guarantee also seems
to be a substantial share of surplus even when the number of bidders is small. For example,
when there are two bidders and the value is standard uniform and production is costless,
the maxmin proportional auction guarantees the Seller at least 56 percent of the expected
value as profit.

Before presenting our main theorem, we give a heuristic derivation of the solution. First,
the minmax information structure is constructed so that the Seller is indifferent between a
wide range of mechanisms. In particular, the Seller is indifferent between all mechanisms
with the same aggregate allocation, and whenever the optimal mechanism rations the good,
the Seller is indifferent between allocating and not allocating.

'Proportional auctions can be seen as a generalization of the Tullock contest, which corresponds to the
case where the good is always allocated and the aggregate transfer is linear in the aggregate bid. The
closest real-world auction that we can find are the “voucher auctions” used to privatize Soviet state assets
in the 1990s (Krishna, 2009, p. 184).



The mechanism is then constructed to be a profit maximizing direct mechanism on
the minmax information structure with the additional property that the optimal profit at
the minmax information is minimum equilibrium profit across all information structures.
Importantly, messages in the maxmin mechanism are “normalized” to be signals in the
minmax information structure. We refer to this as the double revelation principle: The
maxmin mechanism is a profit-maximizing direct mechanism on the minmax information
structure, and the minmax information structure is a profit-minimizing correlated equilib-
rium on the maxmin mechanism. The existence of a solution of this form is a non-trivial
result, and it does not follow from the standard revelation arguments.

The requirement that profit be minimized at the minmax information structure reduces
to a pair of differential equations involving the mechanism’s allocation and transfer rules.
The first equation pins down the divergence of the allocation rule, which we refer to as the
aggregate allocation sensitivity. The second differential equation, which we refer to as profit-
incentive alignment, links ex post profit to the bidders’ local incentives. In particular, it
pins down the difference between the divergence of the transfers and the aggregate transfer,
which we term the aggregate excess growth. The proportional auction solves these two
equations and also satisfies the revelation constraints at the minmax information structure.

In the definition of a strong maxmin solution, the profit guarantee is only compared
with profit in other equilibria, where we hold fixed the mechanism and vary the information
structure, or vice versa. It is possible that there are alternative strong maxmin solutions
with different profit guarantees, but this can only happen if either the Seller or Nature
cannot deviate to the objects we construct because it leads to a game with no equilibria.
A distinct but related concern is that minor modifications to the maxmin mechanism, such
as discretizing or bounding the message space, would lead to qualitatively new equilibria
that dramatically change the profit guarantee.

We address these questions of uniqueness and robustness of the strong maxmin solution
in the following manner. A solution is finitely approximable if there are finite mechanisms
and finite information structures with associated profit guarantees that are arbitrarily close
to the solution’s profit guarantee. We show that our solution is finitely approximable
(Theorem 3). Moreover, any finitely approximable solution must have the same value
(Theorem 4). In fact, the approximating finite mechanisms are simply discrete proportional
auctions, and the finite information structures correspond to finite partitions of signals in
the minmax information structure. If we restrict the Seller and Nature to finite mechanisms
and information structures, respectively, then these approximations attain the sup-inf and
inf-sup of profit, regardless of the equilibrium selection rule (Corollary 1). Thus, the strong
maxmin solution we construct is a limit of e-equilibria of the zero-sum game in which the
Seller and Nature choose finite mechanisms and finite information structures, respectively.

As a last topic, we consider the behavior of maxmin proportional auctions as the number
of bidders grows large and the value distribution and cost are held fixed. In the many-
bidder limit, the optimal profit guarantee converges to the ex ante gains from trade. This
generalizes an analogous result of Du (2018) when there is common knowledge of gains
from trade. Moreover, this limit obtains even if the good is always sold, and at the same
optimal rate of O(1/ VN ). Finally, we show that the profit guarantee converges to the ex
ante gains from trade even if the prior is misspecified.



The maxmin modeling approach allows us to identify new mechanisms with desirable
theoretical properties that hold uniformly across information structures and equilibria.
There is a conceptual tension, however, between the extreme ambiguity aversion of the
Seller and the common knowledge of the information structure among the agents. In par-
ticular, why does the Seller not simply ask the agents to report the information structure?
In our view, the information structure and Bayes Nash equilibrium are an as-if description
of behavior, which we hope is a reasonable approximation. We do not want to interpret
these objects literally as something that either the Seller or the bidders could fully articu-
late. The maxmin mechanism does not require the bidders to report higher order beliefs,
nor does the Seller need to specify a model of beliefs in order to compute the maxmin
mechanism. In that sense, it is consistent with real-world limitations on knowledge and
communication.? That being said, the assumption of large ambiguity is as extreme as the
assumption that the Seller knows the information structure exactly. We view it as a bench-
mark and a starting point for future work on informationally-robust optimal mechanisms.
We return to this point in the conclusion of the paper.

1.3 Related literature

This paper lies at the intersection of the literatures on mechanism design and information
design. We build on the seminal paper of Myerson (1981) on optimal auction design, and
also subsequent work by Bulow and Klemperer (1996). We also draw heavily from the
literature on robust predictions (Bergemann and Morris, 2013, 2016).

The most closely related papers are Du (2018) and Bergemann, Brooks, and Morris
(2016). Du (2018) solves our maxmin mechanism design problem in the limit as the number
of bidders goes to infinity and the production cost is zero. Specifically, Du constructs a
sequence of mechanisms and associated lower bounds on profit that converge to the expected
surplus in the many-bidder limit. The mechanisms from Du (2018) do not achieve the
optimal profit guarantee when the number of bidders is finite and more than one.? In
contrast, Bergemann, Brooks, and Morris (2016) construct what is essentially a strong
maxmin solution for the special case of two bidders and two possible values. Interestingly,
the minmax information structure they identify coincides with the one we construct, but
the maxmin mechanisms are different. We discuss this further in Section 5.

Chung and Ely (2007), Yamashita (2016), and Chen and Li (2018) also study maxmin
mechanism design when the Seller does not know the information structure but when values
are private and when the Seller preferred equilibrium is selected. In contrast, we focus on a
common value environment. Other conceptually related studies of robust mechanism design
are Neeman (2003), Brooks (2013), Yamashita (2015), Carroll (2017), Bergemann, Brooks,
and Morris (2019), and the literature on algorithmic mechanism design (e.g., Hartline and
Roughgarden, 2009).

2To be sure, some features of the information structure are relatively easy to express, such as first order
expectations. But we are skeptical as to whether real-world bidders or auction designers can describe the
fine details of higher order beliefs.

3Du (2018) also solves the present problem in the case of one bidder. With one bidder and binary
values, our model reduces to that of Carrasco et al. (2018).



The rest of the paper proceeds as follows. Section 2 describes our model and solution
concept. Section 3 informally derives the strong maxmin solution. Section 4 presents the
main result. Section 5 discusses uniqueness of the profit guarantee. Section 6 explores the
many-bidder limit. Section 7 is a conclusion.

2 Model

2.1 Primitives

A Seller has a unit of a good that can be sold to one of N > 2 bidders. The bidders
have a pure common value for the good v which is distributed according to the cumulative
distribution function H on R, = [0,00). The support of H, denoted V', is assumed to be
bounded, with v and ¥ denoting the minimum and maximum, respectively. We also assume
that v < 0.

Bidders’ preferences over probabilities of receiving the good, ¢;, and the amount they
pay for it, ¢;, are represented by the state-dependent utility index vq; — t;.

The good costs ¢ > 0 to produce. The Seller’s profit from the profiles of allocations
q = (q1,--.,qn) and transfers ¢t = (t1,...,ty) is Zi]\il(ti — ¢gq;). We assume that the
expected value is strictly larger than c.’

For technical reasons, we assume that the left tail of H is not too thin. To state the
precise condition, we need the following definition: For a cumulative distribution F' on R,
the associated quantile function is

F (@) =min{z | F(z) > a}

Because I is increasing and right-continuous, the set of values with cumulative probability
higher than « is closed, so this minimum is well-defined. Now, let G denote the distri-
bution of the sum of N independent draws from the exponential distribution with unit
arrival rate, also known as an Erlang distribution, which is a special case of the Gamma
distribution. (This object features prominently in our analysis and is given explicitly in
equation (15) below.) The first part of the left-tail assumption is that there exist € > 0
and ¢ > 1 such that, for all z € [0, €],

H Y Gn(z)) —v < 2%

The second part of the left-tail assumption is that if v > ¢, then there exists an € > 0 such
that, for all 2/, z € [0, €] such that 2/ < x,

H Y (Gy(z)) —c

H (G () —e = P

41f not, then the value is common knowledge, and the Seller can easily extract all the surplus.
®Otherwise, a trivial solution is that bidders have no information and the good is not sold.



These assumptions are satisfied if there is a mass point at v (which implies H}(Gy(z)) = v
for x sufficiently small) or if H has a density that is bounded away from zero around v.°

2.2 Information

Fix cumulative distributions F; and F;. Recall that Fi is a mean-preserving spread of
Iy if there exist a probability space and random variables X; and X, such that X; has
distribution Fj, X5 has distribution Fy, and E[X;|X3] = X5. Equivalently, for all x € R,

| - Ew o )
Yy=—00
and this holds with equality when = = oo (Blackwell and Girshick, 1954; Rothschild and
Stiglitz, 1970).

An information structure S consists of (i) a measurable set .S; of signals for each bidder
i, (ii) a joint distribution 7 € A(S) where S = x¥,S;, and (iii) a function w : S — R such
that H is a mean-preserving spread of the distribution of w(s). For a profile of signals s,
w(s) represents the interim expectation of v conditional on s.”

2.3 Mechanisms

A mechanism M consists of measurable sets of messages M; for each ¢ and measurable
mappings ¢; : M — [0,1] and ¢; : M — R for each i, where M = x,M; is the set of
message profiles, such that Zf\il gi(m) < 1. For technical reasons, we assume that t; is
bounded below (although it may be negative).

We further restrict attention to mechanisms that satisfy a condition we call participation
security: For every i, there exists 0 € M; such that v ¢;(0,m_;) — t;(0,m_;) > 0 for every
v € V and every m_; € M_;. By sending this message, bidder ¢ is assured a non-negative
payoff ex post, no matter what messages are sent by the other bidders.

2.4 Equilibrium

A mechanism M and an information structure S comprise a game of incomplete informa-
tion. A (behavioral) strategy for bidder i is a transition kernel 5; : S; — A(M;). A profile
of strategies f = (51, ..., ) is identified with a transition kernel that associates to each
s € S the product measure f;(s1) X - -+ X fy(sy) on A(M).

If v > ¢ and H has a density h(v) > b > 0 for v € [v,v + €], then

dH " (Gn () gn (x) gn(z)  dlog(H ' (Gn(x)) — o) gn (x)

gn ()

dx CMH(GN(@) T b dx - (HH(Gn(@) =) - h(H 1 (Gn(2)))

whenever Gy (z) < H(v + €), where gy is the density for Gy. As is evident from the formula for gy in
(14) below, gn(z) — 0 at a rate of  (or faster) as x — 0. Thus, there exists an € > 0 such that for every
z € [0,¢], HY(Gn(z)) —v < a¥ for ¢ € (1,2) and d (log(H ' (Gn(x)) — ¢)) /de < 1. This implies the
left-tail assumption.

"This definition is equivalent to one in which we specify the joint distribution of the signals and the
value. Since the interim expectation is the key object in our analysis, this formulation simplifies notation.

<

(v—2c)b



Given a strategy profile 5, bidder ¢’s payoft is

UAM.S. ) = / /M (w(s)gs(m) — t:(m))B(dm|s)n(ds).

Note that since w, ¢, and —t are all bounded above, this integral is always well-defined. A
strategy profile 5 is a (Bayes Nash) equilibrium if for all i and strategies f3,

The set of equilibria is denoted by B(M,S). Expected profit is

(M. S, 5) = / /M S (ts6m) = as(m))3(dms)(ds)

2.5 Solution concept

We will shortly introduce the solution concept employed in this paper. This solution concept
is motivated by the following simultaneous-move game between Seller and Nature: Fix a
measurable set X. Define M(X) to be the set of participation-secure mechanisms in which
each bidder’s message space is of the form M;U{1, ..., k;} for some measurable M; C X and
some non-negative integer k;. Similarly define S(X) to be the set of information structures
where signal spaces are of the form S; U {1,...,k;} for some measurable S; C X and some
non-negative integer k;.®> Let B(X) denote the set of all selections from the equilibrium
correspondence B on the subset of M(X) x S(X) for which an equilibrium exists. Given a
selection 5* € B(X), we define the game G(X, f*) where Seller and Nature simultaneously
choose actions in M(X) and S(X). The Seller’s payoff is II(M, S, (M, S)) and Nature’s
payoff is —II(M, S, 5*(M,S)) if B(M,S) # (), and both parties’ payoffs are minus infinity
it BIM,S) = 0.

By fixing the equilibrium selection, we have formulated the joint mechanism design and
information design problem as a standard non-cooperative game. A Nash equilibrium of
this game (M,S) is non-trivial if a bidder equilbrium exists for the game (M,S). Such
an equilibrium can be understood as a pair of an informationally-robust mechanism and
a worst-case informational environment, which rationalize one another as optimal, given
the equilibrium selection rule.? A concern with this modeling approach is that whether
(M,S) is a Nash equilibrium may depend on the particular equilibrium selection rule.
This motivates us to consider pairs (M, S) which are non-trivial Nash equilibria for all
selections 3*.19 As Proposition 1 below shows, this notion of a “selection-invariant” non-

8The finitely many extra messages and signals allows us to add messages to direct revelation mechanisms
in order to make them participation secure. This construction is used in the proof of Proposition 1.

9By assuming that the payoff from bidder-equilibrium non-existence is minus infinity, we implicitly
restrict the Seller to only consider mechanisms for which an equilibrium exists on S, and correspondingly
for Nature. We can view this as capturing a belief of the Seller that the information structure S is possible,
and that they must ensure the mechanism is well behaved in that environment.

10Many mechanisms with multiple equilibria can be perturbed to select a particular equilibrium, with a
negligible effect on profit. For this reason, it is not surprising that Nash equilibrium payoffs in G(X, 5*)
are invariant to 5*. Nonetheless, the equilibrium selection rule could have a significant impact on which
mechanisms and information structures are part of Nash equilibria.



trivial Nash equilibrium is equivalent to the following solution concept: A strong mazmin
solution consists of a triple (M,S, ) of a mechanism, an information structure, and a
strategy profile, with profit IT = I[I(M, S, 8), such that the following are satisfied:

1. For any mechanism M’ and any equilibrium 5’ of (M’,S), II > I[I(M', S, f);
2. For any information structure &’ and any equilibrium 3’ of (M, S’), II < II(M, S, 5);
3. (B is an equilibrium of (M, S).

We refer to I as the profit guarantee of the solution.!!

Conditions 1 and 2 say that the Seller and Nature cannot improve their payoftf by
deviating, even if the deviator selects the equilibrium. Condition 3 says that the profit
guarantee is not vacuous, and there exists an equilibrium at which II is attained. In fact,
the definition implies that for a strong maxmin solution (M, S, ), all equilibria of (M, S)
must generate profit II.

The following result connects the strong maxmin solution to Nash equilibria of the
previously defined non-cooperativce game:

Proposition 1. Fix a pair (M,S). Then the following are equivalent:
(1) There exist strategies 5 such that (M, S, 5) is a strong mazmin solution.

(i1) There exist an X such that (M,S) is a non-trivial Nash equilibrium of G(X, 5*) for
all B* € B(X).

The proof is a straightforward application of the revelation principles for mechanism
design and information design, and is relegated to the Appendix.

The main result of our paper is the construction of a strong maxmin solution. Propo-
sition 1 shows that we can equivalently interpret this solution as a Nash equilibrium of the
game between Seller and Nature, regardless of how we select an equilibrium.'? How we
should model equilibrium selection depends on a number of considerations. On the one
hand, * could select the profit-minimizing equilibrium if the Seller is concerned for ro-
bustness with respect to equilibrium selection. On the other hand, the literature on partial
implementation typically assumes that the mechanism designer can use their prominence
to coordinate bidders on the designer’s preferred equilibrium. It is therefore normatively
appealing that the solution we construct does not depend on additional assumptions about
equilibrium selection.

' This definition nominally depends on qualifiers over all mechanisms and information structures, which
are of course not well-defined. However, it is clearly without loss to restrict attention to the set of incentive
compatible and participation-secure direct mechanisms on S and truthful equilibria in condition 1 and to
restrict attention to Bayes correlated equilibria on M and obedient strategies in condition 2.

12This invariance criterion is reminiscent of Govindan and Wilson (2009), who look at sequential equi-
librium outcome that is invariant to the extensive form representation of the underlying reduced normal
form.



3 A roadmap to the solution

We rigorously construct a strong maxmin solution at the beginning of Section 4, and
Theorem 1 verifies that the construction is indeed a solution. This section gives an informal
derivation. To be clear, our purpose is to develop intuition, and the proof of Theorem 1
does not depend on the present discussion.

3.1 The structure of the solution

The strong maxmin solution we construct is denoted (M, S, 3). The high level structure is
as follows. Signals in the information structure and messages in the mechanism are elements
of M; = S; = [0,00). In addition, the equilibrium strategies specify that each bidder send a
message that is equal to their signal: for all i and s;, §;(s;) = s;. Thus, a common language
is used for signals and messages. One interpretation is that the maxmin mechanism M is a
direct mechanism on the minmax information structure S, whereby a message is a “report”
of which signal a bidder received, and bidders report truthfully in equilibrium. An equally
valid interpretation is that S is a Bayes correlated equilibrium (BCE) on M, whereby a
signal is a “recommendation” of a message to send, and in equilibrium, bidders obey their
recommendations.

If we held the information structure fixed and maximized profit across mechanisms and
equilibria, then the well-known revelation principle (Myerson, 1981) says that it is without
loss of generality to restrict attention to direct mechanisms. Similarly, if the mechanism
were fixed and we minimized profit across information structures and equilibria, then it is
without loss to restrict attention to BCE, which is a kind of revelation principle for games
(Bergemann and Morris, 2013, 2016). In the present model, both the mechanism and the
information structure are endogenous, so the standard revelation arguments do not apply.!?
It is therefore a result that there exists a solution that admits the same normalization. We
refer to this as the double revelation principle.

3.2 The minmax information structure

We next describe the rest of the minmax information structure S, from which we subse-
quently derive the maxmin mechanism. First, signals in S turn out to be independently
distributed. This is intuitive, for if signals were correlated, the Seller could extract surplus
by having bidders make bets about others’ beliefs, similar to the full-surplus extracting
mechanisms mentioned in the introduction (although it may not be possible to extract the
entire surplus).

Given independence, the rest of the form of S can be understood using the celebrated
revenue-equivalence formula of Myerson (1981), suitably adapted to the common value
setting. Let us suppose that the marginal distribution of each signal s; admits a density f;.

13Holding information fixed, any mechanism M and equilibrium 3 have an equivalent direct mechanism
M’ in which truth telling is an equilibrium. But M’ may have other equilibria with no counterpart in
M, and our solution concept considers how profit varies across all equilibria. Similarly, replacing a given
information structure and equilibrium with the corresponding direct information may lead to a qualitatively
different set of equilibria.

10



Revenue equivalence says that expected profit is, up to a constant, the expectation of the
virtual value of the bidder who receives the good. When the value function is differentiable,
the virtual value of bidder ¢ when the signal profile is s is'*1?

1 — Fi(s;) Ow(s)
fi(si) dsi

where F; is the cumulative distribution of bidder ¢’s signal. Thus, the virtual value is equal
to the gains from trade minus an information rent. The latter is the product of the inverse
hazard rate, which is the relative measure of types who receive an information rent when
s; is allocated the good, and Jw(s)/ds;, which quantifies the value of bidder i’s private
information.

Among independent-signal information structures, it is without loss of generality to
normalize the signals to be exponential with a unitary arrival rate:'® Fj(z) = 1 —exp(—x).
As a result, the inverse hazard rate is constant and equal to one, and drops out of the
virtual value formula.

The remaining degree of freedom is the value function w(s). To develop intuition for the
minmax value function, we may ask, which value function would be worst for the Seller?
Drawing on experience from zero-sum games, we might suspect that the worst case would
be associated with indifference between lots of mechanisms. This would roughly mean that
S is hard to respond to, in that while lots of mechanisms perform reasonably well, no
mechanism stands out as exceptional.

In fact, there is a class of value functions that make the Seller indifferent as to who is
allocated the good for every signal profile, namely those of the form w(s) = w(3s), where
s = 81+ -+ + sy is the aggregate signal.'™ (We maintain this convention for the sum of a
vector’s elements throughout the paper.) As a result, the interim expected value is equally
sensitive to all signals, and all bidders have the same virtual value of w(Xs) — ¢ — w'(Xs).

We are still free to choose the particular function of the aggregate signal. An important
variant of our model, discussed in Section 4.3, is the must-sell case, where the good has
to be sold with probability one. This is in contrast to the general can-keep case, where
the Seller can withhold the good. Note that »s has the Erlang cumulative distribution
Gy introduced in Section 2, and gy denotes the associated density.'® All bidders have the
same virtual value, so profit is

hi(s) = w(s) —c—

/ " (w(z) — ¢ — w/(x))gn(x)d. @)

=0

4In the classic formulation of Myerson (1981), bidder i’s virtual value is their value minus the inverse
hazard rate. We obtain this formula if there are bidder-specific values w;(s) and signals are normalized
so that w;(s) = s;, in which case the partial derivative is identically one. The formula reported here is a
special case of one that appears in Bulow and Klemperer (1996).

15Qur formal arguments in Section 4 sidestep the direct calculation of virtual values, to avoid technical
complications associated with whether there is an integral representation for the bidders’ indirect utilities.

16Given any w and Fi, ..., Fy, an equivalent information structure would be one with i.i.d. exponential
signals and the value function w(F; ' (1 — exp(—s1)), ..., Fx'(1 — exp(—sn))).

1T"We hope we do not create confusion by using the same notation for the interim value as a function of
the signal profile and as a function of the aggregate signal.

18Both G and gy have closed-form expressions, given as equations (14) and (15) below.
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Figure 1: Value functions and virtual value functions when N =2, v ~ U[0,1], and ¢ = 0.

This formula assumes that transfers are set so that the bidder with the lowest signal receives
a payoff of zero, which maximizes revenue subject to local incentive compatibility and
participation security (since the latter implies that interim payoffs are non-negative). Note
that the expectation of w(z) must equal the ex ante expected value under H. Thus, to
minimize profit, the value function should maximize the expected slope. This is achieved by
the fully-revealing value function w(x) = H ' (Gy(z)), where H~' is the quantile function
for H. This value function matches aggregate signals and values comonotonically, so that
their percentiles are perfectly correlated. It is fully revealing in that there is no uncertainty
about the value, conditional on the join of the bidders’ information. It is intuitive that
W minimizes profit, since it maximizes the bidders’ private information about the value.
Figure 1 illustrates the fully-revealing value and virtual value functions when N = 2, ¢ = 0,
and v is standard uniform, so that w(z) = Ga(x).

For some value distributions, @ is also the minmax value function when the Seller can
keep the good. This is not the case for the uniform distribution. The right-hand panel of
Figure 1 shows that the virtual value is strictly negative when the aggregate signal is low,
so that the Seller strictly prefers to withhold the good. The Seller can be made strictly
worse off by adding noise to the bidders’ information so that the Seller is indifferent between
selling and not selling. This requires that the virtual value is zero, i.e., w(z) —c—w'(x) = 0.
Equivalently, the gains function v(x) = w(x) — ¢ (for interim expected gains from trade)
is of the form kexp(z) for some k € R,.

In the uniform example, we can replace the fully-revealing gains function 7(z) = w(z)—c
on an interval [0, z*] with an exponential segment, to obtain

() — 7(0)exp(z) if x <z
@) {y(ar) if © > z*.

We choose 7(0) and z* so that H remains a mean-preserving spread of the distribution of
the interim expected value, and so that the exponential curve connects continuously with
the fully-revealing gains function. This is the black curve in Figure 1, which is the minmax
gains function when the Seller can keep the good.

More generally, the sign of the fully-revealing virtual value might switch back and
forth, and there could be many exponential segments. In Section 4.1, we describe a general
procedure that transforms the fully-revealing gains function so that the resulting virtual
value is everywhere non-negative. We refer to this as grading the gains function, meaning we

12



decrease the derivative of the gains function so that it does not grow faster than exponential.
The graded gains and value functions are denoted by 7 and w, respectively, and the resulting
information structure is S. Proposition 2 shows that profit on S is at most

[e.e]
= [ Fa)gy-i(a)ds, )
=0

This formula can be obtained from (2) via integration by parts, using the fact that dgy(x)/dx =
gn-1(7) — gn(x). T+ ¢ is also the largest posted price at which all bidders would be willing

to purchase the good, which is the expectation of the value given a signal s; = 0. Thus, II

is exactly optimal profit on S, and a posted price is an optimal mechanism (although it is
not a maxmin mechanism!)

3.3 Sufficient conditions for an optimal profit guarantee

We now derive a maxmin mechanism M from S. At first glance, it seems that we do not
learn very much from the requirement that M maximize profit on S, because so many
mechanisms are optimal. We learn a great deal, however, from the requirements that (i) S
and # minimize equilibrium profit on M and (ii) minimum profit is II, as we now explain.

Fix a mechanism M with message space M; = S, for all i. As reviewed in the introduc-
tion, the problem of minimizing profit in M across information structures and equilibria
is equivalent to minimizing profit across BCE.!® We briefly review this solution concept.
An outcome of M is a joint distribution over values and message profiles 0 € A(V x M)
such that the marginal distribution of v is H. The associated profit is the expectation of
¥(t — cq) under 0. A BCE is an outcome that is obedient: for all i and m;, m; is a best
response in M; to the distribution of (v,m_;) under o and conditional on m;. An outcome
o is consistent with an information structure S and strategies [ if there exists a kernel
K : S — A(V) such that w(s) is the expectation of V' under the measure K (dv|s) and

o(dv,dm) :/Sﬂ(ds)ﬁ(dmb)l((dms),

i.e., 0 is the marginal on values and messages obtained by integrating out signals. Note
that if o is consistent with & and 3, then they have the same expected profit. It is a
result of Bergemann and Morris (2013, 2016) that an outcome is a BCE if and only if it is
consistent with some S and equilibrium 3.2° A fortiori, minimum profit across all BCE is
equal to minimum profit across all information structures and equilibria.

Let us therefore examine the problem of minimizing profit in M across BCE. It turns out
that the only obedience constraints that are relevant for our problem are those associated

9Note that we do not make explicit use of BCE in Section 4 and in the proof of Theorem 1. Nonetheless,
these ideas are at work “under the hood.”

20Gtrictly speaking, our setup differs from that of Bergemann and Morris in that there are infinitely
many states and actions, and we use a different notion of an information structure. The equivalence in our
setting can be shown by analogous arguments (although we do not provide such an argument as part of
our informal derivation).
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with local obedience, i.e., that for all ¢ and m;,?!

/ (v@quz»m—ﬁ _ Oulmi,m—y) ) o (dv, dm_|m;) = 0.
VxM_;

The problem of minimizing profit subject to the constraint on the marginal distribution of
v and local obedience is an infinite dimensional linear program, for which the associated
Lagrangian is

N

Lo, {ai},\) = Z/VXM(ti(m) — ¢qi(m)) o(dv, dm)

N

+2 / a;(m;) (vaqi<m> - ati(m)) o(dv, dm) (4)

i=1

This Lagrangian has three terms: profit induced by the BCE, the sum of local obedience
constraints times their corresponding multipliers (the functions «;), and the sum of marginal
constraints times their corresponding multipliers (the function \).

Requirement (i) above is equivalent to saying that an outcome that is consistent with
(S, B), denoted by &, minimizes (4). The key properties of & are that messages are i.i.d.
standard exponential and w(Xm) is the conditional expectation of v given m. A necessary
condition for @ to be the profit-minimizing BCE is that for all (v, m),

N

> [tm) = catm) + asfmy) (75 - ZE) | ey 0. )

i1 amz 8771,1

with the constraint holding as an equality for (v, m) in the support of @.

We motivated (5) by treating (g, t) as fixed and o as endogenous. But evaluated at the
putative minimizer @, equation (5) becomes a constraint on the maxmin allocation and
transfer rules, involving the as-yet unspecified multipliers A and {c;}.

In fact, the correct multipliers can be deduced from (i) and (ii). Based on the envelope
theorem, we can guess that A(v) is the derivative of minimum profit in the maxmin mech-
anism with respect to the prior probability of v. From (ii), this should coincide with the
derivative of II with respect to the probability of v, denoted A(v). If not, then by making
v either more or less likely, we could make minimum profit from the maxmin mechanism
increase faster than II. The function X has an explicit formula given in equation (18) below,
and we will shortly use the fact that \ is concave.??

As for the multipliers on local obedience, there is an even simpler answer: «;(m;) = 1
for all 4 and m;. This is suggested by the fact that (4) is very similar to the Lagrangian

21This is suggested by the fact that only local incentive constraints were used in the revenue equivalence
argument that motivated S.

22For each v, the optimal \(v) must satisfy (5) with equality for some m. As a result, ) is the minimum
of a collection of linear functions, indexed by m.
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for the linear program of mazimizing profit given S, where we fix ¢ = @ and optimize over
(gi,t;), and obedience is reinterpreted as incentive compatibility. As is well known, local
incentive constraints bind at the solution, and the optimal multiplier on local incentive
compatibility is the inverse hazard rate, which we have normalized to one.

Substituting in these multipliers and letting Q(m) = X¢(m) denote the aggregate allo-
cation, equation (5) reduces to, for all (v, m),

V- t(m) = Zt(m) < vV - g(m) = AMv) — cQ(m), (6)

where V- is the divergence operator, and the constraint holds with equality on the support
of @, namely, pairs (v, m) such that v = @w(Xm).?® For a fixed m, the value v = w(Xm) must
minimize the right-hand side of (6), and since A is concave and hence right-differentiable,
it must be that

V-q(m) =X (@(Zm)). (7)

We refer to the left-hand side of (7) as the aggregate allocation sensitivity. In fact, X/(@(x))
can be computed in closed form, and we denote it by fi(xz). When the value function is
full-revealing, fi(x) = (N — 1)/x, and on an interval where the value function is graded, &
is a constant that depends on the end points of the interval. The exact formula is given in
equation (17) below.

Substituting (7) into (6), we obtain the following condition on transfers:

V- t(m) — St(m) = D(Em)E(Em) — M@(Sm)) — cQ(m). (8)

The left-hand side of (8) is the aggregate excess growth, i.e., the difference between how
fast the bidders’ transfers grow in their own messages relative to exponential growth. We
refer to equation (8) as profit-incentive alignment, since it links ex post profit, X(t — cq),
to the bidders’ local incentive constraints, vV - ¢ — V - £. This ensures that as long as bids
are locally optimal, profit cannot fall below II.

We have been using the profit-minimization program to derive necessary conditions on
a maxmin mechanism. But as we argue in Proposition 3, these conditions are actually
sufficient for a mechanism to guarantee profit of at least I1.?* Specifically, if a mechanism
is such that the aggregate allocation sensitivity is 1z and the aggregate excess growth and
the aggregate allocation satisfy (8), then profit is at least II in all information structures
and all equilibria. The proof is essentially an application of the weak duality.

3.4 Construction of a maxmin mechanism

The last step is to construct a mechanism that satisfies (7) and (8) and such that truth
telling is an equilibrium at S. Note that the latter condition is logically separate from the
profit lower bound of Proposition 3.

23Recall that w(Xm) is just the conditional expectation of v. It may be that w(¥m) is not even in the
support of H. It is always the case, however, that w(Xm) is in the support of the conditional distribution
of v given ¥m.

24This is true as long as local incentive compatibility (25) holds in any equilibrium. See Lemma 8 below.
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Let us start with the allocation. Consider the case with two bidders. In the must-sell
case we have Q(m) = 1, so ga2(myi,ms) = 1 — q1(my, my), and the aggregate allocation
sensitivity reduces to

0q1(my, mg) _ Oq1(mq, ms) 1

= (9)

omy ome my + me .

Now consider a level curve where m; +ms = x. We can then view the left-hand side of (9)
as the total derivative of ¢; with respect to m, along the parametric curve ma(my) = z—my,
so that integrating both sides, we obtain ¢;(my, ms) = my/z+ C(z) for some function C(-).
In order to have ¢; € [0, 1], we must have C(z) = 0, so the allocation probability is simply
the bidder’s share of the aggregate bid.
More generally, equation (7) is satisfied by the following proportional allocation rule:
1h - )
7m) = {fynQ_“” Lo (10)
F-Q(Xm)  if ¥m >0,

where the aggregate allocation () is a function of the aggregate bid and is chosen so that
induced aggregate allocation sensitivity is f:
_ N—-1—- — _
V- qm) =~ Q(Em) + Q' (Sm) = 5(Sm).
m
In equation (16), we give the explicit solution to this differential equation.

This leaves the transfers. Since @ has been specified, we can denote by = the target
aggregate excess growth, which is equal to the right-hand side of (8) and just depends on
the aggregate bid. Any solution to (8) must be associated with an apportionment of =
among the bidders. Indeed, given such an apportionment, it is straightforward to integrate
a bidder’s excess growth to obtain the implied transfer (cf. the discussion in Footnote 30).

At first glance, there seems to be tremendous flexibility in how we divide the aggregate
excess growth. The danger lurking here is that there is no guarantee, for an arbitrary
solution of (8), that an equilibrium exists on any information structure, let alone S. As a
result, the profit lower bound implicit in (8) may be vacuous.

It turns out that there is a subtle connection between the incentive compatibility of 3
and boundedness of the transfers. In particular, given that the allocation is § and that
transfers satisfy (8), boundedness implies incentive compatibility, and they are equivalent
when N = 2. Some obvious solutions to (8), such as equal sharing of the excess growth, re-
sult in transfers that sometimes diverge to minus infinity as m; grows large.?> We comment
further on this connection in the proof of Proposition 4 and Footnote 30.

Thus, the last step to complete the strong maxmin solution is the construction of a
bounded transfer rule that satisfies (8). These conditions are satisfied by the proportional

ZEqual sharing means that dt;(m)/0m; — t;(m) = Z(Xm)/N. Together with the boundary condition
t;(0,m_;) = 0, this implies the transfer rule ¢;(m) = exp(m;) [, E(z+Xm_;) exp(—x)dz/N. Since the ex
ante expectation of Z is zero (Lemma 11), it must be that [ ° Z(x + ¥m_;) exp(—x)da is zero on average
across m_;. But this integral is non-constant (and generally strictly decreasing in m_;), so sometimes it
must be positive and sometimes negative, in which case the transfer tends to £oo as m; — oco.
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transfer rule:?

() = T(0) if Xm = 0;
T &T(Em)  if Smo> 0,

2|=

(11)

3

where T'(x) is the aggregate transfer:

() = 1290) if & = 0;
s Lo EWen(y)dy it x> 0.

Note that with this functional form for the transfers, when ¥m > 0, (8) reduces to

N -1 — _ —
( — - 1) T(z)+T (z) = Z(x).
It is easily verified that (12) satisfies this differential equation, and hence profit-incentive
alignment is satisfied.

In addition, boundedness of the transfers is equivalent to boundedness of T'(x). L’Hopital’s
rule, combined with the fact that the ex ante expectation of = is zero (Lemma 11), shows
that

lim 7T(x) = lim e lim =(z). (13)

We show below that = is bounded as  — oo, thus verifying that the transfers are also
bounded.

Finally, by construction, participation is security is satisfied with m; = 0. Moreover, we
show below that Z(z) is bounded as # — 0 when Q(0) = 0, and it is approximately (N—1)/z
when Q(z) = 1. Thus, a similar calculation as (13) shows that lim, o 7(z) = vQ(z). As a
result, transfers are continuous at 0, and profit-incentive alignment is satisfied everywhere.

We refer to the mechanism comprised of g and ¢ as a proportional auction. A key feature
of this mechanism that makes it informationally robust is that it equalizes ex post profit
and aggregate ex post local incentives across lots of message profiles. In particular, all
message profiles that have the same aggregate message also have the same revenue, cost,
and divergences of the allocation and transfer rules, so that they all contribute equally to
the weighted sum of profit and local incentives. Thus, just as S induces indifference on the
part of the Seller as to how to allocate the good, M induces indifference on the part of
Nature, as which message profiles should be played, subject to a given aggregate message.

The optimal aggregate allocation and aggregate transfer functions are plotted for the
uniform example in Figure 2. Theorem 1 shows that the proportional auction M, the
additive-exponential information structure S, and the truthful strategies 5 together com-
prise a strong maxmin solution.

26This functional form is suggested by the fact that the aggregate excess growth only depends on the
aggregate bid, and as we have seen with the allocation rule, the divergence of a proportional rule is similarly
only a function of the aggregate bid.
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Figure 2: The minmax aggregate allocation and aggregate transfer rules for m; € [0, 5],
when N =2, v ~ U[0, 1], and ¢ = 0.

4 A Strong Maxmin Solution

We now formally construct and characterize a strong maxmin solution. We first completely
construct the solution in Section 4.1. We then present our main theorem in Section 4.2,
which asserts that constructed triple is indeed a strong maxmin solution. The proof imme-
diately follows. Sections 4.3 and 4.4 discuss two special cases, when the good must be sold
and when the value distribution is single crossing, respectively.

4.1 Construction of the solution
4.1.1 Minmax information

The minmax information structure S is defined as follows. The bidders have signal spaces
Si = [0, 00), and the signal distribution is 7(ds) = exp(—Xs)ds, i.e., signals are independent
draws from the exponential distribution with arrival rate 1.

The aggregate signal x = ¥s has a probability density function

LZ'N_l

gn () = =] exp(—1) (14)

and cumulative distribution function

Gy(z) =1 ga(2). (15)

The value function is defined according to the following grading procedure. Recall that
w(r) = HY(Gy(x)) is the fully-revealing value function, and F(z) = @(x) — ¢ is the
fully-revealing gains function. Let



Also let

E(x) = / ) exp(y)gn (y)dy,

=0

which is strictly increasing, and hence it has a continuous inverse E~'. Let cav(f’ o E71)

denote the smallest concave function that is everywhere above [o E-'. We then set
I' =cav(l'o E7!) o E, and define

L ode

where the derivative is taken from the right. We further define w(z) = 7(x) + ¢. We refer
to 7 and w as the graded gains function and the graded value function, respectively.?”

4.1.2 Maxmin mechanism

We next construct the maxmin mechanism M. The message space is M; = [0, 00).

We define a graded interval to be an interval [a,b] with a < b such that T'(z) = I'(x)
for # € {a,b} and T(z) > ['(z) for = € (a,b). As discussed in Section 3, the allocation and
transfers are proportional, satisfying (10) and (11). The aggregate allocation function is
given by?

0 if x =0 and [0, b] is a graded interval for some b > 0;
Q(z) = ¢ Cla,b)£ + D(a,b)——= if z € [a,b], where [a, ] is a graded interval and a > 0;
1 otherwise,
(16)
and
C(a,b) = ye e D(a,b) = =% _gN-1pN-1,

bN — gV ’ bN — N

The corresponding aggregate allocation sensitivity is

_ C(a,b) if x € [a,b), where [a,b] is a graded interval,
/J(:L‘) =3y No1

(17)

otherwise.

2TThis procedure is evocative of “ironing” in Myerson (1981) and concavification in Kamenica and
Gentzkow (2011). Grading is used to construct the bidders’ information that minimizes the Seller’s profit,
subject to the Seller being always willing to allocate the good and subject to a mean-preserving spread
constraint. In Myerson, ironing is used to construct the mechanism that maximizes the Seller’s profit,
subject to global incentive compatibility. In Kamenica and Gentzkow, concavification is used to construct
a receiver’s information to maximize a sender’s payoff, subject to a mean-preserving spread constraint.
We can find no tight link between these problems, beyond the very high-level connection of optimization
subject to monotonicity and/or mean-preserving spread constraints.

28The functional form of @ on a graded interval [a,b] can be derived from the hypotheses that Q(a) =
Q(b) = 1 and that the aggregate allocation sensitivity is constant for all message profiles m with a < Ym <
b.
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The aggregate transfer T is defined as follows. First, define

[e.9]

Mo =T+ [ @)Grlo)date) ~ [ a6y (W) (18)

where II is the profit guarantee defined in (3), and

() =(2)B(z) - X (@(x)) - cQ(2). (19)

The aggregate transfer is then given by (12).

4.1.3 Strategies

Finally, let B; be the > truthful strategy in the mechanism M under the information structure
S: For all ¢ and s;, 5,(s;) = s;. This completes the construction of the solution.

4.1.4 Illustration

Various objects in the construction are illustrated in Figure 3 for an example in which
N = 2, the value is uniformly distributed on [0,0.95] U [3.95,4], and ¢ = 0.2.

The top row depicts the construction of the gains function: From left to right are
the gains functions, integrated gains functions, and rescaled gains functions. The fully-
revealing versions are in light-gray, and the graded versions are in black. There are two
graded intervals, which are denoted [0, z1] and [xq, 3]

The middle row shows the aggregate allocation sensitivity, value multiplier, and aggre-
gate excess growth. Again, fully-revealing objects are in gray and graded counterparts are
in black (see Section 4.3 for the discussion of the fully-revealing objects).

The bottom row shows the optimal aggregate allocation and transfer functions.

4.2 Main result

The main result of the paper is the following:

Theorem 1 (Existence). (M, S, B) is a strong mazmin solution with a profit guarantee of
IT defined by (3).

The theorem follows from Propositions 2-4. Proposition 2 verifies that S is a well-
defined information structure for which equilibrium profit is at most II. Proposition 3
verifies that M is a well-defined mechanism for which equilibrium profit is at least IL.
Finally, Proposition 4 verifies that [ is an equilibrium of (M, S).

4.2.1 Upper bound on profit for S

We first establish condition 1 in the definition of a strong maxmin solution.

Proposition 2. S is a well-defined information structure. For all mechanisms M and

equilibria B of (M, S), TI(M, S, B) < 1I.
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Figure 3: Objects used in the construction of the solution when N = 2, a value that is
uniform on [0,0.95] U [3.95, 4], and ¢ = 0.2. Bars correspond to the can-keep case and hats
correspond to the must-sell case discussed in Section 4.3.

We first argue that S is in fact an information structure consistent with the value
distribution H.

Lemma 1. The gains function 7 is a well-defined and increasing function. H is a mean-
preserving spread of the distribution of wW(Xs).

Proof of Lemma 1. Since I o E~! is a concave function, it is continuously differentiable at
all but countably many points, and we can extend the derivative by right continuity. Since
E is also differentiable, we conclude that I' has a right derivative as well. We can therefore
define 7 as specified.

We next argue that ¥(x) is continuous. Since I o E~! is concave, its right derivative is
monotonically decreasing. If the right derivative of I' o £~ had a downward discontinuity
at x, which corresponds to a concave kink in T o E', it would have to occur at a point
where T’ and I coincide (since I'o E~! is linear on graded intervals where the two functions
differ). This implies that [ o B! also has a concave kink at x, which contradicts the
monotonicity of 7. Thus, we conclude that I o E~! has a continuous right derivative, so
that 7 is continuous.
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We next argue that 7 is increasing. From continuity of 7, it is sufficient to show that
it is increasing on graded intervals and on non-graded intervals. If z is such that there is
an interval [z, + ¢) on which T' coincides with I', then their right-derivatives at z must
coincide as well, so that J(x) = 7(x), where the latter is increasing. In addition, if [a, b] is
a graded interval and z € [a,b), then 7 has an exponential shape, as

S , I(
wl@=ZCE G|, F@ = go—parew@on@).

The (positive) constant is chosen so that T'(z) coincides with I'(z) at the end points of the
graded interval. Thus, 7 is increasing on graded intervals as well.

We next show that the distribution of 7(Xs) is a mean-preserving spread of the dis-
tribution of J(Xs). The lemma then follows from the observation that the distribution of
F(Xs) + cis H, and w(Xs) = 7(Xs) + c.

Let F and F denote the cumulative distributions of (x) and y(x), respectively, where
x ~ Gy. Since ¥ and 7 are both increasing, for all a € [0,1], (G (a)) = F_l(a) and
(G () = F~!(a). From the change of variables y = Gy (z), we conclude that

| ~ G (@)
/ :O(F (y) = F~'(y))dy = / (V(z) —7(z))gn (z)dz

=0

= T(G3Ma)) — T(GR' (@) > 0,

where the last line comes from the definition of T'. Theorem 3.8 of (Sriboonchita et al.,
2009) therefore implies that F second-order stochastically dominates F if and only if the
preceding inequality holds for all . Moreover, it must be that T(co) = I'(c0), since
otherwise min{T'(z),T(c0)} o E~! would be a smaller concave function that dominates

ToEL. Thus, F and F have the same mean, and we conclude that Fisa mean-preserving
spread of F'. O

Next, we need the following property of the graded gains function:
Lemma 2. For all x,y € Ry withy > z, (y) < J(z) exp(y — x).

Proof of Lemma 2. Since I' o E~! is concave, its derivative

VE ()N (EN2)  F(ET(2))

E'(E~(2))  exp(E7(2))

is decreasing. Hence, J(x) exp(—x) is decreasing, which implies the result. O
We can now complete the proof of Proposition 2:

Proof of Proposition 2. From Lemma 1, we know that S is well defined. To complete the
proof, we show that II is an upper bound on profit.

By the revelation principle, it is sufficient to verify that II is an upper bound on revenue
for every incentive compatible and interim individually rational direct mechanism (q,t)
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(since participation security implies that interim payoffs are non-negative). Fix such a
mechanism. Let us write

Ui(si, 8) = / (W(si +Xs_3)qi(s}, s—;) — ti(s}, s;)) exp(—2s_;)ds_;,
S_4

and U;(s;) = Us(s;, 8;). Incentive compatibility implies that for all 7, s;, and s,

Ui(si) > Ui(si, s;) = Ui(s;) +/ (F(si 4+ Bs—i) — 7(s; + Xs5_4))qi (s}, 5—i) exp(—Xs_;)ds_;,

S_;

and U;(s;) > 0. Thus, for all A > 0,
U, = /S Ui(s;) exp(—s;)ds;
> [ = 8)+ (88) (s — Al — A exp(-s)ds
{s€S|si>A}
= exp(—A) / B [Ui(si —A) + (7(Xs) —7(Xs — A))qi(si — A, s—;)] exp(—(3s — A))ds
{s€S|si>A}

= exp(—A) (Ui + /S(T(Zs +A) —7(2s))qi(si, 5-4) exp(—Es)ds) :

Rearranging, we have:

1 _ _
U; > D) /S(fy(Es + A) —5(Xs))qi(si, 5—;) exp(—2s)ds.

Now, let
1 N

gN—("T) /{seszs—z} Zl ¢i(s) exp(—2s)ds

be the expected probability of allocating the good conditional on ¥s = x. Then

Qx) =

S0 > o [ Gl ) =5 ()

i=1 =0
Since total surplus is
| @@y
=0

we conclude that an upper bound on profit is

| o - R et
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By Lemma 2, the term multiplying Q(x) is positive, and since Q(z) < 1, profit is bounded
above by

/: [7("”) N ﬁ(ﬁ;@)__?x)] gn(z)dz = / : (z) [gN(x) + gN(iL;(i]; (f - A g

where gy(x) = 0 if x < 0. The term in brackets converges point-wise for all positive z to
gn(z) + gy(2) = gnv_1(z) as A — 0. To apply the dominated convergence theorem, all
that remains is to present an integrable bounding function, which is done in Lemma 16 in
Appendix A. As a result, as A — 0, the profit bound converges to II. O

This argument is closely related to that of Myerson (1981), but we have used the special
structure of S to sidestep the non-trivial technical question of whether the envelope theorem
holds for the problem maxy U;(s;, s;) (cf. Milgrom and Segal, 2002).

4.2.2 Lower bound on profit for M

The next result establishes condition 2 in the definition of a strong maxmin solution.

Proposition 3. M is a well-defined mechanism. For all information structures S and

equilibria 3 of (M, S), TI(M, S, B) > 1I.
The first step towards proving Proposition 3 is the following:
Lemma 3. The aggregate allocation sensitivity i is decreasing. As a result, X is concave.

Proof of Lemma 3. On a non-graded interval, fi(z) = (N — 1)/x, which is decreasing, and
on a graded interval [a,b], T(x) = C(a,b). The fact that 7 is decreasing across graded
intervals then follows from the definition of C'(a,b) and the well-known inequality

N-11

N-11
N _ Ny < pN-1_ N-1 o laN N
N b(b a’)<b 'S — a(b a),
e.g., Hardy, Littlewood, and Pélya (1934, equation (2.15.2)).
Concavity of A then follows from the fact 7 is decreasing and equation (18). O]

We next verify that M is well-defined.

Lemma 4. M is a well-defined mechanism, has bounded aggregate transfers T, and satisfies
participation security.

Proof of Lemma 4. Three properties need to be verified: Feasibility of the allocation rule,
existence and boundedness of the transfers, and participation security.

Clearly, Q(x) > 0, since the constants C'(a,b) and D(a,b) are positive. We now argue
that Q(x) < 1. This is clearly true at the end points of a graded interval. Moreover, on a

graded interval [a, b],




which is increasing. Thus, Q is convex on [a,b], and Q(x) < Hlax{@(a),@(b)} =12
To show that 7" is well defined and finite, we first show that A defined in (18) is bounded:
The last integral in (18) is bounded above by

o

| mEimw) o= [ awat). (20)
v=v y=0

From part one of the left-tail assumption, there exists ¢ > 0 such that if x < ¢, (W(z) —
v)/x? < 1 for some ¢ > 1. If the value function is not graded at z, fi(z) = (N —1)/z, and
if x is in a graded interval [a, b], then

BN —baNT N

A(z) = C(a,b) = TN v b

N N
< — < —.
- b Tz

(21)

Thus, if x <€, we can plug in the bound and integrate by parts to obtain

|t < [ Sty = [ St - vy [T S - vdy

=0 y=0 Y y=0 y=€

€ oo N
< N/ Yo 2dy +/ — (U —v)dy
y=0 y=€ Yy

Nty NI
p—1 €

Hence, the last integral in the definition of A(v) is bounded. The middle integral is simply
the expectation of the last integral across lower bounds v ~ H, so we conclude that A(v)
is bounded.

Since A is bounded and 7i(z) < N/x, Z(z) goes to infinity as z — 0 at a rate no faster
than 1/z, so Z(z)gn(z) is integrable on [0, 00). This shows that T in (12) is well defined.
Moreover, equation (12) clearly shows that T is continuous at z > 0, so to show that T is
bounded, it suffices to show that lim, .., T(z) < oo and lim, o T(x) < oo.

By Lemma 11 in Appendix A, we have 0/0 for T'(z) as x — oco. By L’Hopital’s rule,
we have

lim 7T'(x) = lim =(@)gn () = lim i = \(®) + ¢ < oo,
T—00 T—00 gN_l(;U) — gN(:L‘) T—00 % —1

since lim, o, fi(z) = 0 by (21), and lim,_,, Q(z) = 1 by Lemma 13 in Appendix A.
For x — 0, we apply L’Hopital’s rule again:
Z(2)gn(z) E(z) 3"

lim 7'(z) = lim = lim —2=L = »Q(0) < o0,
z—0 ( ) z—0 gN_l(aj) - gN(:p) z—0 1 — Nz—l _Q( )

where we use the fact that A\ and @ are bounded, and Lemma 15 in Appendix A shows
that there is either a graded interval at 0 in which case lim,_,o 0 (z)i(z) 5= = 0 = 2Q(0),
or there is a non-graded interval at 0 in which case lim,_o @(z)f(z) 355 = v = vQ(0).

29We thank a referee for suggesting this argument.
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Thus, T is bounded. The above argument also shows that 7 is continuous at z = 0 as
well.

Finally, participation security follows from the definition of 7, which implies that
t:(0,m_;) = vg;(0,m_;). O

We now develop the lower bound on profit in M.
Lemma 5. At all m # 0, g,(m) is right-differentiable in m; and V -g(m) = n(Xm).

Proof of Lemma 5. Suppose m # 0. For the right-differentiability of g, it suffices to show
that Q(z) is right differentiable at every x > 0. There are three cases.

Case 1: There exists an € > 0 such that [,z + €] is a subset of a graded interval. From
the formula of @ in (16) it is immediate that () is right differentiable at x, and in fact

Q@) =) - Y 1Gw). (22)

T

Case 2: There exists an € > 0 such that T(y) = I'(y) for all y € [z, z+¢]. Then Q(y) = 1
and 7i(y) = (N —1)/y for all y € [z,2 + €], so Q is again right differentiable at z, and
equation (22) again holds.

Case 3: For every € > 0, there exist 2/, 2" € (z,x + €] such that 2’ is not graded and z”
is graded: T'(z') = ['(2') and T'(z”) > T'(z”). This implies that Q(z) = 1, for otherwise x is
in the interior of a graded interval and we are in Case 1. Let {z,} be a sequence converging
to x from the right. We show that for every € > 0, there exists a n such that for all n > n,

we have _ _
[ -7

i.e., the @ is right differentiable at z, and @/(x) = 0. This again implies (22), since

fi(z) = (N — 1)/ by (17).
Given € > 0, choose ¢ > 0 so that

—E€.

N -1 N—l( 2(N—1),) N-1 N-1
— 1——F€ | <e — >

x r+é x r+é x
By assumption, there exists an 2’ € (z,x + €] at which the gains function is not graded.
Choose 7 so that z,, € [z,2'] for all n > 7.

Consider any n > 7. Suppose z,, is graded and Q(x,,) < 1 (for otherwise (23) is trivial).
Let [a, b] be the graded interval containing x,. We have z <a <z, <b <z’ <z +¢€: we
have b < 2’ because z’ is not graded and x < a because there are other non-graded points

in (7, 7,]. Since Q(a) = Q(x) = 1, we have:

Q(mn) - Q(x) _ Tp —a Q(xn) — Q(a) _ Ty — &@/(y) _ Ty — Q <ﬁ(y) B N — 1@@))

Ty, — T Ty — T T, —a Ty — T Ty — T Y

for some y € (a,z,) by the mean value theorem and equation (22) applied to the graded
interval [a, b]. Equation (22) also implies that Q' (z) < 222 for any z € [a, b], so |Q(y) —

T
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1] < 2D and since both Zi(y) and (N —1)/y are in the interval (N —1)/b, (N —1)/a),
we have

—€

V-1 N-1 Q) -Qa) N-1 N-1( 2N-1)__
T4 T Ty — T T vt *

which proves (23).
Finally, it is easy to check that V - g(m) = @(¥Xm) by applying the product rule and
equation (22) to the definition of g. O

Lemma 6. The ex ante expectation of \(v) is I1:

/v:v Aw)H (dv) = /:O M@(x))gn (x)de =TI

=0

Proof of Lemma 6. The first equality follows from the change of variables v = w(x) =
H=Y(Gy(z)). For the second equality, it is sufficient to show that the middle integral in
(18) is equal to the ex ante expectation of the last integral, which using (20) and Tonelli’s

theorem is:
/xo/y v )dype)idr) = / :ﬁ(x)GN(:c)@(dx),

Lemma 7. For every m # 0, t;(m) is right differentiable with respect to m;, and
V -t(m) — Xt(m) = Z(Zm).

Proof of Lemma 7. We first prove that ¢;(m) is right differentiable with respect to m; at
m # 0. By Lemma 5, it suffices to show that 7T is right differentiable at every x > 0, and
for that it suffices to show that Z is right continuous at every x > 0.

To that end, first note that 1 is right-continuous at every x > 0. This is clear from the
definition of 7 in equation (17) when x is the left-end point or in the interior of a graded
interval, or when x is the left-end point or in the interior of a non-graded interval. The
only other case is when x is a limit point both of graded points and of non-graded points.
In this case, 7i(x) is defined to be (N —1)/z by (17), and for any sequence {x,} converging
to x from the right, m(x,) converges to f(x) = (N — 1)/x: The reason is that for any
e > 0, there exists a non-graded point ' € (z,x + €). Hence, when n is sufficiently large,
T, € [z,2'] so fi(w,) € [(N —1)/(z +€), (N —1)/z] as [z is decreasing from Lemma 3.

Next, we prove right continuity of = at x > 0. Since Q(z) is right continuous at all
x > 0 by the proof of Lemma 5, the obstacle to right- Contlnulty of Z(z) can only come from
fi(z)w(x) or N(w(x)). If @ is discontinuous at = > 0, then T has a convex kink at z, so =
must be in the interior of a graded interval [a, b]. Since [ is continuous (in fact, constant)
in (a,b), = is continuous at x as the discontinuity in fi(y)w(y) at y = x is exactly canceled
by the discontinuity in A(@(y)) at y = x (recall that A(@(y)) = C + [ f(z)dw(z) for a
constant C'). On the other hand, if @ is continuous at x > 0, then Z is right-continuous
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at = because 1 is right-continuous there by the previous paragraph. We conclude that =is
right-continuous, and hence 7' is right-differentiable, at > 0. B B

Finally, interpreting d/dz as the right-derivative, we have % (gN(x)T (x)) = gn(2)2(2),
SO

(N -1 1) T(z) + T (z) = 5(2), (24)

X

which proves the lemma since by the product rule V - £(m) = £=2T(Xm) + T (=m). O

Lemma 8. For any information structure S and equilibrium 3 of (M, S),

[ [ w619 aton) = 9 - it)] s(dmlsyn(as) <o -

This result says that in any equilibrium, local upward deviations must not be attractive.
If a bidder were to marginally increase all of the messages they send in equilibrium, the
change in payoff would be

Summing across i gives (25). A technical complication is that the allocation sensitivity
may blow up as the aggregate bid goes to zero, so that deriving this constraint as a limit
of non-local deviations is not trivial. We resolve this technical complication by appealing
to part 2 of the left-tail assumption; a detailed proof can be found in Appendix A.

We can now complete the proof of Proposition 3.

Proof of Proposition 3. We have already argued in Lemma 4 that M is well-defined. To
complete the proof, it suffices to show that profit in any equilibrium in any information
structure is at least II. This is established in two steps.

Step 1: For any v and =,

where the second line follows from the fact that fi is decreasing (Lemma 3), and the third
line follows from the definition of Z. o
Step 2: Fix an information structure S. Profit in an equilibrium £ of (M, S) is

/S/M [T(Zm) — C@(Em)} 5(dm|8)ﬂ(d8),

By Lemma 8, this is at least
/S/M [w(s) V-q(m) — (V -t(m) — Ef(m)) — c@(Em)} B(dm|s)m(ds)
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M

| M)
> /V Nw)H(dv).

The second line follows from Lemmas 5 and 7. The third line follows from Step 1. The last
inequality uses concavity of A (Lemma 3), the fact that H is a mean-preserving spread of
the distribution of w(s), and Jensen’s inequality. The final integral is equal to IT by Lemma
6. O

/s/ [w(s)r(Em) — E(Em) — cQ(Em)] B(dm|s)m(ds)
A

>

4.2.3 Truth-telling equilibrium

We now come to the last condition for (M, S, B) to be a strong maxmin solution.
Proposition 4. The truthful strategies 5 are an equilibrium of the game (M, S).
Proof of Proposition 4. Let

Ui(m;, m)) = / [@(m; + Xm_;)g,(m}, m_;) — t;(m}, m_;)] exp(—Sm_;) dm_;
denote the interim expected utility from reporting m; when the true signal is m; and others
report truthfully. We will show that the difference U;(m;, m;) — U;(m;, m}) is non-negative
for all i, m;, and m/.

We first derive a convenient expression for the interim expected transfer:3°

/ ti(ml,m_;) exp(—Xm_;)dm_;

—1i

30The final expression for the interim transfer substantiates the claim L in Section 3 that boundedness of
the transfers is a sufficient condition for incentive compatibility of § on S. We can rewrite the transfer as

my

t;(m) = exp(m;) (ti(O, m_;)+ Ei(x, m_y) exp(—x)da:) ,

=0
where &;(m) = 0t;(m)/dm; — t;(m) is bidder 4’s individual excess growth, and ¢ = = (cf. (8)). Since

7;(0,m_;) = 0 for m_; # 0, we restrict attention to ¢;(0,m_;) = 0. Boundedness of i’s transfer then
implies that

/ °_° x(r.m ) exp(—a)de = 0 (26)

for m_; # 0, in which case we can rewrite
t;(m) = —/ &i(mi +x,m_;) exp(—z)dz.
=0

But if we take the expectation of &;(m; + 2, m_;) over m_;, equation (26), combined with ¥¢ = =, implies
that the interim transfer is exactly as given. Moreover, when N = 2, this identity holds only if (26) holds
as well. For more than two bidders, incentive compatibility of § on S is equivalent to, for all i and m;,
Jar_, &(miym—y) — E(mi, m—;)) exp(=Xm_;)dm_; = 0.
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T /g;:o (WJZ;;QN@) - gN—l(l')) T(m} + x)dz
(( N, -1 1) T(m) +x) + T (m} + x)) g (x)dz

where the first equality is from the definition of ¢ and the fact that m_; = 0 occurs with
zero probability; the second rearranges the formula for (mlgn_1(x))/(m} + z); the third
is obtained by integrating [ T(m} + x)giy(z)dz by parts and the fact that T is bounded
(Lemma 4); and the fourth substitutes using equation (24).

We next compute the interim expected payoff from the allocation:

/ w(m; + Xm_;)g;(m}, m_;) exp(—Xm_;)dm_;
[e¢] /

w(m; + ) — L
=0 z+x

\

@(m; +z)gn_1(z)dx

Il
—
g

w(m; + x) @(m +x) — Q(m], + x)} gn-1(z)dx

z=0 m;+ x
- /Fow m; + ) @(me) - NI_ 7 (ﬁ(m§+x) _@’(m;ﬁ—m))} gy-1(z)dz

[e.e]

I
\\g\

w(m; + ) [ Qo + 2)g-1(@) = (7lm} + ) = Q' (m + 1)) g ()] do
w(m; + 2)(Q(m], + x)gn_1(x) — (m; + x)gn(x))dz — Q(m} + x)d(w(m; + x)gn(x))]
. [Q(m + 2)gn (z) (@ (m; + x)dr —w(m; + dx)) — @(m} + x)w(m; + a:)gN(x)dx] )

The first equality is the definition of g and the fact that m_; = 0 has zero probability; the
second rearranges the term m//(m, + x); the third substitutes in using (22); the fourth

rearranges terms; the fifth integrates [ Q' (m}, + 2)W(m; + z) gy (z)dz by parts; and the last
equality applies the product rule (and the fact that g5y = gnv_1 — gn) and rearranges terms.
We now use these expressions to compute the interim expected loss from deviating:

Ui(miami) - Ui(mi;m;)

Z/Oo (Q(mi + z) = Q(mj + x))gn () [W(mi + )dw — W(m; + dx)]

=0
+ / (!, + ) — F(ms + 2))@(ms + ) + S(ms + x) — S(mt, + 2)] g (2)da.
x=0
Observe that

Z(m; + ) — E(m) + 2)
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— Rl + 2)D(m + 2) — ]+ 2)Dom] + ) = X(@om, + ) + N, + )
— (@ + ) = Qo + )

Ftms ), + ) = o+ )i+ )~ [ )ty
— (@ + ) ~ Qo + )

m;+x
/ D(y)(dy) — c(@(m; + ) — Q! + ))

=m/+x

_ / " Bldy) — o@ms + 2) — Qo +2)).

=m/+x

The first equality uses the definition of Z, equation (19); the second uses the definition of
A, equation (18); the third is integration by parts; and the last equality uses the fact that
7i(y) is constant on the interior of graded intervals, so that the measure 7i(dy) assigns zero
mass to the points where w # .

Substituting this last expression into the loss from deviating, we obtain

— [ @i+ )~ Qo+ ) g @) (@, + ) = ) = wom, + )]

=0

m;+x

+ /:o [(ﬁ(mé + @) = fi(m + 2))w(m; + x) + /y

=0

@(y)ﬁ(dy)] gn(z)dx.

=m/+x
Lemma 2 implies that the measure
(W(m; + x) — ¢)dx —w(m; + dx) =75(m; + x)dx —5(m; + dx)

is non-negative and its support consists of the non-graded intervals, on which Q(m; +z) =
1 > Q(m] + x), so that the first integral is non-negative. The second integral is also
non-negative, because w is increasing, so

mi+x

[ wwntdy) = wm, +2) s+ ) — o + ).
y=m/+zx

We conclude that U;(m;, m;) > U;(m;, m}), as desired. O

Theorem 1 follows from Propositions 2, 3, and 4.

4.3 The must-sell case

We now discuss the variant of our model where the good must be sold. All of our tools still
apply and almost immediately give us the solution.

A must-sell mechanism is a mechanism for which 3¢(m) = 1 for all m. A must-sell
strong mazmin solution is a triple (M, S, B) satisfying conditions 1-3 in Section 2.5, but
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where M is a must-sell mechanism and condition 1 only has to hold for M’ that are
must-sell mechanisms.

Let S be the information structure where signals are i.i.d. standard exponential and the
value function is w. Also, let M be the proportional auction with allocation

1 — 0
Gim) =4V if ¥m = 0;
s if ¥m > 0,

and transfers

fi(m) = %mT/(\Zm) %f Y¥m = 0;
s=T(Xm)  if ¥m > 0.

We define /)\\, Zand T according to analogous formulae as those for A, E, and T, using @,
p(x) = (N —1)/x, and Q(z) = 1 in place of w, i, and Q). Let

= [ 5wl (27)

=0

Finally, let 3 = 8.

— ~

Theorem 2 (Must-sell solution). (M M, S, ) is a must-sell strong minmax solution with a
profit guarantee of 11 defined by (27).

Proof of Theorem 2. The proof of Proposition 2 goes through with 7 in place of 7, except
that we do not need to invoke Lemma 2 (which does not hold for the fully-revealing gains
function) to conclude that the profit upper bound is maximized by setting Q(z) = 1.
Instead, the conclusion follows directly from the must-sell assumption, so that (27) is an
upper bound on profit in S.

The proof of Proposition 3 remains valid with 7 in place of 7. (In the proof of Lemma
7, it is continuous everywhere, in particular where w is discontinuous).

Proposition 4 also goes through, with the only modification being that the last term in
the deviation payoff involving () disappears, so that again we do not need to invoke Lemma
2. Thus, the mechanism M guarantees the Seller at least I in any equilibrium, and ﬁ is
an equilibrium of the game (M, S). O

It is sometimes possible to use the simple formulas for iz and @ to simplify the must-sell
aggregate transfer. For example, Appendix D.1 shows that when v is standard uniform,

Plr) — (V1) G (@) — Gay—a(22)
Te) =Gl v —

When N = 2, this further simplifies to 7(z) = (1 — (1 — e~*)/z)/2. We shall describe the
many-bidder limit of this formula in Section 6.
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4.4 Single-crossing distributions

We now discuss a class of distributions for which the maxmin aggregate allocation is rela-
tively simple. The distribution H is single crossing if there is a cutoff T such that I'o B!
is convex on [0, 7] and concave on [T, 00). When the gains function is differentiable, this is
equivalent to saying that 7(x) —7'(x) is single crossing from below at x = E~1(T). This is
in a sense a counterpart to the regular case of Myerson (1981), under which the Seller only
has an incentive to ration the good when signals are a below a cutoff.

If H is single crossing, then there is a single graded interval, denoted [0, z*], on which
Q(x) = 2C(0,2*)/N = z/x* (since D(0,2*) = 0). The maxmin allocation is therefore
q,(mi,m_;) = m;/ max{z*, ¥m}. We can interpret m; as bidder i’s demand for the good in
units where the aggregate supply is £*. The allocation rule simply says that the bidders get
their demands if the aggregate demand is feasible, and the good is rationed proportionally
otherwise.

The uniform distribution is single crossing for all V. To see this, observe that the fully-
revealing gains function is 7(z) = Gy(z) — ¢, so y(z) — 7' (z) = Gny(z) — ¢ — gn(x). This
is —c when x = 0, and its derivative is

20(2) ~ av-1(0) = (g — 1) s o),

so that 7(z) — 7'(x) is decreasing for x < (N — 1)/2 and increasing otherwise, which
implies that it crosses zero once, from below. Thus, 7 = 7(0)exp(x) on [0,z*], and it
is fully revealing above z*. For these segments to meet continuously, it must be that
7(0) = exp(—x*)(Gn(2*) — ¢). This implies that z* is the unique positive solution to3!

* *

[ (@) = (oo =exp(-a)(Gnte) — ) [ explolgn(oide. (29

0
Maxmin profit is
M= [ 0 esp(loyile)de+ [ (Gata) = dav-r(od
while maxmin profit among must-sell mechanisms is only
= [ (Gxle) — gn-s(o

=0

This example is continued in Section 6. We also give an explicit formula for T’ in Appendix
D.2 when ¢ = 0.

31Both sides of (28) are zero at #* = 0, and the difference between the left and right has a derivative with
respect to z* that has the same sign as Gy (z*) — ¢ — gn(2*), which as we have argued is single crossing
from below.
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5 Uniqueness and finite approximability

We have constructed a particular strong maxmin solution. We know for a fact that there
are others (and we will comment further on this shortly). However, as we now show, any
sufficiently well-behaved solution must have the same profit guarantee of II. As part of
developing this result, we will show that the mechanism M and information structure
S can both be approximated with finite objects that guarantee profit arbitrarily close
to II. A further implication of this result is that M and S are limits of e-equilibria of
standard zero-sum games, where the Seller and Nature choose finite mechanisms and finite
information structures, respectively. These results provide additional foundations for the
strong maxmin solution that we construct.

Let us say that a mechanism is finite if M; is finite for all 7. Finite message sets can be
identified with subsets of N, so that the set of finite mechanisms exists and is denoted by
M. Similarly, an information structure is finite if S; is finite for all 4, and S*" is the set of
finite information structures.

A strong maxmin solution (M, S, 5) with profit guarantee I is finitely approximable if
for any € > 0,

(i) there exists M € M such that for any information structure S’ and equilibrium

B of (ME, 8, TIMF, S, 3)>TI —¢;

(i) there exists ST € S¥ such that for any mechanism M’ and equilibrium 3’ of (M, 8F),
(M, SF, 8) < TT + .

In other words, a solution is finitely approximable if there are finite mechanisms and finite
information structures that guarantee profit close to Il for the Seller and Nature, respec-
tively.

Theorem 3 (Finite approximability). The solution (M, S, B) is finitely approvimable.

The theorem follows from two propositions, whose proofs are in Appendix B. Given
a non-negative real number m and a positive integer K, let M(m, K) be the mechanism
where each bidder’s message space is {m + [/K|l = 0,..., K?}, the allocations are the
restriction of g to this message space, and transfers are given by ¢;(m) = ¢;(m) — L,m,
where L, is a Lipschitz constant for the premium aggregate transfer T —vQ.%?

The purpose of the discount L,m is to satisfy participation security, since

m —
ti(m,m_;) = mT(m +Xm_;) — Lym

=
T mA+Xm
m _
- E ).
< m+2m_in(m+ m_;)

vQ(m +Ym_;) + Ly(m + ¥m_;)) — Lym

As a result, m; = m guarantees a non-negative ex post payoff. An interpretation is that
M(m, K) is a discrete proportional auction, where allocation and transfers are proportional,
and in addition, every bidder receives a constant subsidy of L,m.

32The Lipschitz continuity of 7% = T — v@ is established in the proof of Lemma 14.
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Proposition 5. For all e > 0, there exist m and K such that for any information structure

S and equilibrium 3 of (M(m, K),S), I(M(m, K),S,) > I —e.

Next, given a positive integer K, let S(K) be the information structure derived from
S by coarsening each bidder’s information, so that instead of observing s;, bidder ¢ only
observes the element of the following partition that contains s;:

{[0,K7"), [k 2K™Y),...,[K— K" K),[K,00)}.

Proposition 6. For all € > 0, there exists a K such that for every mechanism M and

equilibrium B of (M, S(K)), II(M,S(K),8) < Tl + .

Thus, the solution we constructed is finitely approximable, and the finite approximations
are natural discrete analogues of their counterparts in the strong maxmin solution. The
proofs of these propositions follow the arguments in Section 4, adapted to the discrete
setting. We note that analogous statements of Theorem 3 and other results of this section
hold for the must-sell case. This is discussed further in Appendix B.

We now present our uniqueness result:

Theorem 4 @niqueness). Fvery finitely approzimable strong mazmin solution has a profit
guarantee of 11.

Proof of Theorem 4. If a strong maxmin solution has value Il and is finitely approximable,
then for any € > 0, there exists M € M such that expected profit in any information
structure and equilibrium is at least II — e. In particular, for any K, there exists an
equilibrium of (M* S(K)) (since both are finite) in which profit is at least IT — e. By
Proposition 6, there is a K such that profit in this equilibrium is at most II+¢. This shows
that II — e < II + €. As e was arbitrary, we conclude that II < II. The reverse inequality
follows from an analogous argument, using a finite approximation S and M(m, K). [

An additional implication of Theorem 3 is that the finite approximations of M and
S are solutions of a large family of maxmin mechanism design and minmax information
design problems:

Corollary 1. Fiz an arbitrary selection 5*(M,S) from the (non-empty) equilibrium cor-
respondence B on MY x SF'. Then

sup inf II(M,S,B*(M,S)) = inf sup I(M,S, 3 (M,S)) =1L

MeMF Ses¥ Ses¥ MeMF

Moreover, the sup in the first term of the above equation is attained by the discrete pro-
portional auctions M(m, K), and the inf in the second term is attained by the information
structures S(K).

This result provides an additional foundation for proportional auctions, as limits of
e-equilibria of zero-sum games where we fix the equilibrium selection rule.

Corollary 1 can be strengthened in the following manner. The reason for appealing to
finite approximations is to ensure existence of an equilibrium for a suitably large class of
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alternative mechanisms or information structures. Let us say that an information structure
S is regular if for all M € MY, the game (M, S) has an equilibrium. A mechanism M is
regular if for all S € S¥', the game (M, S) has an equilibrium.

Due to the non-compactness of the signal space, we do not know whether S is regular.
It is, however, easy to regularize S by adding an infinite signal and deﬁnlng w(o0) =1, so
that @ is continuous at infinity. The extended information structure S is regular, since
for any finite mechanism, the associated Bayesian game satisfies the sufficient conditions
in Milgrom and Weber (1985). One can also extend the arguments of Section 4.2 to show
that equilibrium profit is at most II. As a result, if the domain of the infimum in Corollary
1 is a set of regular information structures that contains S, then the inf is attained by S .

It is an open question whether or not M can be regularized by a similar technique.®?
The difficulty is how to define the allocation and transfer at infinity. There are, however,
other mechanisms that are regular and have the same profit lower bound. In particular,
an earlier version of this paper constructed a maxmin mechanism with the same allocation
and the following transfer:

ti(m) = vg;(m) Z/ = (Smecg + 2) = Z'(Sme<q + 7)) gv—cy () de,
¢ez V=

where = () = Z(x) — v(fi(xr) — Q(x)), Z is the set of permutations of {1,..., N}, me<y is
the subvector of messages mgjic(j)<k}, and me<y is the subvector myj¢(jy<xy. This transfer
rule is continuous at infinity. If the allocation is extended so that the good is equally
shared between bidders who submit infinite bids and transfers are extended via continuity,
then the resulting mechanism is regular. Indeed, with a finite information structure, the
resulting Bayesian game is payoff secure and upper semi-continuous, so that existence of
an equilibrium follows from Reny (1999). More details can be found in the working paper
Brooks and Du (2019).

In addition to the solutions we have described, there may be other solutions to the
allocation sensitivity and excess growth equations. Indeed, when the support of H is
{0,1}, distinct allocation and transfer rules are constructed by Bergemann, Brooks, and
Morris (2016). As discussed in Section 3, however, the allocation rule is unique in the
must-sell case when N = 2 and the support of H is convex, and when we restrict attention
to continuous allocation rules and one-dimensional bids. There may also be more exotic
solutions, such as mechanisms that explicitly elicit belief hierarchies. The characterization
of the set of strong maxmin solutions is an interesting topic for future work.

33Proposition 5 shows that it is possible to approximate M with finite mechanisms, which are necessarily
regular. In fact, it can be shown that the variant of M where bids are capped at some m > 0 is regular,
and similar steps as in the proof of Proposition 5 can be used to show that it has a profit lower bound that
converges to II as @ — oo.
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Figure 4: Comparing maxmin mechanisms to other mechanisms.

6 Maxmin auctions in the many-bidder limit

6.1 Profit comparison

In this section, we further explore the properties of the maxmin proportional auctions and
the optimal profit guarantee. We begin with a comparison of mechanisms for the standard
uniform distribution with ¢ = 0, for which the optimal profit guarantee was computed in
Section 4.4. In Figure 4, we have plotted the optimal guarantee for N ranging from 1 to
30.3* The can-keep and must-sell guarantees are the dots and circles, respectively.

For comparison, the gray dots are the profit guarantee of the first-price auction, as
computed by Bergemann, Brooks, and Morris (2017), which is (NV — 1)/(4N — 2). Also,
the solid black line the best guarantee from a posted price mechanism, which is 1/8 and is
obtained with a price of 1/4.3°

A striking feature of this picture is that the optimal profit guarantee increases in N and
appears to be converging towards 0.5. The latter is the ex ante expected value, which is
obviously an upper bound on profit in any mechanism. In fact, as N goes to infinity, the
optimal profit guarantee converges to the expected surplus. This remarkable fact is implied
by the earlier result of Du (2018), who constructed a particular sequence of mechanisms
and profit guarantees (the diamonds) which converge to the expected value. A fortiori, the
optimal profit guarantee must as well.

The rest of this section explores and extends this result. We generalize the bound to
positive production costs, in which case the correct limit profit guarantee is the ex ante
gains from trade. The optimal rate of convergence is characterized. We also show that the
limit is attained even with must-sell mechanisms. And perhaps most surprisingly, we argue
that the same limit holds even if the distribution of the value is incorrectly specified. As

34 A similar figure previously appeared in Du (2018).
35The worst-case information is a public signal indicating whether the value is above or below 1/2.
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an illustration, the triangles in Figure 4 are a profit guarantee for the maxmin auction that
is calibrated to an exponentially distributed value but when the value is actually standard
uniform.?® Finally, we describe the limiting maxmin aggregate allocation and transfer.

6.2 Information and welfare in the many-bidder limit

We now proceed formally. As a preliminary step, we address the left-tail assumption on
the value distribution introduced in Section 2, which were only assumed for a single N,
whereas we now take N to infinity. It turns out, however, that no additional assumption
is needed:

Lemma 9. If the left-tail assumption holds for N, it also holds for any N' > N.

Proofs for all results of this section are in Appendix C.

We now denote the optimal profit guarantees for the can-keep and must-sell models by
Iy (H) and Iy (H), respectively, emphasizing their dependence on the number of bidders
and the distribution. The production cost is held fixed.

A simple upper bound on the profit guarantee that holds for all N is the ex ante gains
from trade. For if the bidders have no information about the value, the best the Seller can
do is make a take-it-or-leave-it offer at a price equal to the ex ante expected value. We now
show that this upper bound is tight:

Proposition 7 (Limiting profit guarantee). In the limit as N goes to infinity, the profit
guarantees Uy (H) and Iy (H) converge to the ex ante gains from trade at a rate of 1/v/N.

Here is a sketch of the argument. Recall that under the minmax information, the
aggregate signal is a sufficient statistic for the value. Let us change the units of each
bidder’s signal according to®” s¢ = (s; — 1)/v/N, where the “C” denotes a central limit
normalization. The centered aggregate signal = %s¢ = (¥s — N)/v/N has cumulative
distribution G§(x) = Gy (V Nz + N) and density ¢§(2) = vV Ngn (V' Nz + N), respectively.
We can correspondingly center the value function as w5 (z) = Wy (v Nz + N), ete, where
we now emphasize the dependence of w and other objects on N.

The Lindeberg-Lévy theorem implies that the distribution of the centered aggregate
signal converges to a standard Normal with distribution ® and density ¢. We argue in
Appendix C that the normalized fully-revealing gains function converges almost surely to
3¢ () = HY(®(x)) — ¢, which is just a change of units from 7y, and the graded gains
function converges almost surely to

—C 0 if v < a*;
Vool@) =19 ., . .
H Y ®(z)) —c ifz>a*,

36In Section 2, we assumed that the support of H is bounded, which is violated by the exponential
distribution. In this calculation, we have taken the limit of the formulae for bounded distributions. We
suspect that our results extend to unbounded distributions as long as the right tail is not too heavy.

37The discussion here uses the standard central limit normalization. In Appendix C, we use a different
but asymptotically equivalent normalization: s¢ = (s; — (N —1)/N)//N — 1. This turns out to be much

more analytically convenient, e.g., in the proof of Lemma 28.
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where x* is the largest x such that
0= / Voo )b (y)dy. (29)
y=—00

(Note that x* is —oo if v — ¢ > 0 with probability one.) Thus, in the limit, there is only
grading at the bottom, and then only if the gains from trade may be negative.

With this normalization, the hazard rate of each bidder’s signal becomes v/ N, so that
when N is large, each bidder’s virtual value is approximately

Thus, information rents go to zero at a rate of 1/ V/N. Since only the bidder who is allocated
the good gets an information rent, we conclude that total bidder surplus goes to zero at a
rate of 1/v/N. At the same time, it is always weakly optimal for the Seller to allocate the
good, so that profit converges to the ex ante gains from trade.

This sketch glosses over significant technical complications. The convergence of the
gains function is only almost everywhere, and along the sequence of minmax information
structures, the hazard rate and the graded gains function are both changing. The formal
proof deals with these issues by working directly with the integral for the difference between
ex ante gains from trade and profit, scaled up by v/N. This sequence converges to a positive
constant, thus establishing the proposition.

6.3 Robustness to the prior

We have assumed that the Seller does not know the information structure but knows the
value distribution exactly. There is a clear tension here. It turns out, however, that our
results are robust to misspecification of the prior, as we now explain.

Suppose that the Seller runs the maxmin proportional auction for the prior H, denoted
My (H). Let Ay(v; H) denote the associated optimal multipliers given by (18). The proof
of Proposition 3 establishes that a lower bound on profit is the expectation of A\y(v; H).
In that argument, the prior H only appears at the last step as a mean-preserving spread
of the distribution of w(s). As a result, even if the prior is some H' # H, we still obtain a
lower bound on profit, which is the expectation of Ay (v; H) under H'. Since Ay (v; H) is
bounded and continuous, the change in the profit guarantee is small as long as H is close
to H' in the weak-* topology.

Proposition 8 (Profit guarantee for misspecified prior). Fiz a distribution H' with support
contained in [v,T]. In any equilibrium of My (H) for any information structure where the
value distribution is H', expected profit is at least

Iy(H H) = / v (v; HYH (dv),

=v

which is a linear and weak-* continuous function of H'.
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Thus, when the prior is only slightly misspecified, the loss in the profit guarantee is
small. If the prior is badly misspecified, the loss may be substantial. But when the number
of bidders is large, the loss from misspecification vanishes:

Proposition 9 (Prior-independent limiting profit guarantee). Fiz a distribution H' with
support contained in [v,7]. As N goes to infinity, Il (H, H') converges to the ex ante gains
from trade under H'.

Note that this limiting profit guarantee need not be positive, in which case the optimal
profit guarantee is zero and it is better to shut down production.

When ¢ < v, this result follows from Propositions 7 and 8. To see why, consider
what would happen if the Seller ran My (H) but the true prior puts probability one on a
particular value v € [v,7]. Proposition 8 says that profit must be at least Ay (v; H). At the
same time, profit in this counterfactual cannot be greater than v — ¢, which is the efficient
surplus. But Proposition 7 says that expected profit guarantee under H converges to the
ex ante gains from trade, which is only possible if XN(U; H) converges to v — ¢ H-almost
surely.

This argument establishes Proposition 9 if H' is absolutely continuous with respect to H
and there is common knowledge of (ex post) gains from trade. The result is much stronger.
In Appendix C, we show that Ay (v) converges pointwise to v — ¢ for all v € [v,7], even
when there is not common knowledge of gains from trade.

Analogs of Propositions 8 and 9 also hold for the must-sell model. The necessary
modifications to the proof are minor, as explained in Appendix C.

6.4 Limiting allocation and transfer

As a last topic, we present two descriptions of the limiting maxmin allocation and transfer.
For this section, we focus on a relatively simple case when the value distribution is asymp-
totically single crossing. In particular, we assume there exists a C' > 0 such that for all
a,b € [v,7] such that a < b, H(b) — H(a) > C(b—a).?® In addition, we assume that v # c.

Lemma 10. Suppose that the above stated conditions hold. Then there exists an N such
that for all N > N, if v > ¢, there are no graded intervals, and if v < ¢, 75 has a single
graded interval of the form [—v/ N — 1, xy].
Let us next define
c

On(@) = Qn(@VN + N), To(x) =Tn(zvVN + N).

Proposition 10. Under the conditions preceding Lemma 10, for allz € R, limy_,o @g(:v) =
1 and

1

i T) = oo / Fly)oly) dy.

38This is equivalent to assuming that the absolutely continuous part of H has a density that is bounded
away from zero on [v,7].
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*

—cx —Wfo(ﬂf*)@(if ) — ff:x* 3 ()0 ( d@/+ foox WA —2y)dy if x>,

where ¥ (x) = H=Y(®(x)) — ¢ and x* is the largest solution to equation (29).

The limits for the must-sell mechanism are the same as those in Proposition 10, substi-
tuting x* = —o0.

Thus, under the central limit normalization, the good is asymptotically always allocated.
One might have guessed that in this limit the aggregate transfer would be equal to the
expected value under the minmax information, but Proposition 10 shows that this is not
the case.

In some cases, the formula for the limit transfer simplifies substantially. The running
uniform example does not satisfy the hypotheses of Lemma 10, since v = ¢ = 0. Nonethe-
less, in Appendix D.2, it is shown that there is no grading in the limit, and

D (x) — B(a/2)
Jim Ty (o) = @) + = =2 =
We get a somewhat different perspective on the limit when we use the law of large

numbers normalization, in which signals are i.i.d. exponential with arrival rate N. Let us

define

Qn(7) = Qn(Nz), Ty(z) = Tn(Nz).

Proposition 11. Under the conditions preceding Lemma 10, for all x € R,

lim Qi (x) = {1 | o= e

N-so00 min{z,1}  otherwise,

and

hmT()

N—o0

v if x> 1,

{max{y, ct  ifx <l

Proof of Proposition 11. The limit of the transfer follows from Proposition 10 and the com-
putations using L’Hopital’s rule for lim,_, . limy_ o T%(x) and lim, oo IMpy oo Tﬁ(m)
For the allocation, if v < ¢, then there is a finite N such that @Z = min {x/(q:N/\/N +1), 1}

for all N > N. Since ry — ¥, we conclude that @JL\, converges to min{z, 1}. If v > ¢, then
there is a finite N such that @%(m) =1forall N > N. O

Thus, rationing persists in the limit under the law of large numbers normalization
when the gains from trade might be negative. However, the aggregate transfer pushes the
aggregate bid to 1, so that in equilibrium, the good will almost always be allocated.
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7 Conclusion

This paper has studied the canonical auction design problem when values are common. The
novelty is to use an informationally robust criterion for measuring auction performance.
The spirit of the exercise is to identify mechanisms that are less vulnerable to misspecifica-
tion of information and behavior and are therefore more viable in a practical setting, where
a designer may be unwilling or unable to commit to a specific description of information.

The literature to which we contribute has previously shown that it is possible to obtain
non-trivial profit guarantees across all information structures and equilibria, even with
simple mechanisms like the first-price auction (Bergemann, Brooks, and Morris, 2017). Tt
has also shown that there are mechanisms whose profit guarantees are unimprovable when
the number of bidders is large (Du, 2018). Our marginal contribution is to establish, in
a rich class of environments, the precise limit of what can be attained. We have also
developed new methodology for the characterization of maxmin mechanisms, namely the
double revelation principle and the critical conditions on the aggregate allocation sensitivity
and the aggregate excess growth. Finally, we have shown that the optimal guarantee can be
attained with the relatively simple class of proportional auctions, which are parametrized
by just the aggregate allocation and aggregate transfer as functions of the aggregate bid.
The analysis also indicates that simple aggregate allocation rules that increase linearly until
the available supply is exhausted can perform well.

To our knowledge, proportional auctions are new to the literature, and we are unaware
of instances where these auctions have been used in practice. We therefore view our contri-
bution as normative. Our model stays within the Bayesian mechanism design framework,
broadly defined, but also allows us to remedy conceptual and practical limitations associ-
ated with having to commit to a specific information structure. To be sure, this approach
introduces new conceptual issues: Why should the bidders have common knowledge of the
information structure, while the Seller does not? Why does the Seller not simply induce
the bidders to reveal the information structure, and then run the optimal mechanism for
the environment they report? This is clearly a theoretical possibility, but it runs contrary
to our primary motivation, which is to identify mechanisms with desirable welfare prop-
erties that remain feasible when we respect the designer and the agents’ limited ability to
articulate higher-order beliefs. We have not imposed such constraints explicitly. To us, the
value of the model is not just in its assumptions, but also in the form of the results: mech-
anisms that have desirable welfare properties but also feature a simple bidding interface
and ruleset, so that they remain feasible in the face of additional practical constraints. As
for the common prior among the agents, this is obviously a strong assumption, but we find
it relatively palatable as an as-if description of agents’ behavior, as long as it does not need
to be explicitly communicated by the bidders and it is not a necessary input to compute
the optimal mechanism.

Nonetheless, it is true that in distancing ourselves from the untenable knowledge as-
sumptions of the standard model, we have taken an equally extreme and implausible po-
sition, which is that the designer puts no restrictions on information except for the value
distribution and the existence of a common prior. Verily, the truth must lie somewhere in
between. Designers may be willing to rule out some models without committing themselves
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to a single description of the world. We expect the theory to become even more useful as
we explore the middle ground between these two extremes, by incorporating reasonable
restrictions on beliefs into the robust mechanism design problem.
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A  Omitted Proofs for Section 4

Proof of Proposition 1. (i) = (ii): Suppose (M,S, ) is a strong maxmin solution
with profit guarantee II. Let X be the disjoint union of {M;}¥, and {S;}Y,. Clearly,
M eM(X) and S € S(X). We will argue that (M, S) is a non-trivial Nash equilibrium of
G(X, p*) for every 5* € B(X). Fix a selection 5*. By condition 3, B(M,S) is non-empty,
so that Seller and Nature’s payoffs from (M, S) are finite. Moreover, conditions 1 and 2
imply that all equilibria of (M,S) have the same profit, which is II. The payoffs from
(M, S) are therefore (II, —II), Clearly, neither party can profit by deviating so that the
resulting game has no bidder equilibria, so we restrict attention to deviations that result
in an equilibrium. For any M’ € M(X) such that B(M’,S) # 0, condition 1 implies that
(M, S, B*(M’,S)) <TI, and for any S’ € S with B(M,S’) # ), condition 1 implies that
(M’ S, 5*(M',S)) <II. Thus, (M,S) is a non-trivial Nash equilibrium.

(1) = (i): Suppose that (M,S) € M(X) x S(X) is a non-trivial Nash equilibrium
of G(X, p*) for all 5* € B(X). Fix § € B(M,S). We claim that (M,S, ) is a strong
maxmin solution with profit guarantee I1 = II(M, S, 3). Condition 3 is immediate. We
now show Condition 1. Fix any M’ and equilibrium (' of (M’,S). Then by the revelation
principle, there is an incentive compatible direct mechanism on S for which truth-telling is
an equilibrium. Since M’ is participation-secure, bidders’ payoffs must all be non-negative,
so we can extend the direct mechanism by adding a participation-secure message, so that
if any bidder sends the participation-secure message, the Seller keeps the good and all
transfers are zero. Call this mechanism M”, and observe that M” € M(X) (since by
construction M(X) contains all participation mechanisms with message spaces S; plus an
additional message). Since the payoff from this participation-security message is zero, the
truthful strategies 5" are an equilibrium. Now, fix a selection S* for which the truthful
equilibrium 5" is selected on (M”,S) and g is selected on (M, S). Then since (M, S) is a
Nash equilibrium of G(X, 5*), we conclude that

(M, S, p5)=11(M",S, 5"
=[(M", S, g*(M",S))
<II(M, S, B*(M,S))
=1I(M,S,8) =11
This proves condition 1. Condition 2 follows by an analogous argument, where we use the
well-known fact that for any &’ and equilibrium of (M, §’), there is a Bayes correlated equi-

librium S” that, together with the obedient strategies, induces the same profit. Moreover,
this BCE, using the message space of M as the signal space, is necessarily in S(X). O

Lemma 11. The ex ante expectation of = is zero:

/:O (x)gn(z) dx = 0.

=0

(1]|

Proof of Lemma 11. Using the formula for = in equation (19) and Lemma 6, it is sufficient
to show that

M- [ [@)a() - Q)] gv(a) . (30)

=0
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From (22), note that

[, @ -a@) pe= [ (@ ( - 1) Q)] axta)ds
:/ j (@ @)gn(@) + (gv-1(2) = gn(2) Q) dx (31)
) di 2)Q()) dx = 0,

since gn(0)Q(0) = 0 and gN(:E)@(;E) goes to zero as x — 0o. Thus, (30) is equivalent to
M= [ (@) - onle)gn(a)ds.
=0

Using (x) = @w(x) — ¢ and the formula for IT in (3), we see that the above equation is
equivalent to

/ T @) gy (2)dz = / " A@h)gn (). (32)

When T'(z) = T'(z), we have J(z) = J(x) and 7i(z) = (N — 1)/, so i(z)gn(z) = gn_1(z)

and the two integrands are exactly equal. On the other hand, over a graded interval [a, b],

| A@mlgx (s = Cla.)EE) - Ta)
(

where the equality follows from 7(z) = 7(a) exp(z — a) and for n > 1,

= 7(a) exp(—a) =L

r=a

| A =70 exp-)

n!

Lemma 12. For all 2 > 0, |Q ()| < (N —1)/x and if ¥m = =, then

N +1
s

& @ A, —am)| <

Proof of Lemma 12. Note that on a graded interval,

T - 0(]% b) (N - i)ND(a, b
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This is at most 1/x when we replace C(a,b) with the bound in equation (21) and set
D(a,b) = 0. Moreover, since C(a,b) > 0 and

oY — abN1
D(a,b) = bN—NOLN_1 <Nt < 2N (33)
—a

we conclude that @ is at least —(N — 1)/z, so |Q'(z)] < (N —1)/z.
Next, observe that

1
5 @+ )~
1 (m+A— m; —
N (Zm TAVEmEA) - zmQ(m)) ‘
“|a (m@@m TA) = QEm) + oA AN (zm YA zm> Q<m>) ‘
mi Q(Em +A) —Qm)| |Q(Em+4) mi 5
< |
=1A Sm+ A TTymrA Sm(em + &) oem)
m; AN 2 _N+1
<2 T < .
T AYm+A Y¥m T oz
where the last line follows from the facts that Q' (z) < (N — 1)/z and Q(z) < 1. O

Lemma 13. lim, ., Q(z) = 1.

Proof of Lemma 13. For each x € R, either x is not graded, in which case Q(z) = 1, or
x is in a graded interval [a,b], in which case |Q(z) — 1| < ¥=L(b — a) since Q(a) = 1 and
Q' (z) < =1 by Lemma 12. But the length of a graded interval [a, b] is bounded above
by a constant C' = log(v) — log(7(0)) since

v >7(b) =7(a) exp(b — a) > 7(0) exp(b — a).

So |Q(x) — 1| < %C when z is in a graded interval [a,b]. In any case, we conclude that
lim, oo Q) = 1. O

For proving Lemma 8, it is convenient to decompose t;(m) into a “base” component
of vg;(m) (whose derivative may be unbounded around 0) and a “premium” component
of #(m) = t;(m) — vq,(m) (whose derivative is bounded; see Lemma 14 below). Let
4 _ — 2y
= (z) = 2(z) — v(p(r) — Q(xr)), and

7(0) = T(0) - Q) = — ([ Zwavtn)ay - iQwlon(o))
= [ Zwatay

gn(T) Jy—o
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where the last equality follows from L (Q(z)gn(z)) = (fi(z) — Q(x))gn () by the reasoning

n (31). Since both @ and T are right-differentiable (Lemmas 5 and 7), so is T", and it is
easy to verify the differential equation

(N — - 1) P)+ 2T () =), (34)

Lemma 14. The ratio

is bounded over allm € M and A > 0.

Proof of Lemma 14. First, we show that Z' is bounded. Given that @(z) is bounded above
and 7i(x) is decreasing from Lemma 3, it suffices to show that limsup,_,,(@(x) —v)/z < co.
This is a direct implication of part one of the left-tail assumption, since x¥ < z for z
sufficiently small.

Next, suppose ¥m > 0. Since ; (m) is right-continuous at m, we have

dT"
dx

Em,i—p m; dTp
(% = (Em)| <
mmt S S m)‘ .

“m dzx

ot (m)
Ym

Gmi

" (Xm) ‘

(Em)|

We argue that the right-hand side of the above equation is bounded over all m # 0, which
implies the boundedness of (£ (m; + A, m_;) — ' (m))/A. Since T" satisfies equation (34)
and Z° and T" are bounded, it suffices to show that T" (z)/z is bounded. This follows from
L’Hopital’s rule:

lim Tp(:p) — fy—o Ep(y)gN (y) dy
z—0 i z—0 ng(x)
= lim §p<x)gN($)
z—0 gN(fL') +3U(9N_1(x) _gN(ZL')) (35)
. =P z)
= lim

Finally, for m = 0, we note (££(A,0) — #(0))/A = T'(A)/A and again appeal to the
boundedness of T" () /. O

Lemma 15. There exists b > 0 such that either [0,b] is a graded interval, or [0,b] is a
non-graded interval.

Proof of Lemma 15. Case 1: v < c¢. If there were no graded interval at zero, then we
would have 7(0) = 7(0) = v — ¢ < 0. Lemma 2 then implies that for all > 0, F(x) <
J(0) exp(x) < 0, so that 7 has a non-positive expectation. This contradicts Lemma 1,
which implies that the expectation of 7 equals the expectation of v — ¢ under H, and the
hypothesis that the latter expectation is strictly positive.
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Case 2: v > c¢. Part two of the left-tail assumption says there exists an € > 0 such that

~

) A
exp(a’) = exp(e)

for all 0 < 2/ < 2 < e. Thus ['o E~! is concave on the interval [0, E(€)], so that if a subset
la,b] of [0, E(¢€)] is not graded, then [0,a] is not graded as well. The claim of the lemma
follows since either [0, E(€)] is a subset of a graded interval, or there exists a non-graded
interval that starts at zero. O

Proof of Lemma 8. Fix an information structure S and an equilibrium 3 of (M,S). Let
us rewrite equation (25) as

/ / ) = )V - q(m) — V- T(m)] B(dmls)r(ds) < 0.

Equation (35) implies that V - #(0) = —A(v) + (v — ¢)Q(0).
Since (£ (m; + A, m_;) —1;(m))/A is bounded (Lemma 14), the dominated convergence
theorem then 1mphes that

lim// z?(mﬁA’z—i)_ff( ™) 8 (dm|s)m(ds) // O8 () B(dm|s)n(ds). (36)

ANO Jo S 8mZ

We want to argue that

liminf// — o) BRI Z D) )

AN\

/ / 6q1< ) B(dm)|s)m(ds)

by appealing to Fatou’s lemma: notice that 3 0, - (m) = Hmao(q;(m; + A, m_

(37)

7(m))/A

i) =
is well defined When m # 0 by Lemma 5; for m = 0, the limit is aqL (m) = if [0,] is a

8m1_ % (1) = oo otherwise.

We consider two cases. Case 1: If there is no grading anywhere (so g,(m) = m;/¥m),
or if [0,b] is the only graded interval for some b > 0 (so g;(m) = m;/ max(Xm,b)), then
Fatou’s lemma applies to (37) since g;(m; + A, m_;) > g;(m) for all m and all A > 0.

Case 2: Let a be the infimum of left end points of graded intervals that are strictly
positive (of which there must be at least one if we are not in Case 1); Lemma 15 implies
that @ > 0. We claim

g;(m; + A,;m_;) —q;(m) > (N + 1).

A T (38)

holds for all m and all A > 0, so Fatou’s lemma also applies to (37) in this case.
If ¥m > a, then (38) follows from Lemma 12. If ¥m + A < a, then g,(m; + A,m_;) >
g;(m) by examining the functional form of g as in Case 1, so (38) again holds.
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Now suppose ¥m < a and ¥m + A > a. let m;, = a — ¥m_;. Clearly, we have

- /

Gi(mi + A, m_;) —q;(m) _ 5@(77%‘ + A, m_;) — G;(my, m_;)
A m; + A —m;

q;
(1 gkl P —

for § = (m; + A —m})/A € (0,1). By applying Lemma 12 to the term following § and
g;,(m},m_;) > q,(m) to the term following 1 — J, we conclude that (38) again holds.
Since [ is an equilibrium, for any bidder i and any fixed A > 0 we have

L), [<w<s> _yyBlmit Aimeg) ZGilm) (¥ Bmog) ZEOM] g0 ds) < 0.

A A
Therefore, equations (36) and (37) imply (25) if we sum across 1. O

Lemma 16. There exists a A such that for all A < A andz € R,

~(z . gy () — gn(z — A) () (gn(z) + 2) if v < 1
B ){QN( )t exp(A) —1 } : {7(x>[gN(x)+29N1<x)] if x> 1.

This bounding function is integrable.
Proof of Lemma 16. If z > A,

gn(x) —gn(xz —A) _ exp(—z) oVl — (2 — AN Texp(A)
exp(A) — 1 (N —1)! exp(A) — 1
exp(—z) 2Nl — (. — A)N!
—(N-1)! exp(A) — 1
exp(—x)
- (N -1)!

A A

(N — 1)90N_2W = gN_l(x)W’

where the second-to-last line follows from convexity of V7! so 2V 71 — (x — A)N7! <
(N —1)zV2A. Since A/(exp(A) —1) — 1 as A — 0, we can take A < 1 small enough so
that for A < A, the ratio is less than 2. Also, as long as A < N — 1, gy is increasing for

x € [0,A], so that for x in this range

gn(@) —gn(z = A) _  gn(A)
exp(A) —1 ~exp(A) -1

(39)

This expression converges to zero pointwise for N > 2 and converges to 1 for N = 2. Thus,
we can take A small so that for z < A, the right-hand side of (39) is less than 2.
Integrability follows from the fact that 7(z) is bounded by v. O
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B Proofs for Section 5

B.1 Proof of Proposition 5
Let A = 1/K, and recall that the message space for M(m, K) is
My ={m,m+A,. ...m+K}.

Note that the highest message m = m + K is at least A™!. We shall extend the domain
of the allocation and transfer rules to all of ]Rf for notational convenience. The discrete
aggregate allocation sensitivity is

pu(m) = % Z]Imi<m(Qi(mi +A,mo;) — qi(m)),

=1

and the discrete aggregate excess growth is

[1]

(m) = % S ot + A1) = ti(m) = St(m).

Now, define
A(m;v) = vp(m) — Z(m) — cQ(Xm),
and let A(v) = min,,epr A(m;v).

Lemma 17. For any information structures S and equilibrium (3 of (S, M(m, K)), expected
profit is at least [, \(v)H (dv).

Proof of Lemma 17. The equilibrium hypothesis implies that for all 4,

/ Z )(g;(min{m; + A, m}, m_;) — ¢;(m))

— (ti(min{m; + A,m},m_;) — t;(m))] B(m|s)m(ds) <0,

which corresponds to the incentive constraint for deviating to min{m,; + A,m}. Summing
across bidders, and dividing by A, we conclude that

/ Z — =(m) — Xt(m)] B(m|s)m(ds) < 0.

meM

Hence, expected profit is

[ 3 ) - cQ(Em)] B(mlse(as)
> [ 3 (Btm) = cQ(Em) + wlslm) — Zm) = St(m)] B(mls)r(ds)
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/ Z —=Z(m) — cQ(Em)] f(m]|s)m(ds)

mEM

> / A(w(s))r(ds)
> /V A(w)H(dv),

where the last line follows from the mean-preserving spread condition on w(s) and that A
is concave, being the infimum of linear functions. m
Lemma 18. For allm € M,
e ~
p(m) > —/ A(Em +y)dy — L(m, A),
A J,—o
where

L(m,A) = N(N + 1A + w (log(Nm—i— A) + % —log(Nm) — 1) :

Moreover, for all m > 0, E(m, A) =0 as A — 0.

Proof of Lemma 18. From Lemma 12, we know that

| =

ﬁ
I
—

,u(m) = (qz(mz + A,m_ - Qz Z]Im’ m QZ m; + A m_ ) - qz<m))

N +1

m

W%
L[~

s
Il
-

(gi(mi +A,m_;) — qi(m)) — N

(qi(mi + A,m_;) — q;(m)) — N(N + 1)A.

s
Il
R

W%
L[ —

Recall that

Also recall that

Thus,
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N A . _ . —y
_E Z/ [(EL;Q(EWHLZU) + mnl”o—:—i;@ (Em—l-y)] dy
Yy

A — Jy—o [ (Em +y)? )y
1 (2 [(N-1)Zm—~ Ym+ Ny—
Z/y:o [m@(ﬁm—ﬂﬁ‘f‘m@ (Xm+y)| dy
1 - N—-1[> y QEm+y)
-5 ey = St [ U [ EE G s ay

We need tg/bound the last integral from above. If z is in a non-graded interval, then
Q(z)/r — Q (x) is just 1/x. If z is in a graded interval [a, b], then

( ) — C(a,b) D(a,b) C(a,b) D(a,b)  ND(a,b)
Q( ) N + N - N N o N ’

From equation (33), D(a,b) < V7! so that the integrand in this case is at most N/z, and

5y {@(Hy)_—/ } Sy
/y:oxﬂ/ oy Q (z +vy) dySNyZO(Hy)Qdy

A
1
N < _ 7 Q)dy
=0 \Z+y (v+y)

N (log(x LA+ HLA — log(z) — 1) .

+ (N —-1)

The derivative with respect to z is

1 1 A 1 1
N ——+——-]=NA —
(m+A w+@+AP) (@+AP x@+AJ
which is clearly negative, so subject to x > Nm, the expression is maximized with x = Nm,

which gives us the lower bound on p.
Moreover, as A — 0, N(N + 1)A — 0, and by L’Hopital’s rule,

<log(Nm+A) N +A log(Nm)—1> —lim( 1 Nm )_0
A e - _— .

lim
A—0

Now let us write ZP(m) = =Z(m) — v(u(m) — Q(m)), and recall that Z°(z) = Z(z) —
(z) — Q(z)). These are the excess growths for the “premium” transfers ( ) =t;(m)—
gi(m) and &} (m) = #;(m) — vg;(m), respectively. We snnllarly denote by T (z) = T(z) —
Q(x) the aggregate premium transfer, and note that T" satisfies the differential equation

(N — - 1) T () + - T(a) = (o),

T

(7

IG I@ I@

with the boundary condition 7% (0) = 0.
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Lemma 19. Let L= be an upper bound on |§p| and let Ly be an upper bound on T". Then
_ I - A
=P(m) < Z : (Em+y)dy+L(m)§ + NL,m

Zﬂmz:m (B (ma+ A my) = E(m)]

where

' N-1 N-1
Lim)= (14 5—) L+ —Lr.
) ( ' Nm) P )

Proof of Lemma 19. Recall that T" is Lipschitz with constant L,. Furthermore, the func-
tion T (z)(N — 1)/x is Lipschitz on [Nm, o), and

i(N—lTp( )' N-1d- ()_Nngp(m)

dx T dx T

<N—1L+N—1
= Nm P (Nm)32 T

Using the differential equation for T,

1 (A2,
X y:0: (Xm + y)dy
1 [A N -1 — d —p
_ Z/y:0 [(Zm—i—y - 1) T'(Sm+y) + - T'(x) Mm+y] dy
m A o _
= % /0 <E]\rfn —|—1y — 1) T (Sm+y)dy +T" (Sm + A) — Tp(Em)]
> 5| [ (S T+ 8) = L) = ) = T (Sm) = Ly ) dy 4 TS+ ) = 7 (5m)
1], N=1 — —» A?
:Z_AmT(EerA)—AT(Z m) = (Ly(m) + Ly) + T (Sm+ A) - (Em)}
:% _Egnm++]\]AATp(Zm+A)—Tp(Zm)} —~T"(Zm) — (Li(m) + L, )g

=L(m)

Now, let us write T7(Xm) for the aggregate transfer when the messages are m. Thus,
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1 [¥m+ NA_

(2

<X mT(z m+ A) —T"(Xm) TpZm——Z]ImZ 2 (m; + A,m_y) — T (m)] .

The lemma follows from combining these two inequalities, with the observation that T7(x) =
TP
T (x) — NL,m. O

Lemma 20. For all € > 0, there exists a K such that for all m such that ¥m > K and for
all 1,

Proof of Lemma 20. Since lim, oo 1" () = —=" (00), we can find a K large enough so that
for z > K, ‘Tp(x) +Ep(oo)’ < €/4 and Lr/K < ¢/4, and thus ‘dTp(w)/dx} < €/2. Thus,
when ¥m > K, then using A = K1,

1 12 0t (ms +y,m_y)
& [lmi Ao —Bm)] = 5 [ Sy
1 A Zm_i =D i TY d P
= — " (Xm+y) + x d
A Jy—o | (Em+y)? ( s +y du ()xzmw !
LT €
< Zf 4 -
- K * 2
<€
O
Proof of Proposition 5. We first argue that there exists m and a K such that A\(m;v) >

inf,cpy A(m';v) — € for all m € M and v € [v, 7], where
X(miv) = (v — 0)E(Em) — = (Sm) + (v - )T(Em).

From Lemma 12, we know that |Q(z + %) — Q(z)| < y(N — 1)/m. Thus,

_ 1
Q) -5 [ Qi< 5 [ Qe -l
y_
_1 N-1, N1
Sa) e WA

Combining this inequality with Lemmas 18 and 19, we get that
Am;v) = (v —v)u(m) — E(m) + (v — €)Q(Xm)

> % . (v —0)A(Em + A) = (Em +y) + (v — )Q(Em + y)] dy

N-1 A-
_EL(m)_Nme

— (T—v)L(m, A) —TA

2m
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1 -
-X Z}Imi:m |2 (m; + A, m_y) — T (m)|
> inf Am/;v)
{m/|Em<Em/ <Em+A}

— (@—v)L(m,A) — oAy =1 %z(@ — NL,m

2m

We can first pick m > 0 so that NL,m < €/2. We can then pick K large enough (and
A small enough) such that the remaining terms in the last two lines sum to less than €/2
(where for the first term in the middle line and last line, this follows from Lemmas 18 and
20, respectively). We then conclude that

A(m;v) > inf A(m';v) —e > Aw) — .

m’ER%
Hence, A\(v) > A(v) — ¢, and Lemma 17 and Lemma 6 give the result. O

This proof goes through verbatim with the maxmin must-sell mechanism M.

B.2 Proof of Proposition 6

Recall the definition of S(K). Let A = 1/K . We subsequently choose K sufficiently large
(and equivalently A sufficiently small) to attain the desired e. Note that the signal space
can be written

S;={0,A,...,K’A},

and the highest message is simply A~!. The probability mass function of s; is

filsi) = (1 —exp(—A))exp(—s;) if s; < A7Y
B if s; = AL

As a result, s;/A is a censored geometric random variable with arrival rate 1 — exp(—A).
We write f(s) = xX, fi(s;) for the joint probability, and

Fi(si)= Y fils}) =

/
§;<8;

1—exp(—s;i—A) ifs; <A™
1 otherwise,

for the cumulative distribution. The value function is

w(s) = 1

w(Xs') exp(—2s')ds',
f(S) /{5’6R5|T(5;)5i\ﬁ}
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where

re) = {AE:U/AJ if o < 4—1;

A1 otherwise.
An interpretation is that we draw “true” signals s’ for the bidders from S and agent i
observes s; = min{A[A7!s)|, A7}, ie., signals above A™! are censored and otherwise
they are rounded down to the nearest multiple of A, and w is the conditional expectation
of w given the noisy observations s. Thus, the distribution of w is a mean-preserving spread
of the distribution of w, so that H is a mean-preserving spread of the distribution of w as
well.

Lemma 21. If s; < A~ for all i, then w(s) only depends on the sum of the signals | = Xs
and

w(s) = = ei}:;)((l—)A))N /_l w(z)p(x — 1) exp(—x)dz,

where p(y) is the N — 1-dimensional volume of the set {s € [0, A]N|Xs = y}.

Proof of Lemma 21. First observe that

f(s) = (1 —exp(=A))Y exp(—2s) = (1 — exp(—A))™ exp(—).

)
N
A s ERN‘TZ s')=s; Vi}

exp(l)

exp(!)
(—
() I+NA
_ w(2s) exp(—2s)ds dx
(1 . eXp( A N / s €R$|T¢(S')=Si Vi,zs/:x} ( ) p( )
(
(—
(
(—

= 1 —oxp w(Xs') exp(—Xs’)ds’

exp

(1 —exp

l) /Z+NA ( ) ( )
x) exp(—x / ds'dx
A)) {S/G]R_I:_’ T3 (s, —s:)=0 Vi,Zs’:x}
)

l I+NA
w(x) exp(—) / ds'dw,
A))N / {s'eRY |ri(s")=0 Vi,Bs'=z—1 }

where the inner integral is just p(z — ). O

exp

- (1 —exp

We now abuse notation slightly by writing w(l) for the value when | = ¥s, and let
v(1) = w(l) —c.

Lemma 22. Ifl > A, then (1) < exp(A)y(l — A).

Proof of Lemma 22. From Lemma 21, we know that

exp(l) I+NA
(1 —exp(=A))N /

A1) = 7(x) exp(~2)p(a — 1)dz

=l
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B exp(l) I+(N-1)A

a (1 —exp(—A))N /z:l—A
exp(l . A) I+(N-1)A

< T oAl .

= eXp(A)fY(Z - A)?

F(x 4+ A)exp(—z — A)p(z — | + A)dx

(x) exp(A) exp(—z)p(x — | + A)dx
=l-A
where the inequality follows from Lemma 2. O]

Lemma 23. If the direct allocation q;(s) is Nash implemented by a participation secure
mechanism, profit is at most

SO Y als) |18 - LB (254 4) (2] (40)
i)
s€S i=1 LA

Proof of Lemma 23. This follows from standard revenue equivalence arguments: If we write
Ui(s;, s;) for the utility of a signal s; that reports s, with U;(s;) = U;(s;, s;), then

Ui(si) > Ui(3i7 s;) = Ui( Z foi(s=i)qi(si s—) (v(si + Bs ) — 7(5; + ¥s_3)) .

5_;€5;

Thus, for s; > A,

si/A—1
Ui(s:) + > > falsai(kA, s) (V((k+ DA+ Bs ) — (kA + Tsy)).
k=0 s_;€S_;

The expectation of U;(s;) across s; is therefore bounded below by

sZ/A 1

DA D qlkA ss) (v((k + DA+ D) — y(kA + Ds_y))
k=0

ses

1 — Fi(s)
_ ;f )3 (Zs +2) =9 (29) .

The formula then follows from subtracting the bound on bidder surplus from total surplus.
O

Let II denote the maximum of the profit bound (40) across all ¢. Let II denote the
profit bound when we set ¢;(s) =1 and g;(s) = 0 for all j # 1.

Lemma 24. IT < TT+ (1 — (1 — exp(=A~1))V)z.

Proof of Lemma 24. When signals are all less than A~!, the bidder-independent virtual
value is

1
v(1) — W (Yl +A) =~(1))
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exp(—A

> (1) - _oe(-8)_
1 —exp(—A)

where the inequality follows from Lemma 22. Thus, the virtual value is maximized pointwise

by allocating with probability one to, say, bidder 1. With probability 1—(1—exp(—A~1))Y,

one of the signals is above A~!, in which case ¥ is an upper bound on the virtual value. [

Lemma 25. limA_ml:[ <TI.

(v(1) exp(A) = ~(1)) = 0,

Proof of Lemma 25. Plugging in ¢ = 1, we find that

D= ) fals=) Y [Als)r(Es) = Y Al (Es + A) = 7(2s))

5_1€5_1 $1€S51 s1>s81

Z f-1(s-1) Z Si(s1) | v(s) + Z (7(s1 4+ Es-1) = (81 + Bs_1 + A))

s_1€5_1 $1€S51 | s)<s1
= > fals)n(Ssa).
5_1€5_1

Using the definition of v, this is

A 00
I = #P(—A) /_0 /_0 (@ +y)gn-1(x) exp(—y)dxdy
0 min{z,A}
- m /:0 ¥(z) /:0 gn-1(z — y) exp(—y)dydx
0 A
=1- eXL(_A) { / A 7(z) / » gn-1(z — y) exp(—y)dydz + Gn(A)D| .

Now, observe that

/yzogzv_l(x—y) exp(—y)dy = — <_N(gi_1)!A) — exp(—a)
< S o) = Agwa(a).

where we have used convexity of 2V~!. Thus,

X A o Gy (A
I1 S 1_ exp(—A) /xO 7('1.)9N—1($)d$ + 1 — exp(—A)'

An application of L’Hopital’s rule shows that the last term converges to zero as A — 0 and
A/(1 —exp(—A)) — 1, this implies the lemma. O

Proof of Proposition 6. Combining Lemmas 23 and 24, we can pick A sufficiently small so
that IT < IT + €/2 < II + e. This completes the proof of the proposition. O

Note that every step of the proof of Proposition 6 goes through in the must-sell case,
where we replace w with w, and we skip the step in Lemma 24 of proving that the discrete
virtual value is non-negative.
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C Proofs for Section 6

Proof of Lemma 9. The left-tail assumption could equivalently be stated as: there exists
some @ > 0 and ¢ > 1 such that forall 0 < o <a <@

H0) — v < Gy ()

and if v > ¢,

ff*l(OO —C -1 —1/
H (o) —c < exp(Gy (o) — Gy (o))

The following Lemma 26 implies that if the above two conditions hold for N, they hold for
all N' > N as well. O

Lemma 26. For any N > 1 and N’ > N, there exists @ > 0 such that Gy (o) — Gy (a!) <
Gyr(a) — Gu() for all0 < o/ < a <@

Proof of Lemma 26. Clearly it suffices to prove the lemma for N’ = N + 1. Let us extend
the definition of Gy to any real number N:

T yN—l
Gy(x —/ e Y dy,
M= LT

where

=0

I'(N) :/ e vy dy.
y
(We have I'(N) = (N — 1)! when N > 1 is an integer.)

By definition, we have
Gy (@) 2N-1
e dr = a.
/z:o I'(N)

Differentiating the above equation with respect to N gives:

oG o) TG [ () |
ON T(N) i on

ie.,
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where

f(z,N) = N /:0 e " [—2¥ og(z)T(N) + 2V 'TV(N)] da.

We compute:

el (zN‘le—Z[—zN-l log(2)I(N) + ¥ 1(V)]
— (N —1)zN2 /; e [N og(x)I'(N) + VN T(N)] dx)
—e [~ log(2)['(N) + I'(N)] — (N — 1)z /:o e [—xN 1 og(z)T(N) + 2V 71TY(N))] de.

For any 2z < 1, we have

w >e=*[— log(2)T(N) + T'(N)] — (N — 1)=N / ;[ e log(a)T(N) + 2V T (V)] da
—e~*[— log(2)[(N) + ['(N)] — (N — 1)z~ [F(N) (jv—i - ZN]l@g Z) + F'(N)%]
e[~ log(z)[(N) + I'(N)] — % {F(N) % ~log z) + r’(zv)}

_ (ez _ %) [~ log(+)I(N) + /()] — = Lrv).

Since the last line goes to infinity as z goes to zero, for any fixed N > 1 we can choose
z € (0,1] such that 9f(z, N)/0z > 0 for all z € [0,Z] and N € [N, N+1]. Let @ = Gn1(2).
Suppose 0 < o/ < a <@. We have

N+1 (G Ha G/ ~
(Grta @) = Gt ()]~ [GFH(@) — Gyt = ( L )>cuv.

v ON ON

N=N

Since d (ezf(z, N)/F(N)) /dz > 0forall z € [0,z and N € [N, N+1], we have 8G]_v1(oz)/8]/\\7—
aG]_vl(o/ )/ON > 0, which proves the lemma. O

Let us now define
G$(r) = Gy (\/N— lz + N — 1) ;
g5 (x) = VN —1gy (\/N— 1x+N—1> :

Note that this normalization differs slightly from that used in Section 6, as anticipated in
Footnote 37. To prove Proposition 7, we first need a number of technical results.

Lemma 27. As N goes to infinity, g5 and GS; converge pointwise to ¢ and ®, respectively.
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Proof of Lemma 27. Note that
95+1(2) = VNgn 1 (VNz + N)

= \/N@N—TNWeXp(—\/Nx — N).

Stirling’s Approximation says that

N!
lim ——————— =
S VE (3)
Moreover, for all N, the ratio inside the limit is greater than 1.
Thus, when N is large, g5, () is approximately

\/—_ (1 + \/—_>Nexp(—\/N:€),

and hence

log(g541(x)) ~ log(1/v2r) 4+ N log (1 + \/Lﬁ) — VN

Using the mean-value formulation of Taylor’s Theorem centered around 0, for every y, there
exists a z € [0,y] such that

Y 1 3
log(1+y)=y—3+ <1+Z)3y.

Plugging in y = x/ V'N, we conclude that

log(¢5.,,(2)) %log(l/\/%)—I—N\/iN— %(%)ZNGL)S ( ~ )3—\/Nx

= log(1/v27) —% o

which converges to log(1/v/2m) — s2? as N goes to infinity, so ¢§.,(x) converges to ¢(z) =
exp(—z?/2)/+/2m. Pointwise convergence of G, to @ follows from Scheffé’s lemma. O

Let us define

o = [Frew(-3)  e<o
g\r) =
\/Lz?(l + z)exp(—z)  otherwise.

Lemma 28. The function §(x)|z| is integrable, and for all N and x, |g5(z)| < g(z).

63



Proof of Lemma 28. Note that

/:ooé<x>|:c|dx=/xioo ¢(z)|z|dr + —= / (14 z)z exp(—z)dz,

which is clearly finite, since the half-normal distribution has finite expectation.
Next, Stirling’s Approximation implies that

o a(2) < j2_ﬂ(1+ m) exp(—v/N1) = gx (@),

Now,

d 1 x
o)) =tog (14 =) < - L

which is clearly zero when x = 0, and

4ol = m—
dedN SN N L T AN+ 2 2N

_ 2N+2/Nz N _ N+2VNz+2?
2NN +2z2 2NN +z)2  2VNWN +2)?

" 2NN +z)?

which is non-positive and strictly negative when z # 0. As a result, gy (x) is increasing in
N when z < 0 and decreasing in N when z > 0. Since it converges to ¢(z) in the limit as
N goes to infinity, we conclude that for z < 0, g5, (z) < gn(z) < ¢(x) = g(z), and for
x>0, g5 (2) < gn(w) < gi(z) = g(x) as desired. O

Lemma 29. As N goes to infinity, 75 converges almost surely to 7 (x) = H=1(®(z)) and
'S, converges pointwise to

e = [ 3w

The latter convergence is uniform on any bounded interval.

Proof of Lemma 29. Note that 7§ (z) = H (G (x)) — ¢. By Lemma 27, G$(x) converges
to ®(x) pointwise. Thus, if H~! is continuous at ®(x), then as N goes to infinity, we must
have 7§ (z) — H=Y(®(x)) — ¢ =3¢ (x). Since H~! is monotonic, the set of discontinuities
has Lebesgue measure zero, so that the pointwise convergence is almost everywhere.
Pointwise convergence of I'§, follows from almost sure convergence of 7§, combined
with the fact that 7§ is uniformly bounded by [7], so that we can apply the dominated
convergence theorem. Moreover, f%(x) is uniformly Lipschitz continuous across N and z.
As a result, the family {T'C(-)}3_, is uniformly bounded and uniformly equicontinuous. The

conclusion about uniform convergence is then a consequence of the Arzela-Ascoli theorem.
O
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Recall that z* is the largest solution to fgo(x*) = 0 (which may be —o0). Also, let us

define zx so that fi has a graded interval [—v/ N — 1, xy]. (If there is no graded interval
with left end point —/N — 1, then we let xy = —v/N — 1.)

Lemma 30. As N goes to infinity, xnx converges to x*.

Proof of Lemma 30. By a change of variables y = (G§)"}(®(z)), we conclude that

. z* (G5~ (@ () R
ey = [ o= [ (o (x)r = TS ((G5) (@)

=—/N—1

This integral must be zero by the definition of z*, so that xy > (G§)~1(®(z*)). Since the
latter converges to x* as N — oo, we conclude liminfy_,, xny > 2*.
Next, recall that xy., solves the equation

TN+1

IS (@ng1) =54 (@n+) / \ﬁeXP(V N(z — xn41)) 954 (2)da
r=—vV N
TN41

= 3541 (@n11) exp(—VNay g — N) / \FGXP(\/NI + N)g§ 4 (@)d
r=—vV N
TN+1 N N N
\/ﬁ(\/_$—i'- )
VN N
(\/N$N+1 + NN+
(N +1)!

e [N 1 1
= UGNy2 —N+1 N+1 JN+1) VN +1
< 7% /| N 1 1

v —= — ,
B N+1""™ N1 1)VN+1

where we have used Lemma 28. The last line converges to zero pointwise, so f%(az ~) must
converge to zero as well. R R

Now, if z = limsupy_,., oy > o*, then since 'Y (z) > T'Y (2*) = 0, we would contradict
our earlier finding that T'C(zy) — 0. Thus, limsupy ., #x < #*, 50 2y must converge to
r* as N goes to co. O

=351 (zn1) exp(—V Nayy, — N) dx

< Eexp(—\/NINH — N)

Lemma 31. For every e > 0, there exists N such that for all N > ]/\\7, there exists an
T € [2* + €, 2% + 2¢] at which 7% is not graded.

Proof of Lemma 31. Suppose not. Then there exist infinitely many N such that for every

z € [7* + 6,2 + 2€], 75,1 (2) = exp(VN(z — )75, (%) for some # > 2* + 2¢. Thus, for
all x < 2* 4 ¢, we conclude that

7%+1($) < V%H(x* +e) < eXp(—\/Ne)ﬁ
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which converges to zero as N goes to infinity. This implies that liminfy_, fﬁ 41(z*+e) = 0.

But f§+1(x* + €) must be weakly larger than f%H(:E* +€), so
0 =lim inf fgﬂ(x* +¢) > lim inf f%H(x* +e) = fgo(a:* +¢€) >0,
N—oo N—oo

a contradiction. O]
Lemma 32. As N goes to infinity, 35 converges almost surely to

—C _J0 if v < a¥;

/yoo(x) ) ~C . *

yo(x) if x> at.

Proof of Lemma 32. Let x < x*. Since xny — x* by Lemma 30, for N sufficiently large,
xy > (2" 4+ 1) /2. Since 7§ (z) is graded on (—oo, zy], it is graded at x, and
T (@) = exp(VN — Lz — on) Ty (2n)
< exp(VN — 1(x — z¥)/2)7.
The last line clearly converges to zero pointwise. Since 7 (z) > 0 for all N, we conclude
that 7§ (z) — 0.

Now consider z > z* at which 3¢ is continuous. Take € so that > 2* + 2¢ and so that
3¢ is continuous at x* + e. Lemma 31 says that there is a N such that for all N > N ,
there exists a point in [z* + €, * + 2¢| at which the gains function is not graded. Moreover,
since 75 (2* + €) converges to 3% (z* + €), we can pick N large enough and find a constant
7 > 0 such that for N > N, AG(a* +€) > 7.

Now, suppose that 7% is graded at z, with x in a graded interval [a,b]. Then a > x* +¢,
and hence 7§ (a) > 75 (2" + €) > 7. Recall that on [a, b)],

T (2) =5 (a) exp(VN = 1(z — a)).

Since 7% is bounded above by v, it must be that 7§ (a) exp(v/N — 1(b —a)) < 7, so

Thus,
Il —en) <7 (2) < AR +en).

This was true if 7§ (z) is graded at x, but clearly the inequality is also true if it is not
graded at z, in which case 7 (2) = 7§ (z). Now, 75 (z) =3¢ (271G (2))), so

T @7HGR (@ — en))) < TR (2) S F(@THGK (@ + en))).

As N — oo, the left and right hand sides converge to 3¢ (x) from the left and right,
respectively. Since 7 is continuous at z, we conclude that 5§ (z) — 3% (z). The lemma
follows from the fact that the monotonic function 7¢ is continuous almost everywhere. [J
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Proof of Proposition 7. We argue that
Zyis = VN [ T (@)gwan(o) - gv(a))ds
x=0

converges to a positive constant as N goes to infinity. Since this is /N times the difference
between ex ante gains from trade and profit, this proves the result.
To that end, observe that

& Nx

N/2
ZNy1 = \/N/:o An+1(®)(gn41(7) — gn(T))d +/ ﬁgﬂ(x)ggﬂ(x)mdx-

z:f\/N/Z

We claim that the first integral converges to zero as N — oco. Note that gyi1(2) < gn(2)
if and only if x < N. Therefore,

N/2 N2
|m | Ava@ovin@) —ox@)is) < @+OVE [ (o) - gy ()ds

= (T4 c)VN(GNn(N/2) — Gyn11(N/2))
= (0+ )V Ngn41(N/2)

N/2)N exp(—N/2
S e

(N/2)N exp(=N/2)
VN VIEN(NJe)V

exp(—N(log(2) —1/2)),

=(0+¢)

~ (U+c)

@+
=W+c

V2T
where we have again used Stirling’s Approximation between the third-to-last and second-
to-last lines. The last line converges to zero as N goes to infinity.

Now consider the second integral in the formula for Zy ;. By Lemma 28, the integrand
is bounded above in absolute value by the integrable function vg(z)|xz|. Moreover, from
Lemmas 27 and 32, we know that the integrand converges pointwise to 55 (z)é(x)x. The
dominated convergence theorem then implies that as N goes to infinity, Zn converges to

| Ao
which is strictly positive because 7< is strictly increasing.
The proof goes through for the must-sell guarantee, if we replace 7§ with 7. m

To prove Proposition 9, we need a few more intermediate results. Let Gy(7) = Gy(Nz)
be the cumulative distribution for the mean of N independent standard exponential ran-
dom variables. Define Fy(x) = exp(N(1 — x + log(x))). Clearly, Fy(z) is a cumulative
distribution for z € [0, 1], Fx(0) = 0 and F (1) = 1. Finally, define the function Dy(a):

1 ~ :
DN(a) _ {m if o € [0704],
1.1 if a € (0.4, 1).
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The choices of 0.4 and 1.1 in Dy(«) are arbitrary: any numbers work that are less than
1/2 and more than 1, respectively.

Lemma 33. When N is sufficiently large, In(Gy' (@) < Dg(a) for all N > N and
a € [0,1].

Proof of Lemma 33. We first apply the theory of large deviations to the exponential dis-
tribution. Let A(t) be the logarithmic moment generating function for the exponential

distribution:
e if t > 1;
A(t) = log (/ exp(zt — x) d:v) -~ 1 -
2=0 —log(l—t) ift<l.

Let A*(x) be the Legendre transform of A(t):

teR r—1—loge x>0.

A*(z) = sup{t — A(1)} —{ v=0

Cramér’s theorem (or the Chernoff bound; see Theorem 1.3.12 in Stroock, 2011) then
states that for any NV, B N
G (x) < exp(~NA"(x)) = F(a)

for every z € [0,1]; or equivalently, F ( o) < Gy ( ) for every a € [0, Gn(1)].
By the law of large numbers, when N is sufficiently large, we have G Gn(1) > 0.4 and

1/Gy ( 4) < 1.1 and for all N > N. The claim of the lemma then follows from two cases:
If o € ]0,0.4], then we have

N 1 1
1

fin(Gy (a))SGle(a):@]_Vl(oa) Fy(a) Fy(a)

where we have used the bound uN(x) < N/z (equation (21)), and the facts that Gy(1) >
0.4 when N > N (so F_l( ) < (a) for a < 0.4 < Gy(1)) and that Fy(z) < Fg(z) for
)

all N > N and z € [0,1] (so Fg (a <F ( ) for all ).
If @ € (0.4,1], then

since Gy (a) is increasing in a, and 1/Gy (0.4) < 1.1 when N > N. O

Lemma 34. When N 1is sufficiently large,

/a 1:0 Dy (o) dH (o) < o0
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Proof of Lemma 34. Since Gy(z) =1 — ij:l gr(x), we have:

N k—1
—1—Zexp —Nzx) $)1)

= (Nx)* Nx)¥
=1—exp(—Nx) (exp(Nw) — Z ( k’!) ) > exp(—Nx)< N!)
k=N
Clearly, there exists an T € (0, 1) such that
— NV
Frar(z) = exp(N + 1)1~ 2))a™ < exp(~ V) T~ < Gy (o)

for all z € [0,7]. We therefore have Dy 1(a) = I/FJ_VIH(Q) < 1/51_\[1((1) for all a € [0, @],
where @ = min{F y,,(7),0.4}. As a result,

/1 Diva(a) dH=(a) g/a = ! / max( o .1) dH(a) < o0
a=0 N+1 @

whenever we have
! 1
/ — / — dwy(z) < oo.
a=0 GN ( T

Finiteness of the last integral follows from part one of the left-tail assumption. O]

Lemma 35. Suppose limy o yn € (—00,00). Then limy o Fiys (VNyy + N) = 1.

Proof of Lemma 35. We first argue that for almost every v, ENH(\/Ny + N) tends to 1 as
N — oo. For this we recall £* and z from Lemmas 30-32.

Consider first y < z*. By Lemma 30, for N sufficiently large, the gains function is
graded at y, and hence

N +1

ﬁN+1(\/Ny+ N) = O(O, \/NIN+1 + N) = m
N+1

Since we have already shown that zx — 2* (Lemma 30), we conclude that fiy_ (v Ny-+N)
goes to 1.

Now consider y > z* at which ¢ is continuous. If the gains function is not graded at
y, then fiy_ 1 (V Ny + N) = N/(v/Ny + N). If the gains function is graded at y, then the
length of the graded interval [a,b] 3 ¥ in the central limit units is less than ey = 7/(yv/N)
for some vy > 0 independent of N (see Lemma 32). Since 7 is decreasing (Lemma 3), we

have
N N

VN(y+en)+ N VN(y—en)+ N’

since lim, ~, Ty (VNz+ N) = N/(VNa+ N) and lim~ fiy. (VNz+ N) = N/(VNb+
N). As aresult, fiy, (V' Ny + N) is squeezed to 1 as N goes to infinity.

< ﬁN+1(\/NZ/+ N) <
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We conclude that 7y, (v Ny+N) goes to 1 for y > z* at which A< is continuous. Since
3¢ (y) is a monotone function of y, it is continuous at almost every y, so the convergence
iy — 1 is almost everywhere.

Finally, suppose limy_,o yy = 3y € (—00,00). Choose y" and y” such that y € (v/,y")
and such that

lim fiy,,(VNY + N)=1= lim 7y, (VNy" + N).
N—oo N—oo
When N is sufficiently large, we have yy € (¢/,4"), so
ﬁNH(\/NZ/H +N) < ENH(\/NQN +N) < EN+1<\/N?/ + N).

Taking the limit as N — oo, we conclude limy o fiy 1 (VNyy + N) = 1. O

Proof of Proposition 9. We first prove that

lim Ay(v;H) = v —c (41)
N—ro0

for every v € [v,7]. B
Replacing fiy by 1 in equation (18), the definition of Ay (v; H), we have

1)+ " Gatdont) - [ v =Tia(en) + (o / " anantdy) - @)

=0 =0

=TIIx(H) _/v v'dH (V') + v

'=y

Since by Proposition 7 limy_,e IT ) — f LU "dH (V') — ¢, to prove (41), it suffices to
prove that
Jim 11 =%y (y)| dwn(y) = 0.
=00 Ju—o

Changing variables, we can rewrite the above equation as:

1

i [ L= TG (@) dH ™ (o) = 0. (42)

N—oo

We note that Stieltjes integration with respect to dH () is equivalent to a Lebesgue
integration with respect to the finite measure w on [0,1] satisfying w([s,t)) = H~(t) —
H'(s),0<s<t¢<1,and w({1}) = 0. Part one of the left-tail assumption implies that

w({0}) = lim w((0,0)) = lim H~(a) — H(0) < lim G ()7 = 0

for some ¢ > 1. Therefore, w({0,1}) = 0.

The central limit theorem implies that limy_, 0 (Gy' (@) —(N—1))/v/N — 1 = @~ () for
every a € (0,1). Therefore, Lemma 35 implies limy_, o iy (G (@) = 1 for every a € (0, 1).
Moreover, Lemmas 33 and 34 imply that there exists a N such that for all N > N , the
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integrand |1 — iy (Gy' ()| in (42) is dominated by 1 + Dg(a) which is integrable with
respect to w. Therefore, equation (42) follows from the dominated convergence theorem,
from which equation (41) follows.

Finally, using the definition of Ay (v; H), we have

R(wi ) < To(H)+ [ s (1+G() din(o) < (=002 [ Dy(a)d ' (a) < o

=0

for all v € [v,7] and N > N , where the last two inequalities follow from Lemmas 33 and
34, respectively. Thus

lim [ Ay(v; H)dH'(v) = / vdH'(v) —
N—oo [y, Vv
follows the dominated convergence theorem using (41).
The proof for the must-sell A\y(v; H) is identical, after replacing 7y (x) with fiy(z) =
(N —1)/z and Iy (H) with IIy(H). O

Lemma 36. Suppose the condition on H in Lemma 10 holds. For any € > 0, there exists
an N such that for all N > N we have

v (z) <An(y) exp(z —y).
for all x >y such that Hn(y) > €.

Proof of Lemma 36. The condition on H implies that the support of H has no gap on [v, 7],
so H~! is continuous on [0, 1]. We can partition [0, 1] into a countable collection of intervals
{[ewi, Bi] : @ € I} such that o; < 3;, and either H~! is strictly increasing on [ay, 3], or H™*
is constant on [y, 3;] (i.e., H has a mass point at v, where v = H~1(p) for all p € [ay, Bi]).
If H! is strictly increasing on [ay, 3;], then
H'(q)—H '(p) < ~—=~ (43)

for any p,q € (ay,3;) such that p < ¢, since in this case we have H(H '(q)) = ¢ and
H(H '(p)) = p. By continuity of H~! we can extend (43) to any p,q € [, 3;] such that
p=q

If H=! is constant on [«y;, 3], then clearly (43) also holds for any p, ¢ € [, ;] such that
p < q. Since {[ay, 5] : i € I} is a partition of [0, 1], we conclude that (43) holds for any
p,q € [0, 1] such that p < ¢.

With the substitution ¢ = G () and p = G (y), with > y, equation (43) becomes

GS(x) = GS.(y)

%?f( ) 'YN(y) C

Thus,
5 (x) 1 G{(z) — GS(y)
Nw S TAw T ©



The log-1 Lipschitz condition that we want to prove is equivalent to

ﬁff@) —1/~C =1 nC
) exp(Gy (Gy (1)) — Gy (Gr(y))-

Thus, it is sufficient to show that for large IV,

1 Gf(z) - GK(y)
1+ =5
T (W) C
Both sides are equal to one when x = y, and the derivatives of the left- and right-hand
sides with respect to x are, respectively

< exp(G]_Vl(G%(:U)) — G;,l(G%(y))).

gn(2)
HWC .
and
91?/(55) —1/~C =1 AC
exp(Gy (Gy (7)) — Gy (GN(y))) (45)

on (G (G5 (@)))
— VN — Lexp(Gy (G5 (2) — G (GSw) = VN — 1.

We now show that (44) is always less than (45). Note that gy attains its maximum when
gN = gn_1, i.e., when x = N — 1, at a value of (N—)iv),_lexp(—(]\f — 1)). Multiplied
by VN — 1, this upper bound converges to ¢(0). Hence, when N is sufficiently large,
g5 () < 2¢(0) for all x. Since 5 (2) > 0, then there is an N large enough such that

K@) 2600)
e =« VN

which proves the lemma. O

Proof of Lemma 10. If v > ¢, then we can take ¢ = v — ¢ in the statement of Lemma 36,
in which case the statement of the Lemma follows immediately.

If v < ¢, then 35 (—v/N — 1) < 0, so that fg(z) is non-positive for x close to —v N — 1.
Hence, there must be a graded interval at the bottom of the form [—vN —1,zy]. By
Lemma 30, zy converges to x*. Moreover, by Lemma 32, 7§ converges almost surely to
5<. Thus, there exists an N such that for all N' > N,3%(zn) > €. If we take € = 3 (z*) /2
in Lemma 36, then there exists a N’ > N so that for all N > N’ the log-1 Lipschitz
condition is satisfied for all x > x 5. This implies that there is exactly one graded interval,
and the conclusion of the Lemma follows. [

Proof of Proposition 10. We first derive the allocation. When v > ¢, we have 2* = —o0

and the gains function 7 is not graded when N is sufficiently large. In this case @g(:c) is
always exactly 1.
When v < ¢, 2* € (—o00,00), and the gains function 7 is single crossing (Section 4.4)

when N is sufficiently large. Then @g(x) = min((zv/N + N)/(zxyV'N 4+ N),1). Since zy
converges to z* as defined by equation (29), @g(:v) converges to 1 as N — oo.
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We now derive the transfer. From Lemma 10, we know that there is at most one graded
interval of the form [—\/N, x|, where zn = —V/Nifv>cand zy > —V/N ifv < c.
Recall that ) N
Ta(r) = [ Extwont)dy
gN(x) y=0

En(@) = fiy(@)0n () = A (Dx (7)) — cQp(2),

Furthermore,

/ : An(W)Gn(y)din(y) = / :o fin ()G (y)dn (y)

. / T A W)y ()G (y))

y=0

= [ a6 - [ Aoy

- / :%(?/)GN(y)dﬁN(y) - / :)TN(y)gN_l(y)dy,

where the last inequality comes from equation (32). Thus,

(@ () = / m A (9) G () g (9) + T () () + / °° D () din (y),
and

[1]]

v(z) = / ; In(y)Gn (y)drin (y) + / :o (An ()G (y) — D (y))diin(y) — cQn(z)
~ [ G ) - [ ()1 - Gxl)dix(y) ~ o@u(o) - Tn(a)

Let us now switch to central limit units.

=¢(2) =En(VN =1z + N - 1)

—/x ?ﬁ(y)G%(y)dﬁ%(y)—/oo W) = GSWNAES (y) — @y () — TS (@)).
y=—VN -

Yy=x

By Lemmas 27 and 29, 75 (y) — 7% (y) = H Y(®(y)) —c and G (y) — ®(y) as N — oc.
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Moreover, we have

N—-1 N : _ .
VN —1ldaf(y) = ¢ (N = 1) (m\/N 1+N 1 onVN— 1+N71> — -1 ify=any;

where the mass point on zy is derived by comparing & to the left and right of z, and

zvV/N—1+N-—1 N X ‘
—C e _ \/ﬁ anNVN—1+N—1 - IN\/N71+N71> ifr< TN;
N-—-1(1-

ﬁ if ¢ > N,
which converges to x in both cases.
Define F(x) = limy_,00 VN — 1?2(9&). We have
Flx) = —cx + 75 ()(1 = @(2)) + [ 2, 35 W)(1 — ®(y)) dy x <
—cr =3 (x")®(2") — [, AL @) dy + [[ZAS(W)(1 - 2(y))dy x> 2’
Therefore,

in 75(0) = 525 [ F)ots) iy

N—oo ¢(ZE -0
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D Derivation of Aggregate Transfer for Uniform Dis-
tribution

Suppose the prior H is the standard uniform distribution, so that w(xz) = G (z), and that
c=0.

D.1 Must-sell Case

In the must-sell case, = and T are independent of ¢, so ¢ = 0 is without loss. We have:

NGva) = [ Gxtmaxatdy+ [ FGatantdy - [ =

=2 /OZ Gn(Y)gn-1(y) dy — (1 — Gn-1(2))
=2l — (1 — Gy_1(2)),
N-1

E(z) = - Gn(z) — Gyoy(z) + 1 — 211

—1
gn(y) dy
; ~(Y)

/ Zwvt) v = [ (Ny‘ L Gn(y) — Craly) +1 2ﬁ) gn () dy
—2 | G (9)gn-1(y) dy — G () Gy () + (1 — 2 Gy (2)

— Gy (2)? 2 / " v ()gn () dy — Ga(x)Gya(x) + (1 — 200) Gy (a)

=0

=Gy_1(7)gn(z) — 2 /m an(y)gn—1(y) dy + (1 — 2I) Gy ()

=0

= Gn-1(z)gn(2) — 22N—3(§\27]\_[ I)?()]'V _ 2)!G2N—2(2x) +(1- Qﬁ)GN(x)
= Gy-1(z)gn(z) + 22N3(§\2,]\1 Iﬁ)]'\, ~ )1 (Gn(x) — Gan-2(27))

where the second line follows from integration by parts, the third and fourth lines use
Gy = Gn_1 — gn, the fifth line is a direct computation using the formula for gy in (14),
and the last line follows from

PO 1™ 1 (2N - 3)!
H = _ = — — _ = — 1 — .
- Gn(y)gn-1(y) dy = 3 /yo N (Y)gn-1(y) dy = 5 ( PENIN 1IN = 2)!)
Therefore, when x > 0,
= (V) Gu() — Gan_s(22)

T(iL‘) = GN,1($) +

22N—3 QN(SU)
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In the central limit normalization (using the convention in Section C), we define
TC(z) =T(N — 1+ v/N — 1z).

Lemma 27 shows that Gy (N —14++N — 1z) = ®(z) and gy(N —1++/N — 1z)y/N — 1 —
¢(r) as N — oo, where ® and ¢ are, respectively, the cumulative distribution and density of
a standard Normal; this also implies that Gony_o(2(N —14++VN — 1z)) — @(xﬂ) Finally,

2N -3
using Stirling’s approximation, it is easy to check that (221\1 3) vN -1 — —= 77 as N — oo.
Therefore,

e e 0~ 8y
T = )+

for a fixed z.

D.2 Can-keep Case

We have shown that the uniform distribution is single-crossing in Section 4.4. Let [0, 2]
denote the graded interval. The cutoff z* satisfies (cf. (28))

GN(I‘*)
2

= gn+1(z"). (46)

This equation implies that Gyy1(2*) = Gy (z*) — gns1(2*) = gy (2*) = Gu(z*) /2.
Define the constants

C = / o)y (2) do + /x:mx)GN(x)gN(x)dx

*

- /:0 exp(z — 2" )Gn(2")gn_1(x) dx + /; %GN(a:)gN(x) dx

J/

-~

C
—l—/ Gn(z)gn-1(x) daz—l—/ . Gy(z)gn(x) dx
s .

We can simplify the constants as follows:

*

Cy =2 /IO exp(x — 2")Gn(x")gn-1(x) dz
=2GN(z")gn (27)
Cy :2/ Gn(x)gn-1(x) dz

=x*
o0

=1 —Gn_1(2%)? — 2/ * gn(z)gn_1(z) dx
=1 — GN_l(ZL‘*)Q — (2]2\[]\;3) (1 — GQN_Q(QZL’*))
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(2N73)
C :2GN(ZL‘ )gN(fL’*) + 1— GN_1($*)2 N1
Then

© 92N-3

(1 — GQN_2(2I'*))

N-1
v (y) dy

C ceean(@)dy — [Z St (y)dy @ <o
C_ fy:x N-1

C

C

C gn
:{ — [N

and

T > x*

x> x*
=(z) =

—C+ (GN(.T*) — GN(Qf))mﬂ* + (1 — GN_l(Qf*)) r<x
G]\KI)% - C + 1-— GN_1<I)
For x < x*, we have:

/ ' Ewant)dy = / (—

For x > x*, we have:

/w
y=0

(1) gn(y) dy = (—c T NS EA GN_1<x*>> On(a")

v(z*) = Gn(z) T — (1 - Gyoa(z?) o<
— Gn-1(z))

C + GN(l'*)xﬂ* +1-— GNfl(.I’*)

T >x*
C+ Gy

+\/: (GN(?J)N_ !

—— = C+1-Gna(y)
)
Simplifying the second term, we get:

)gN(y) dy .
X =(1-0)(Gn(z) — Gn(z7))

22 [ Gulav(0)dy — Gu(@)Grr(#) - Gyla )Gy e)
=(1 - C)(Gn(z) — Gn(27))

J/

_ 2/: * an () g1 dy + gn ()G -1 (2) — gn ()G w1 ()
(1 - C)(Gn(z) - Gn(a"))
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- %(GW—?(%) — Gan—2(22")) + gn(2)Gn-1(z) — gn(27)G N1 (7).

Therefore, for x < z*, we have:

T(z) = ( C+ Gn( )x* +1—Gn_f )) ()
For x > x* we have:
T(x)
= GN(x*)Qg — GNfl(x*)z + (1 — C)GN(aj) — (2]2\;\/—_13><G2N2<2x) — G2N2(2£L‘*))] gNl(m) + GN,1($).

Finally, we take the limit as N — oo for the central limit normalization:
T(2) =T(N — 1+ VN — 1a).

Since Gn(z*)/2 = Gy41(x*) by the discussion following equation (46), we must have
(z* = (N —=1))/VN =1 — —o0, Gn(z*) — 0, and gy(z*) — 0 as N — oco. Moreover, by
equation (46), NGy(z*)/z* = 2Ngy11(2*)/z* = 2gn(2*) — 0 as N — oo. Substituting
these into the expressions of C' and T" and simplify as in the must-sell case, we get

—=C () — O(xV/2)

Jim T(e) = @) + =~ =205
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