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Abstract

We propose a novel proportional cost-sharing mechanism for funding public goods
with interdependent values: the agents simultaneously submit bids, which are non-
negative numbers; the expenditure on the public good is an increasing and concave
function of the sum of the bids; and each agent is responsible for a fraction of the
expenditure that is proportional to their bid. The proportional cost-sharing mechanism
provides a non-trivial guarantee for social welfare, regardless of the structure of the
agents’ information and the equilibrium that is played, as long as the social value for the
public good is sufficiently large. Moreover, this guarantee is shown to be unimprovable
in environments where the designer knows a lower bound on the social value. The
guarantee converges to the entire efficient surplus when the social value grows large.
When there are two agents, our model can be reinterpreted as one of bilateral trade,
and the proportional cost-sharing is reinterpreted as proportional pricing.
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1 Introduction

Consider a society that is deciding how much resources to expend on a public good. The
good can be produced in continuous quantity, and at linear cost, up to a maximum amount.
Valuations are linear and increasing in the expenditure. The agents who make up the society
can form a social contract, consisting of a mechanism that will determine how much to spend
on the good and each agent’s share of the expense. The agents possess private information
about their respective valuations of the good, which may differ across agents. The agents
must agree to the proposed mechanism after they are endowed with private information.
This gives rise to a free-rider problem, wherein the agents may behave as if their value for
the good is lower than it truly is, in order to reduce their share of the expense. The question
is: What kind of mechanism should the society implement, in order to maximize their joint
welfare?

The public expenditure problem just described has been studied in various forms go-
ing back to Samuelson (1954). The formulation closest to ours is that of Güth and Hellwig
(1986), who assume that the agents’ values for the public good are independently distributed,
each agent knows their own value and nothing more, and agents must be induced to partic-
ipate in the mechanism at the interim stage. We describe their contribution in more detail
below. In general, the exact solution of the Bayesian mechanism design problem, including
in the public goods case, is sensitive to assumptions about the distribution of values and
the higher-order beliefs held by the agents, which are typically modeled as an information
structure (i.e., a Harsanyi type space). However, it seems hard to say which information
structure is empirically relevant, especially if we allow for the possibility that signals may be
correlated and values may be interdependent, meaning that one agent’s private signal may
be informative about another agent’s value.

In real-world applications, mechanism designers will not be able to describe fine details
of the agents’ higher order beliefs. In particular, a mechanism designer may be unwilling or
unable to commit to a particular information structure as the correct description of what
the agents know. Rather, the designer is more likely to know relatively coarse features of the
environment, and especially about payoff-relevant fundamentals, such as the average value
of the agents or the range of possible values. Thus, a useful formulation of the mechanism
design problem will consider the performance of a mechanism across a range of information
structures that are consistent with those coarse features.

This paper contributes such a theory. In our baseline model, the mechanism designer
simply knows a lower bound on the social value of the good (i.e., the sum of the agents’
values). This lower bound is assumed to be greater than the cost, to avoid the degenerate
case where the efficient outcome is to not produce. We later consider a richer version of
the model where the designer further specifies an upper bound on the social value and a
lower bound on the expected social value, and again this lower bound is at least the cost of
production. We first describe the results for the baseline model, and then we will describe
the extension.

The welfare guarantee of a mechanism defined to be its infimum social welfare across all
information structures and equilibria. Importantly, subject to the restrictions in the previ-
ous paragraph, we allow for arbitrary (common prior) information, for which there may be
correlation in signals and interdependence in values. Loosely speaking, we compute mecha-
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nisms that maximize the welfare guarantee. The solutions that we identify are proportional
cost-sharing mechanisms : Each agent’s action is a non-negative number; the total expendi-
ture is an increasing and concave function of the aggregate action; and each agent’s share of
the cost is proportional to their action. These mechanisms create a natural tradeoff for the
agents that mitigates free riding: By reducing their action, agents can reduce their share of
the expense, but they also reduce the total expenditure.

To see how one might implement the proportional cost-sharing mechanism in practice,
imagine that China and the US have signed a treaty to address the climate change crisis,
which entails a protocol for assigning commitments to reduce greenhouse gas emissions. (This
problem is not a bad fit for our model, because it involves a public good with uncertain and
heterogeneous values, the social value is undoubtedly large, and the ratification process is
consistent with our approach to participation constraints.) The way the treaty works is
as follows. First, we divide the total amount E of emission reductions (in tons of carbon
dioxide, say) into K equal-sized tiers. Each tier has a pre-specified number of shares yk,

so a share in tier k has a face value of E
Kyk

tons. Each nation can demand a number of
shares and is committed to reduce emissions according to the face value of its allocated
shares. The demands are matched first to the shares from tier 1, and then to tier 2 once
tier 1 is exhausted, and so on; within each tier each nation’s allocation is proportional to
its demand. For example, suppose there are two tiers with y1 “ 40 and y2 “ 60. If China
demands 30 shares and the US demands 40 shares, then their respective shares of aggregate
demand are 3{7 and 4{7. The resulting total demand is 70, so that all 40 tier 1 shares will
be allocated, and 30 tier 2 shares are allocated as well. China is ultimately responsible for
reducing emissions by 3

7
ˆ E ˆ

`

40 ˆ 0.5
40

` 30 ˆ 0.5
60

˘

tons, while the US is responsible for

reducing emissions by 4
7

ˆ E ˆ
`

40 ˆ 0.5
40

` 30 ˆ 0.5
60

˘

tons.
To our knowledge, these mechanisms are new to the literature. Their robustness derives

from the way they balance social welfare against agents’ incentives in a manner that limits the
scope for free riding, as we now explain. In the mechanisms we construct, agents can indicate
that they are unwilling to pay for the good by taking a low action, so that low action profiles
are associated with low expenditure and inefficient production. The concern about free riding
is that a strategy profile in which expected expenditure is relatively large might unravel
because the agents are tempted to deviate to actions associated with lower expenditure
and lower cost, which in our mechanism are lower actions. A natural subset of deviations
to consider is those that are marginal, meaning that they correspond to an infinitesimal
change in an agent’s action. To guard against unraveling, we engineer the mechanism so
that marginal effects are high when actions are low, which is also when expenditure is low.
Thus, if low expenditure were to occur too often in equilibrium, the agents would tempted
to deviate to higher actions. Of course, in equilibrium, the expected marginal effect must be
zero (otherwise an agent would want to deviate), and hence we make marginal effects low at
high action profiles and when expenditure is relatively high.

This is precisely the structure that we obtain with proportional cost-sharing mechanisms.
These mechanisms have the special feature that the average of the agents’ marginal effects
depends only on the aggregate value and aggregate action. Hence, the relationship between
social welfare and average marginal incentives is reduced to the choice of the mapping from
the aggregate action to total expenditure. It turns out that if the total expenditure function
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is linear (such as if there were only a single tier in our example above), then the average
marginal effect is independent of the aggregate demand (and hence doesn’t depend on ac-
tions at all). But as we just observed, this is undesirable from a robustness perspective: We
forestall unraveling by positively relating marginal effects to expenditure on the public good.
This is achieved with a concave expenditure function, e.g., the two tiers in our example. In
fact, under the optimal specification, social welfare and marginal effects are exactly bal-
anced. More precisely, the optimal proportional cost-sharing equalizes the strategic virtual
objective—the sum of social welfare and the agents’ marginal incentives—across all states
and action profiles.

In addition to studying guarantee-maximizing mechanisms, we also study the worst-case
information structures against which the proportional cost-sharing mechanisms are implicitly
guarding. The welfare potential of an information structure is its maximum welfare across
all mechanisms and equilibria. We construct information structures that have a potential
arbitrarily close to the guarantee of the proportional cost-sharing mechanism. In a sense
that we will expand on shortly, these information structures minimize the potential. The
information structure is of the following form: the social value of the good is (not surprisingly)
equal to its lower bound with probability one; the agents’ signals are non-negative real
numbers; the density only depends on the sum of the signals; and each agent’s expected
value for the good is proportional to their signal.

In order to describe our results more precisely, we must address an important technical
issue that arises in our model. The guarantee-maximizing mechanism has a continuum of
actions and the potential-minimizing information has a continuum of signals. An obvious
concern with such infinite objects is that the guarantee and potential might be either ill-
defined or vacuous, because equilibria fail to exist for some or all information structures or
mechanisms, respectively. A similar issue arises in our earlier work (Brooks and Du, 2021,
2023). In the present paper, we address this concern by proving that an equilibrium exists at
the saddle point consisting of the guarantee-maximizing mechanism and potential-minimizing
information structure.

The solution just described works as long as the minimum social value is sufficiently
large. As long as the social value per unit expenditure is greater than one, it is socially
efficient to produce the good. However, even when this is the case, it may still be impossible
to implement efficient expenditure because of the free-rider problem, so that the maximum
guarantee is less than the efficient surplus. In the case where the per capita social value
is at least one, the solution is as just described. However, when the per-capital social
value is less than one, so that the value of a dollar of public expenditure is worth less than
a dollar to the average agent, we construct information structures for which the welfare
potential is arbitrarily close to zero. That it should be so challenging to generate non-
trivial guarantees is perhaps not surprising given the weakness of our assumptions on the
information structure. Nonetheless, it is quite striking that even though there is common
knowledge that the efficient outcome is full expenditure, there are information structures for
which the free-rider problem is so severe that no mechanism can generate a non-negligible
amount of surplus in any equilibrium.

As mentioned above, we also consider the more general model where there is an upper
bound on the social value and a lower bound on the expected social value. The value of this
extension is that it allows for positive probability that the social value is arbitrarily small.
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The main finding is that proportional cost-sharing mechanisms continue to maximize the
guarantee. If the expected social value per capita is less than one, the model again collapses,
and the max guarantee and min potential are both zero. But as long as the expected social
value per capita is greater than one, there are strong maxmin solutions with non-trivial
guarantee. Moreover, a proportional cost-sharing mechanism is part of the solution and
attains the guarantee. The difference with our baseline model is in the particular form of
the concave total expenditure function.

Thus, while the exact optimal total expenditure rule depends on the particular assump-
tions we impose on fundamentals, the main takeaway from our model is that the class of
proportional cost-sharing mechanisms provides unimprovable welfare guarantees, if we allow
for relatively large uncertainty about the form of private information and the dispersion in
values.

An important consideration is what happens if the assumptions about fundamentals are
also misspecified. For example, what happens to the welfare guarantee of a guarantee-
maximizing proportional cost-sharing mechanism if the social value ends up being signifi-
cantly larger than the lower bound? We show that even if these assumptions are slightly
misspecified, the mechanism will still provide a welfare guarantee that is close to the opti-
mum. Moreover, Proposition 4 shows that as the social value grows large, the proportional
cost-sharing mechanism guarantees a fraction of the efficient surplus that converges to one.
Thus, when the social value is large, proportional cost-sharing mechanisms achieve approxi-
mately efficient outcomes.

Our work is connected to the literatures on the public expenditure problem and on
informationally-robust mechanism design. Most of what is known about the public goods
problem concerns information structures with private values. In this case, it is well-known
that if there is no budget constraint, then the efficient outcome can be implemented in dom-
inant strategies with the Vickrey-Clarke-Groves mechanism. Moreover, d’Aspremont and
Gérard-Varet (1979) showed that it is still possible to achieve efficient outcomes with Bayes
Nash implementation and ex post budget balance, as long as participation constraints are
ex ante. The closest paper to ours appears to be Güth and Hellwig (1986), who study Bayes
Nash implementation, ex ante budget balance, and interim participation constraints. They
characterize social-welfare maximizing direct mechanisms, subject to ex ante budget bal-
ance. The mechanisms they describe have full expenditure if the sum of the agents’ reported
virtual values exceeds a cutoff. Otherwise, the expenditure is zero. The agents’ interim
payments are pinned down from the production rule via the standard envelope argument.
Importantly, the virtual values and the transfers depend on the value distribution, so in that
sense, the designer needs to know a great deal about the environment in order to calibrate
the mechanism.

We are unaware of other work that addresses optimal mechanism design for the public
goods problem with interdependent values and correlated types. However, as we will expand
on towards the end of the paper, the special case of our model with two agents can be
reinterpreted as an instance of the bilateral trade problem, where there is an upper bound
on the seller’s value and a lower bound on the gains from trade. Our analysis is therefore
also connected to the literature on bilateral trade, which has highlighted the inefficiency
that results from budget balance and incentive and participation constraints (Myerson and
Satterthwaite, 1983), as well as the potential welfare-reducing effects of interdependence
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in values and correlation in signals (Akerlof, 1970; Carroll, 2016). In the bilateral trade
context, the proportional cost-sharing mechanism can be reinterpreted as a proportional-price
trading mechanism: The buyer and seller submit non-negative numbers, trade occurs with a
probability that depends on the aggregate action, and the price is a weighted average of the
lowest possible value of the buyer and the highest possible value of the seller. These weights
are proportional to the actions of the seller and the buyer, respectively. Thus, by increasing
their action, an agent can increase the probability of trade, but at the cost of moving the
terms of trade in a direction that is unfavorable. Moreover, the trading probability is more
sensitive to the agents’ actions when the trading probability is small, which guards against
the expected probability of trade falling too low in equilibrium. Theorem 3 shows that
proportional-price trading mechanisms provide optimal guarantees for gains from trade.

Within the robust mechanism design literature, our work is most closely related to the
recent literature on maxmin mechanism design (Chung and Ely, 2007; Bergemann et al.,
2016; Du, 2018; Brooks and Du, 2021, 2023). The proportional cost-sharing mechanisms we
derive are reminiscent of the proportional auctions that were found to be robustly optimal in
Brooks and Du (2021). We discuss in greater detail the similarities and differences between
the two mechanisms after presenting our main results. Most closely related is Brooks and
Du (2023), who describe a general framework for informationally robust optimal mechanism
design. Setting aside technical differences regarding finite versus infinite mechanisms and
information structures, our model is a special case of that of Brooks and Du (2023). That
paper introduced the notions of strategic and informational virtual objectives, which are the
designer’s objective plus an adjustment corresponding to local equilibrium constraints. In
the case of the strategic virtual objective, this adjustment is the sum of the agents’ gains
from deviating to nearby actions, and in the case of the informational virtual objective, the
adjustment is the sum of agents’ gains from mimicking nearby types. Brooks and Du (2023)
argued that the expectation (across payoff-relevant states) of the lowest (across actions)
strategic virtual objective is a lower bound on a mechanism’s guarantee. Similarly, the
expectation (across signals) of the highest (across outcomes) informational virtual objective
is an upper bound on the potential. The present paper applies this bounding methodology to
the public goods problem: the proportional cost-sharing mechanisms maximize the expected
lowest strategic virtual objective, and the worst-case information structures minimize the
expected highest informational virtual objective. Some of our results on the baseline model
are summarized in Brooks and Du (2023) at a high level as an application of the more general
framework.

The rest of this paper is organized as follows. Section 2 describes the model. Section 3
analyzes the baseline model where there is only a lower bound on the social value. Section 4
analyzes the extension where there are lower and upper bounds and a known expected social
value. Section 5 contains some additional results, including on robustness to misspecifica-
tion of fundamentals, the connection to bilateral trade, and comparisons with alternative
mechanisms. Section 6 is a conclusion. Omitted proofs are in the Appendix.
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2 Model

2.1 Fundamentals, information structures, and mechanisms

Society chooses how much resources to expend on a public good. The expenditure is denoted
E P r0, 1s. The marginal value of expenditure to agent i is θi P R`. All of the expenditures
must be raised from the N agents. Let ei P R denote the amount supplied by agent i.
(Note that we allow expenditure to be negative, in which case an agent receives a subsidy
from the rest of society.) Budget balance requires that E “

ř

i ei ” Σe. (In general we
write Σx ”

ř

i xi for x P Rk for some k.) Agent i’s payoff is ui “ θiE ´ ei. The mechanism
designer’s objective is to maximize social welfare, which is Σu “ EpΣθ´1q. Full expenditure
is socially efficient as long as Σθ ě 1.

The agents’ higher-order beliefs about θ are described by an information structure I “

pS, ρ, vq, where Si is a measurable set of signals for agent i, S “
śN

i“1 Si is the set of signal
profiles, and ρ P ∆pSq is the joint distribution of signals, and v : S Ñ RN

` is the expectation
of θ conditional on the signal profile s. Due to the linearity of utility in θ, we can write
agent i’s expected utility of e at s as vipsqE ´ ei, and the designer’s expected welfare as
pΣvpsq ´ 1qE.

We will consider two sets of assumption about the information structure. In the baseline
model, there is a lower bound θL ě 0 on the social value, so Σvpsq ě θL for all s. The
baseline model is studied in Section 3. In Section 4, we consider a richer model where we
further assume that the expected social value is at least pθ and, moreover, there is an upper
bound θH on the social value.

The agents interact through a mechanism M “ pA, eq, where Ai is a measurable set of
actions for agent i, A “

śN
i“1Ai are the action profiles, and e : A Ñ Ω where Ω “ te P

RN : Σe P r0, 1su is the set of outcomes. We write Epaq “ Σepaq for the associated total
expenditure.

A mechanism is participation secure if for every agent i, there exists an action 0 P Ai

such that θiEp0, a´iq ´eip0, a´iq ě 0 for all a´i P A´i and θ P Θ. Since θi “ 0 is a possibility,
this condition is equivalent to eip0, a´iq ď 0 for all a´i P A´i.

2.2 Solution concepts

A pair pM, Iq of a mechanism and an information structure is a simultaneous-move Bayesian
game, in which the behavioral strategy of agent i is a mapping bi : Si Ñ ∆pAiq. We identify
a profile b with the function b : S Ñ ∆pAq given by bpda|sq “

ś

i bipdai|siq. Given a strategy
profile b, the ex ante expected payoffs are

UipM, I, bq “

ż

s,a

pvipsqEpaq ´ eipaqqbpda | sqρpdsq

The profile b is a (Bayes Nash) equilibrium if Uipb;M, Iq ě Uipb
1
i, b´i;M, Iq for all i and b1

i.
The objective of the designer is the expected social welfare

W pM, I, bq “
ÿ

i

UipM, I, bq “

ż

s,a

pΣvpsq ´ 1qEpaqbpda | sqρpdsq.
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For a mechanism M , define its welfare guarantee as the minimum expected welfare across
all information structures I 1 and equilibria of pM, I 1q.

For an information structure I, define its welfare potential as the maximum expected
welfare across all mechanisms M 1 and equilibria of pM 1, Iq.

As in Brooks and Du (2021), we seek to characterize a strong maxmin solution for the
mechanism designer. Formally, a tuple pM, I, bq is a ϵ-strong maxmin solution if

(i) b is an equilibrium of pM, Iq

(ii) The welfare guarantee of M is at least W pM, I, bq ´ ϵ;

(iii) The welfare potential of I is at most W pM, I, bq ` ϵ.

The equilibrium b in Condition (i) is needed so that statements (ii) and (iii) about the
guarantee and potential are not vacuous (because of equilibrium nonexistence). See Section
5.1 for a discussion of equilibrium existence.

When ϵ “ 0, we call the tuple pM, I, bq a strong maxmin solution, M a guarantee-
maximizing mechanism, I a potential-minimizing information structure, and W pM, I, bq
the value of the solution. We also use the terms “guarantee-maximizing” and “potential-
minimizing” when the mechanism and information structure are limits of ϵ-strong maxmin
solutions as ϵ Ñ 0.

2.3 A note on interpretation

One might consider a more general model where there is a lower bound θ on each agent’s
individual value θi, as well as a lower bound θ̃ on the social value Σθ. Let us also explicitly
introduce a cost of production c (in Section 2.1 we normalized c to be 1). In this case,
the mechanism can always demand a “baseline” contribution from agent i of θE without
violating participation security. Thus, if Nθ ą c, it is possible to implement an efficient
outcome. On the other hand, if Nθ ă c, then efficient production cannot be financed just
from such baseline contributions, and the question is whether there is a mechanism that
can cover the budget shortfall c ´ Nθ. If in addition we have θ̃ ą c, then we know that
production is efficient, but there is uncertainty about how the uncertain component of the
social value θ̃ ´ Nθ is distributed across agents. Thus, we should interpret θL as a lower
bound on the normalized uncertain portion of the social value relative to the shortfall, i.e.,
θL “ pθ̃ ´Nθq{pc´Nθq. We will revisit this interpretation in Section 3.4, when we consider
the large N limit.

3 Known lower bound on the social value

3.1 Overview of the analysis

For this section, we adopt the baseline assumption on the information structure, that the
social value is at least θL. We will construct ϵ-strong maxmin solutions, for ϵ arbitrarily
small, of the form described in the introduction. In order to make the treatment accessible,
our discussion will be mostly informal, with rigorous proofs relegated to the Appendix.
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3.2 Guarantee-maximizing mechanisms

We will begin with a heuristic derivation of proportional cost-sharing as a guarantee-maximizing
mechanism, based on a logic analogous to that in Brooks and Du (2023). We do so by first
deriving a lower bound on welfare across all information structures and equilibria, and then
constructing a mechanism which maximizes this lower bound.

3.2.1 Constructing the lower bound on the welfare guarantee

In our construction, we consider a particular kind of mechanism in which actions are lin-
early ordered and observe that, in any equilibrium and under any information structure,
local deviations must not be attractive. We then bound the welfare (across all information
structures and equilibria) from below through the welfare from this mechanism, decreased
by a term related to its local incentive constraints.

In particular, consider a mechanism for which the action space is Ai “ R`, and the
partial derivatives of eipaq exist and are bounded. We refer to such a mechanism as smooth.

Now, one deviation available to agent i, regardless of the information structure and
equilibrium, would be to increase her action by ϵ ą 0, i.e., whenever she would have played
ai, play ai ` ϵ instead. Clearly, such deviations must not be attractive in equilibrium, and
hence

ż

s,a

rpvipsqEpai ` ϵ, a´iq ´ eipai ` ϵ, a´iqq ´ pvipsqEpaq ´ eipaqqs bpda|sqρpdsq ď 0. (1)

Dividing by ϵ, and taking the lim sup as ϵ Ñ 0, we get1

ż

s,a

B

Bai
pvipsqEpaq ´ eipaqq bpda|sqρpdsq ď 0. (2)

Thus, equilibrium welfare in the mechanism must be at least

ż

s,a

«

pΣvpsq ´ 1qEpaq `
ÿ

i

B

Bai
pvipsqEpaq ´ eipaqq

ff

bpda|sqρpdsq.

In fact, we can obtain an even more generous bound, and one that holds for all information
structures and equilibria, if we simply take the minimum of the integrand across all values
and action profiles. To define this more compactly, let

λpθ, aq ” pΣθ ´ 1qEpaq `
ÿ

i

B

Bai
pEpaqθi ´ eipaqq . (3)

and Θ ” tθ P RN
` |Σθ ě θLu. The object λpθ, aq is the strategic virtual objective, as described

in Brooks and Du (2023). Note that since Θ is convex and vpsq is a conditional expectation
of θ, vpsq must be an element of Θ for every s. We therefore have the following result:

1Note that (1) divided by ϵ converges to (2) as ϵ Ñ 0 by the dominated convergence theorem (we have
assumed in the definition of a smooth mechanism that E and ei have bounded derivatives).
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Proposition 1. Suppose the mechanism M “ pRN
` , eq is smooth. Then for any information

structure I “ pS, ρ, vq and equilibrium b of pM, Iq, we have

W pM, I, bq ě

ż

s

inf
a
λpvpsq, aqρpdsq ě inf

θ,a
λpθ, aq.

This result suggests that one way to engineer a mechanism with a favorable welfare
guarantee is to construct epaq so as to maximize the lowest strategic virtual objective,
infθ,a λpθ, aq. In fact, this is precisely what is achieved by the proportional cost-sharing
mechanism.

3.2.2 Maximizing the lowest strategic virtual objective

Our argument proceeds as follows: first, we intuit that at the lowest strategic virtual ob-
jective, the public good is least valuable, i.e., Σθ “ θL; and as long as Σθ “ θL, the lowest
strategic virtual objective is independent of the individual value θi. We then push this in-
tuition one step further and conjecture that the strategic virtual objective does not in fact
depend on the individual values θi and actions ai but only on their aggregates Σθ and Σa.

We therefore fix the total value of the public good at Σθ “ θL and look for epaq for which
the strategic virtual objective λpθL, aq2 does not depend on individual ai and θi. Notice:

λpθL, aq “ pθL ´ 1qEpaq `
ÿ

i

B

Bai
θiEpaq ´

ÿ

i

B

Bai
eipaq.

With respect to the first term in λpθL, aq, the individual θi obviously do not make a differ-
ence. Individual θi will generally matter for the second term, that is, unless BEpaq{Bai is
independent of i. This is the case precisely when the total expenditure only depends on the
aggregate action, i.e., Epaq ” pEpΣaq for some function pE. Moreover, if total expenditure
has this form, then the first two terms of λpθL, aq do not depend on individual values of θi
and ai, and only depend on the aggregate action Σa. We therefore restrict attention to such
forms for Epaq.

Without further functional form restrictions, the remaining term in λpθL, aq, to wit the
divergence of the expenditure shares epaq, will depend on the whole action profile. But we
can derive a functional form such that this divergence also only depends on the aggregate
action. To fix ideas, consider the case of N “ 2, and look at a level curve of action profiles
where a1 ` a2 “ x. Then, using the fact that e2paq “ pEpΣaq ´ e1paq, the divergence is

Be1pa1, x ´ a1q

Ba1
`

Be2pa1, x ´ a1q

Ba2
“

Be1paq

Ba1
´

Be1paq

Ba2

“
d

da1
e1pa1, x ´ a1q.

Thus, the divergence is constant in a1 along the level curve if and only if e1pa1, x ´ a1q is

linear in a1. At the same time, participation security forces e1p0, xq “ 0 and e1px, 0q “ pEpxq,

so it must be that e1pa1, x ´ a1q “ pEpxqpa1{xq, i.e., the expenditure shares are proportional.

2We abuse notation slightly by using the same notation for the strategic virtual objective as a function
of the social value.
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More generally, a proportional cost-sharing mechanism is a smooth mechanism of the
form

eipaq “

#

ai
Σa

pEpΣaq if Σa ą 0;

0 if Σa “ 0,
(4)

where pEpΣaq is associated total expenditure function, and is assumed to be differentiable.
The resulting strategic virtual objective is

pθL ´ 1qp pEpΣaq ` pE 1
pΣaqq ´

pN ´ 1q pEpΣaq

Σa
.

In other words, the strategic virtual objective only depends on the aggregate value Σθ “ θL
and the aggregate action Σa; it does not depend on how those objects are distributed across
agents.

We may then ask: What is a favorable choice for the total expenditure pE? The natural
guess is to set pE so that the strategic virtual objective is independent of Σa. This is equivalent
to solving the differential equation

pθL ´ 1qp pEpxq ` pE 1
pxqq ´

pN ´ 1q pEpxq

x
“ pλ, (5)

for some constant pλ. Of course, for the mechanism to be participation secure, it has to be
that pEp0q “ 0, and the solution of the differential equation (5) subject to the boundary
condition is

pEpxq “
pλ

θL ´ 1

ż x

y“0

exppy ´ xq

´y

x

¯´pN´1q{pθL´1q

dy. (6)

The integral converges as long as θL ą N . Otherwise, the integrand blows up too quickly
as y Ñ 0. We will shortly revisit what happens in this case, but for now, we maintain the
assumption that θL ą N .

The question then remains, what is the right choice of pλ? One possibility is that the
function given by (6) never hits one, in which case we should just make pλ as large as

possible. However, for pλ sufficiently large, the function pE will hit one at a finite value pxppλq,

and for x ą pxppλq, feasibility forces us to cap the total expenditure at pEpxq “ 1. As such, for

x ą pxppλq, the strategic virtual objective changes to

θL ´ 1 ´
N ´ 1

x
,

which is obviously minimized at x “ pxppλq. Thus, the lowest strategic virtual objective for
this mechanism will be

min

#

pλ, θL ´ 1 ´
N ´ 1

pxppλq

+

.
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Clearly, to maximize our lower bound on the guarantee, we should choose pλ to maximize
this minimum.

Note that as pλ increases, the function (6) is scaled up, so that pxppλq decreases, and
therefore the strategic virtual objective at the threshold decreases as well. This suggests
that the optimal pλ solves

pλ “ θL ´ 1 ´
N ´ 1

pxppλq
. (7)

This indeed turns out to be the case. We formally prove the existence of a solution to this
equation in Proposition 5 in Appendix A.

We denote the solution to (7) by λ, and x “ pxpλq. The associated optimal proportional
cost-sharing rule is denoted by e, where the total expenditure function E is given by (6) with
pλ “ λ for x ă x, and is equal to 1 for x ě x. It is easy to check that Epxq is an increasing
and concave function of x. Finally, we denote the entire mechanism just constructed by
M “ pRN

` , eq.
For future reference, we observe that because Epxq “ 1, we must have

λ “ pθL ´ 1q
exppxqx´pN´1q{pθL´1q

şx

y“0
exppyqy´pN´1q{pθL´1qdy

. (8)

This formula will be useful in verifying that we have constructed approximately potential-
minimizing information structures, which we turn to next.

3.3 Potential-minimizing information structures

We now provide the corresponding heuristic derivation of the information structure that
minimizes potential across all mechanisms and equilibria. We first consider a particular kind
of information structure and construct an upper bound on its welfare potential across all
mechanisms and equilibria. We then construct an information structure which minimizes
this upper bound in expectation. In the case where θL ą N , this information structure has
a potential equal to the guarantee of the mechanism we constructed previously.

3.3.1 Constructing the upper bound on welfare potential

In our construction, we consider certain “smooth” information structures, in which signals
are linearly ordered, and observe that in any equilibrium featuring them, local deviations
must not be attractive. We use this fact to bound the welfare (accross all mechanisms and
equilibria) from above by the welfare generated under these information structures, increased
by a term related to local incentive constraints.

We say that an information structure is smooth if Si “ rs,8q 3 and the distribution
of signals admits a density ρpdsq “ ρpsqds.4 Now, for such an information structure, one
deviation available to agent i, regardless of the mechanism and equilibrium, would be to

3As it will be clear later, it is convenient to work with an s that is not necessarily zero.
4We abuse notation slightly by using ρ for both the density and for the measure itself.
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mimic an agent with a signal that is lower by ϵ ą 0, i.e., whenever their signal is si ą s ` ϵ,
report si ´ ϵ instead. Clearly, such deviations must not be attractive in equilibrium, and
hence

0 ě

ż

siěs`ϵ,s´i,a

pvipsqEpaq ´ eipaqq bpda|si ´ ϵ, s´iqρpsqds

´

ż

siěs`ϵ,s´i,a

pvipsqEpaq ´ eipaqq bpda|sqρpsqds.

A change of variable in the first term gives

0 ě

ż

s,a

pvipsi ` ϵ, s´iqEpaq ´ eipaqq bpda|sqρpsi ` ϵ, s´iqds

´

ż

siěs`ϵ,s´i,a

pvipsqEpaq ´ eipaqq bpda|sqρpsqds.

Moreover, since the mechanism is participation secure, we know that
ż

0ďsiăs`ϵ,s´i,a

pvipsqEpaq ´ eipaqq bpda|sqρpsqds ě 0. (9)

Subtracting this inequality from the preceding inequality yields

0 ě

ż

s,a

rpvipsi ` ϵ, s´iqEpaq ´ eipaqq ρpsi ` ϵ, s´iq ´ pvipsqEpaq ´ eipaqq ρpsqs bpda|sqds.

Thus, by subtracting this negative term from the expression for expected utility for agent i
and summing over agents, we obtain the following upper bound on welfare (for any equilib-
rium and mechanism):5

ż

s,a

!

pΣvpsq ´ 1qEpaqρpsq

´
ÿ

i

pvipsi ` ϵ, s´iqEpaq ´ eipaqq ρpsi ` ϵ, s´iq ´ pvipsqEpaq ´ eipaqq ρpsq

ϵ

)

bpda|sqds.

In fact, if for each s we take the maximum across all outcomes e, rather than taking the
expectation across equilibrium actions and outcomes, then we can obtain an even more
generous bound that holds for all mechanisms. To express this new bound more compactly,
we define

γps, e; ϵq ” pΣvpsq ´ 1q pΣeq ρpsq ´
ÿ

i

pvipsi ` ϵ, s´iqΣe ´ eiq ρpsi ` ϵ, s´iq ´ pvipsqΣe ´ eiq ρpsq

ϵ
,

where e is an outcome in Ω. The object γps, e; ϵq corresponds to the informational virtual
objective as described in Brooks and Du (2023). We have then shown the following:

5This calculation is very much analogous to the integration by parts step in deriving virtual values
and bounding revenue in the analysis of optimal auctions (Myerson, 1981). By working with the discrete
downward deviation, we have sidestepped various technical complexities associated with applying the envelop
theorem, given the lack of assumptions on v and ρ.
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Proposition 2. Suppose the information structure I “ prs,8qN , ρ, vq is smooth. Then for
any mechanism M and equilibrium b of pM, Iq, we have

W pM, I, bq ď

ż

s,a

γps, epaq; ϵqbpda|sqds ď

ż

s

max
ePΩ

γps, e; ϵqds.

Note that if v and ρ are both differentiable at s, then

lim
ϵÑ0

γps, e; ϵq “ pΣvpsq ´ 1q pΣeq ρpsq ´
ÿ

i

B

Bsi
rpvipsqΣe ´ eiqρpsqs ” γps, eq.

One might have thought that we would strengthen our definition of a smooth information
structure so that v and ρ are differentiable everywhere, and use this limit form of the infor-
mational virtual objective in our upper bound. It turns out, however, that the potential-
minimizing information structures have discontinuities, and understanding the role played
by those discontinuities is essential for deriving the optimal form of v and ρ.

3.3.2 Minimizing the expected highest informational virtual objective

We will now engineer an information structure that minimizes the the expected highest
γps, e; ϵq, in the limit as ϵ Ñ 0. We first argue that for this structure Bρpsq{Bsi has to be the
same for all i, for every s. Otherwise, for some s, maxe γps, eq would be infinite—the designer
could choose an outcome e with ei “ ´K and ej “ K for i, j such that Bρpsq{Bsi ă Bρpsq{Bsj,

and ek “ 0 for k R ti, ju; for this choice of e we have γps, eq “

´

Bρpsq

Bsj
´

Bρpsq

Bsi

¯

K which tends

to infinity as K Ñ 8. Thus, in the structure of interest, Bρpsq{Bsi is independent of i, that
is, the density is just a function of the aggregate signal: ρpsq “ pρpΣsq. For such information
structures, we have

γps, eq “ pΣvpsq ´ 1q pΣeq pρpΣsq ´ pΣeqpρpΣsq
ÿ

i

Bvipsq

Bsi
´ pΣvpsq ´ 1q pΣeq

BpρpΣsq

BΣs

We can further intuit that for the upper-bound-minimizing structure, Σvpsq will equal to
θL—the lower bound on social value.

Now, analogously to the construction of the lower-bound-maximizing mechanism, we
would like to select an information structure for which γps, eq only depends on aggregates
Σe and Σs. Notice γps, eq already does not depend on individual ei. In addition, the density
pρ only depends on the aggregate signal. Then the only remaining term that depends on
individual values is the divergence

ř

i Bvipsq{Bsi. We therefore want to select a functional
form for vpsq so that the divergence only depends on Σs. By the argument previously made
for the expenditure rule, this will be the case only if vpsq has a proportional form, where
each agent’s share of the social value is proportional to their signal.

Thus, we are led to consider information structures of the form

vipsq ”

#

si
Σs
θL if Σs ą 0;

1
N
θL if Σs “ 0,

(10)
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with a density of the form ρpsq “ pρpΣsq, where pρpxq is positive on an interval rx, pxs for some
px and with x “ Ns. On the low region, we choose pρ to be differentiable so that the limit
informational virtual objective γps, eq reduces to

γps, eq “

„

pθL ´ 1qppρpΣsq ´ pρ1
pΣsqq ´

pN ´ 1qθLpρpΣsq

Σs

ȷ

Σe. (11)

Thus, γ only depends on Σe and not on the distribution of expenditure across agents.
Indeed, we can go a step further and choose pρ so that the informational virtual objective

is exactly zero, regardless of the total expenditure. This is equivalent to solving the first-
order ordinary differential equation equating the term in square brackets to zero. The precise
solution is

pρpxq ”

$

&

%

exppxqx´pN´1qθL{pθL´1q

ş

px
y“x exppyqy´pN´1qθL{pθL´1q py´xqN´1

pN´1q!
dy

x P rx, pxs,

0 x ą px,
(12)

where each agent’s signal space is rx{N,8q. The constant of integration is pinned down by
the requirement that pρ integrate to 1 on the simplex ts P RN

` |Σs ď pxu.
The information structure constructed above ensures that the informational virtual ob-

jective is zero when Σs ă px. But the density is non-zero at x “ px, and then discontinuously
drops to zero. In fact, for ϵ small, the informational virtual objective γps, e; ϵq at the bound-
ary with full expenditure (Σs “ px and Σe “ 1) is approximately pθL ´ 1qpρppxq{ϵ, whereas the
Lebesgue measure of the boundary is approximately ϵppx ´ xqN´1{pN ´ 1q!. Indeed, in the
limit as ϵ Ñ 0, it is only this boundary that contributes to the expected highest informational
virtual objective, which converges to

pθL ´ 1qpρppxq
ppx ´ xqN´1

pN ´ 1q!
“ pθL ´ 1q

expppxqpx´pN´1qθL{pθL´1qppx ´ xqN´1

ş

px

y“x
exppyqy´pN´1qθL{pθL´1qpy ´ xqN´1dy

. (13)

Finally, if we choose px “ x and send x Ñ 0, (where x is the threshold from the mechanism
M) then the limiting upper bound on the potential is precisely equal to λ given by (8).

3.3.3 The ϵ-strong maxmin solution

Thus, we conclude that when θL ą N , there is a sequence of information structures of the
form I “ prx{N,8qN , v, ρq, where ρ is given by (12) with px “ x, whose potentials converge
to the guarantee of M as x Ñ 0. We can appeal to the theorem of Milgrom and Weber
(1985) to obtain existence of equilibrium in pI,Mq. This completes the construction of an
ϵ-strong maxmin solution for any ϵ ą 0.

3.4 θL ď N

We have so far covered the case in which θL ą N , meaning that the minimum per-capita
social value of the good is greater than its cost. That condition was used above in order
to ensure that the integrals in the definitions of the total expenditure function and the
signal density converged. What about when θL ď N? In this case, the upper bound on the

15



potential in (13) is still valid as long as x ą 0. But for any fixed px, in the limit as x Ñ 0,
the integral in the denominator blows up. As a result, the upper bound on the potential
goes to zero. Thus, for any ϵ ą 0, there exists a x such that I “ prx{N,8qN , v, ρq, where
ρ is given by (12) for a fixed px, has a welfare potential of at most ϵ. It forms an ϵ-strong
maxmin solution with a mechanism M that always allocates zero expenditure (and hence
has a welfare guarantee of zero).

What is it that makes these information structures so challenging for the designer? All
of the information structures that we constructed, (i.e., of the proportional form and with
densities pρ that satisfy (12)), are engineered so that the designer cannot generate positive
surplus from types below the boundary Σs “ px.6 This is because any surplus generated
by producing the public good when types are below the boundary is offset by inefficient
distortions in production that are needed elsewhere to deter agents from misreporting. In
contrast, for the types on the boundary, there is no cost of incentives, and the informational
virtual objective is just the social surplus generated from production. The only question
then is how large is the mass of types on the boundary. When θL ą N , there is a lower
bound to this mass on the boundary, because the mass of types that can be packed in close
to zero in pρ is bounded. Hence, under such information structures the surplus generated
from the boundary is strictly positive. But when θL ď N , we can pack an arbitrarily large
mass of types below the boundary and close to zero, so that the mass of types that can be
used to generate positive surplus is arbitrarily small.

The condition θL ą N seems like it should become more demanding as N grows larger,
since we would not expect the social value of most public goods to scale linearly with N .
But we should be careful with this interpretation. Recall the more general parametrization
introduced at the end of Section 2, where there is a lower bound θ on individual values, as
well as a lower bound θ̃ on the social value and an explicit cost c. Then the condition for
public good provision to break down is that

N ě
θ̃ ´ Nθ

c ´ Nθ
.

We might want to think of θ̃, θ, and c as all varying with N , and depending on how these
parameters vary, we may or may not get non-trivial guarantees whenN is large. The economy
collapses only if N grows large, but the minimum value for the good also shrinks to zero
faster than N .

At any rate, when the minimum per capita social value is less than the cost of production,
then there are extreme information structures where no equilibrium of any mechanism can
guarantee a non-negligible amount of surplus. Note that this conclusion only relies on interim
participation, which implies the inequality (9) that we used to prove Proposition 2. In
particular, it does not rely on participation security or any assumptions about equilibrium
selection.

The existence of such information structures sheds new light on the inherent difficulty
in overcoming the free rider problem in settings with interdependent values. Indeed, our
conclusion is in many ways much stronger than those identified in the prior literature. As we

6This feature is reminiscent of the information structure in Roesler and Szentes (2017) for revenue max-
imization with a single buyer.
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discuss below, the special case of our model with two agents can be reinterpreted as a model
of bilateral trade, where production of the public good means that the agents trade, and the
minimum social value of the good θL ´ 1 is a lower bound on the gains from trade. There is
large literature that investigates inefficiencies that can arise in the bilateral trade setting due
to private information. For example, Myerson and Satterthwaite (1983) give mild conditions
under which there is necessarily some inefficiency in bilateral trade, in a setting with private
values and independent types. Akerlof (1970) gives examples of an interdependent values
“lemons” market where there is no posted price mechanism that induces positive trade (see
also Carroll, 2016). In contrast, for the information structures we construct, there is an
arbitrarily small amount of trade in any equilibrium under any mechanism. This is true
in spite of the fact that there is common knowledge that the gains from trade are bounded
away from zero. The closest result to ours seems to be Mailath and Postlewaite (1990), who
study public goods provision with private values and many agents, and show that the welfare
potential converges to zero as the number of agents grows large. Our result, in comparison,
is valid for any finite number of agents, as long as the social value per capita is less than the
cost of the public good.

3.5 Main result

We now summarize our characterization of the baseline model with a formal result:

Theorem 1. If θL ą N , then there exist λ ą 0 and x ą 0 and associated proportional cost-
sharing mechanism M with the following property: For any ϵ ą 0 there exists a x ą 0 and
associated information structure I and strategies b such that pM, I, bq is a ϵ-strong maxmin
solution. As ϵ Ñ 0, the associated guarantee and potential both converge to λ.

If θL ď N , let M be the zero-expenditure mechanism. Then for any ϵ ą 0 there exists a
x ą 0 such that pM, I, bq is a ϵ-strong maxmin solution for some b. As ϵ Ñ 0, the associated
guarantee and potential both converge to 0.

When θL ą N , the information structure I in the ϵ-strong maxmin solution obviously
converges as ϵ Ñ 0 to an information structure defined by (12) with x “ 0. We conjecture
that this limit information structure forms a strong maxmin solution with M . There is,
however, a technical difficulty in establishing that the limit information structure has a
potential equal to λ. The reason is that ρ1pxq is not integrable against xN´1dx around
x “ 0 (even though ρpxq itself is), which seems to preclude the application of the dominated
convergence theorem to pass from the integral of γps, e; ϵq for ϵ ą 0 to the integral of γps, eq.

Nonetheless, the limit information structure with x “ 0 sheds light on equilibrium be-
havior in the limit as ϵ Ñ 0:

Proposition 3. Suppose θL ą N . Let I be the information structure from equation (12)
with x “ 0 and px “ x. Then the truth-telling strategy profile b is an equilibrium in pM, Iq.

Thus, the truth-telling strategies mediate between the guarantee-maximizing mechanism
and the potential-minimizing information structure. We identified a similar structure in our
prior analysis of common value auctions (Brooks and Du, 2021) and termed this result the
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“double revelation principle,” that is, the guarantee-maximizing mechanism is a designer-
welfare maximizing, incentive-compatible direct mechanism on the potential-minimizing in-
formation structure, while the potential-minimizing information is a designer-welfare min-
imizing Bayes correlated equilibrium on the guarantee-maximizing mechanism. The proof
of Proposition 3 involves a fairly long and detailed calculation of interim utilities. The fact
that truthful strategies are an equilibrium is both remarkable and somewhat mysterious. We
comment further on this issue in Section 5 below.

3.6 Welfare guarantee

In Figure 1 we plot λ as a fraction of the surplus pθL ´1q when N “ 2. As θL becomes larger
than N , we see that the guaranteed fraction of the full surplus quickly approaches one. On
the other hand, when θL ď N we have λ “ 0.

2 4 6 8 10
θL

0.2

0.4

0.6

0.8

1.0

λ

-1+θL

Figure 1: A plot of the optimal welfare guarantee as a fraction of the full surplus when
N “ 2.

Surprisingly, the mechanism M guarantees λ{pθL ´1q fraction of the efficient surplus not
just when the efficient surplus is equal to the lower bound θL ´ 1, but also when the efficient
surplus exceeds the lower bound. To see why, recall that the strategic virtual objective under
the mechanism M is

λpθ, aq “ pΣθ ´ 1qpEpΣaq ` E
1
pΣaqq ´

pN ´ 1qEpΣaq

Σa
.

Equivalently:7

λpθ, aq “ λpθL, aq ` pΣθ ´ θLqpEpΣaq ` E
1
pΣaqq.

Recall λpθL, aq is constant across all action profiles Σa ď x. Now, EpΣaq ` E
1
pΣaq is

decreasing in Σa (Lemma 5 in the Appendix). Hence, when Σθ “ Σvpsq ą θL, the second
term is minimized by Σa “ x. Therefore, the lowest strategic virtual objective is pΣvpsq ´

7Like before, we abuse notation slightly and denote λpθ, aq when Σθ ą θL by λpθL, aq.
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1q´pN ´1q{x. By Proposition 1, the ratio between the welfare guarantee and the (expected)
efficient surplus is

ş

s
ppΣvpsq ´ 1q ´ pN ´ 1q{xq ρpsqds

ş

s
pΣvpsq ´ 1q ρpsqds

“ 1 ´
pN ´ 1q{x

ş

s
pΣvpsq ´ 1q ρpsqds

.

The above ratio strictly increases with the efficient surplus
ş

s
pΣvpsq ´ 1q ρpsqds and is at

least θL´1´pN´1q{x
θL´1

“ λ
θL´1

. As the efficient surplus grows large, this ratio tends to 1. We
have therefore proven the following:

Proposition 4. Let M be the guarantee-maximizing proportional cost-sharing mechanism
when the lower bound on the social value is θL ą N . Then the fraction of the efficient welfare
guaranteed by M is at least λ{pθL ´ 1q. This fraction increases with the efficient surplus and
converges to 1 as the efficient surplus tends to 8.

This proposition reinforces our main message: As long as the social value is sufficiently
large, that society can obtain non-trivial welfare guarantees from proportional cost-sharing
mechanisms, even if there is only relatively crude information about informational and fun-
damentals.

More generally, the proportional cost-sharing mechanism is robust to misspecification of
the fundamentals in the following sense. Proposition 1 shows that welfare is bounded below
by the expectation (across θ) of the minimum (across a) of λpθ, aq. Since λ is continuous
in θ, this lower bound will be weak-˚ continuous in the distribution of θ. Thus, the lower
bound on welfare varies smoothly with fundamentals.8

4 Lower bound on the expected social value

We next consider the richer model where we also have an upper bound θH on the social value
and a lower bound pθ on the expected social value. In other words, the possible information
structures are those for which θL ď Σvpsq ď θH for all s and

ż

s

Σvpsqρpdsq ě pθ.

The primary purpose of this exercise is to allow for positive probability that the social value
is less than N . As we shall see, proportional cost-sharing mechanisms continue to provide
unimprovable welfare guarantees.

When pθ ď N , the potential-minimizing information structure from Theorem 1 is still
feasible and still gives a welfare potential arbitrarily close to zero.

When pθ ą N , however, we obtain non-trivial welfare guarantee. This is the case even
though we may have θL ď N (and even θL ď 1).

We will construct new strong maxmin solutions using the mechanisms and information
structures from Theorem 1 as building blocks. To that extent, we introduce the mechanism

8Similar observations about robustness to misspecification of fundamentals appeared in Du (2018), Brooks
and Du (2021), and Brooks and Du (2023).
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M θ̃ and the information structure I θ̃. M θ̃ is defined by equations (4) and (6), except with θL
replaced with θ̃. Similarly, I θ̃ is defined by equations (10) and (12), except with θL replaced
with θ̃. Intuitively, these are the previously considered mechanism/information structure,
but the agents are now certain that the social value is θ̃ instead of θL (recall that in the
solution from Theorem 1, the social value was equal to its lower bound with probability one).

4.1 θL ď N and pθ ą N

In this case, the guarantee-maximizing mechanism turns out to be M θH . In other words,
we use the proportional cost-sharing mechanism as if there is a common knowledge that
the social value is θH . The corresponding potential-minimizing information structure is a

public randomization between IN and IθH , where the probability of IN is θH´pθ
θH´N

. Denote this
“public mixture” information structure as

Ĩ ”
θH ´ pθ

θH ´ N
¨ IN `

pθ ´ N

θH ´ N
¨ IθH

That is, under Ĩ, the agents receive a public signal telling them either the information
structure is IN or IθH , and then they receive private signals according to either IN or IθH .
In IN (respectively, IθH ) there is a common knowledge that Σθ “ N (respectively, Σθ “ θH);

the probabilities on IN and IθH are such that the expected value of Σθ is pθ.

4.2 θL ď N and pθ ą N

In this case, the guarantee-maximizing mechanism xM “ pRN
` , peq is a proportional cost-

sharing mechanism with

pEpxq “

$

’

’

’

’

&

’

’

’

’

%

λL

θL´1

şx

y“0
exppy ´ xq

`

y
x

˘´pN´1q{pθL´1q
dy x P r0, xLs,

pEpxLq exppxL ´ xq
`

xL

x

˘´pN´1q{pθH´1q

`
λH

θH´1

şx

y“xL
exppy ´ xq

`

y
x

˘´pN´1q{pθH´1q
dy x P pxL, xHs,

1 x ą xH .

(14)

Equation (14) pastes together the expenditure functions from M θL and M θH : below xL the
mechanism is as if there was a commonly knowledge that the social value is θL, and above
xL as if a commonly knowledge of θH . The equation and the parameters pλL, xL, λH , xHq

ensure smooth pasting at xL and xH ; that is, pEpxq and pE 1pxq are continuous at x “ xL and
at x “ xH .

Likewise, the potential-minimizing information structure pI “ prx{N,8qN , pρ, pvq pastes
together (though not smoothly) IθL and IθH : the density pρpsq of the signal profile s P

rx{N,8qN depends only on Σs and satisfies

pρpxq “

$

’

’

’

&

’

’

’

%

µL exppxqx´pN´1qθL{pθL´1q

şxL
y“x exppyqy´pN´1qθL{pθL´1qpy´xqN´1{pN´1q!dy

x P rx, xLq,

µH exppxqx´pN´1qθH {pθH´1q

şxH
y“xL

exppyqy´pN´1qθH {pθH´1qpy´xqN´1{pN´1q!dy
x P rxL, xHq,

0 x ě xH ,

(15)
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where

µL “
pθ ´ θL
θH ´ θL

, µH “
θH ´ pθ

θH ´ θL
.

The interim value function is

pvipsq “

$

’

&

’

%

θL
1
N

if Σs “ 0,

θL
si
Σs

if Σs P p0, xLq,

θH
si
Σs

if Σs P rxL, xHs.

(16)

Thus, whether Σs is below or above xL reveals whether Σθ is θL or θH , and conditional on
either event pI is identical to IθL or IθH .

4.3 Main result

Our result for this section is the following:

Theorem 2. Suppose pθ ą N and θL ď N . For every ϵ ą 0, there exists a x in Ĩ so that
pM θH , Ĩ , bq is an ϵ-strong maxmin solution for some strategies b. As ϵ Ñ 0, the welfare

guarantee and potential of the solutions converge to
pθ´N
θH´N

λθH ą 0, where λθH is the optimal

welfare guarantee of M θH when the social value is commonly known to be θH .

Suppose θL ą N . Then there exist parameters pλL, xL, λH , xHq in xM with the following

property: For every ϵ ą 0, there exists a x in pI such that pxM, pI, bq is a ϵ-strong maxmin
solution for some b. As ϵ Ñ 0, the welfare guarantee and potential of the solutions converge
to µLλL ` µHλH ą 0.

The proof of Theorem 2 largely follows that of Theorem 1. We first establish a lower
bound on welfare in a smooth mechanism, generalizing Proposition 1. The proof of the first
part of the theorem is quite straightforward. The second half takes more effort, and involves
a fixed point argument proving that there exist parameters so that the lower bound on the
guarantee of xM coincides with the upper bound on the potential for pI. These parameters
are engineered to satisfy the complementary slackness property described below in Section
5.

Although we have presented our assumptions about fundamentals in terms of bounds
on the social value, the baseline model effectively reduces to one in which the social value
is equal to its lower bound. Similarly, the model of this section reduces to one where the
social value is either θL or θH with known probabilities. We suspect that the analysis can be
generalized to a model where the entire distribution of the social value is known, and that
proportional cost-sharing mechanisms continue to be optimal. However, the optimal total
expenditure function will have to satisfy a more complicated differential equation, in which
social values are assortatively matched with aggregate actions. We leave this interesting
extension to future work.
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5 Discussion

5.1 On infinite actions/signals and equilibrium existence

As we mentioned in the introduction, a subtle technical issue is how to handle the possibil-
ity of equilibrium non-existence when formulating the joint information/mechanism design
problem. As far as we know, the guarantee of the proportional cost-sharing mechanism that
we construct is strictly greater than that of any finite mechanism, and similarly, the potential
of the information structures that we construct is lower than that of any finite information
structure. But if we allow infinite mechanisms and infinite information structures, then there
will be certain combinations for which no equilibria exist. This raises the possibility of other
pathological maxmin solutions with different values, as we now explain.

Considering the baseline model of Section 3, if a mechanism has an equilibrium on the
information structure I, then its guarantee must exist and be finite and, moreover, the
guarantee must be less than that of M . Thus, M maximizes the welfare guarantee in
the set of mechanisms that have an equilibrium on I; (condition (i) of the strong maxmin
solution says that M is an element of this set). Similarly, if an information structure has
an equilibrium on M , then its potential is finite and is at least that of I. Since M and I
are well-behaved, requiring that equilibria exist when paired with I and M seems to be a
mild restriction on the sets of mechanisms and information structures, respectively. Indeed,
for our main results, we do not explicitly construct an equilibrium, but rather obtain one
indirectly via an application of the existence theorem of Milgrom and Weber (1985), using
the fact that M and I are analytically well-behaved. Moreover, we have a unique value
within the class of strong maxmin solutions.

Nonetheless, there remains a logical possibility of pathological mechanisms (e.g., an in-
teger game where the agent who says the highest number receives a transfer from the other
agents) that have no equilibria on any information structure, and therefore have infinite
guarantee, or the somewhat less pathological but still disturbing possibility of mechanisms
that do not have equilibria on I, and therefore could have strictly higher guarantees than
that of M .

In Brooks and Du (2021), we addressed this issue in the context of revenue maximization
in common value auctions. We introduced the notion of finite approximability of a strong
maxmin solution, which is that there exist finite mechanisms and finite information struc-
tures whose guarantees and potentials, respectively, are arbitrarily close to the value of the
solution. While we have not pursued that exercise in this paper, we have every reason to
think that the solution pM, I, bq is finitely approximable, using the same techniques as in
Brooks and Du (2021). Moreover, as argued in that paper, all finitely approximable strong
maxmin solutions must have the same value. This is a straightforward consequence of the
existence of a Nash equilibrium when the mechanism and information structure are both
finite.

In sum, while some care is needed when describing exact solutions with infinitely many
actions and signals, we have every reason to think that the value of the strong maxmin
solutions provided in this paper are the natural ones, and do not rely on a controversial use
of equilibrium existence.
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5.2 Complementary slackness
and the double revelation principle

In Proposition 1, we argued that the expected lowest strategic virtual objective is a lower
bound on the welfare guarantee of a smooth mechanism. The guarantee-maximizing mech-
anism maximizes this lower bound. Similarly, in Proposition 2, we argued that an upper
bound on the welfare potential is the expected highest informational virtual objective. The
potential-minimizing information minimizes this upper bound. These two bounding pro-
grams are infinite dimensional linear programming problems.

In Brooks and Du (2023), we studied discrete analogues of these programs, where the
number of actions and signals is finite, and we take the limit as that number goes to infinity.
In the discrete setting, the bounding programs are “almost” a dual pair, in the following
sense: The derivatives in the strategic and informational virtual objective are discrete and
local upward. The dual of the program of minimizing the expected highest informational
virtual objective has the form of maximizing an expected lowest strategic virtual objective,
but where the local derivatives point down instead of up. In the dual pairing, the likelihood
of ps, θq is the Lagrange multiplier on the constraint that the minimum strategic virtual
objective is at most that obtained at the value profile θ and a particular action profile equal
to s. Similarly, the likelihood of an outcome e given the action a is the Lagrange multiplier
on the constraint that the maximum informational virtual objective be at least that attained
at the outcome e and signal profile equal to a.

In the continuum limit, we might expect the difference between discrete upwards and
discrete downwards derivatives to vanish, so that the two programs become an exact dual
pair. We have yet to find a rigorous formulation of this duality directly in the continuum
limit. Nonetheless, the strong maxmin solution we described exhibits the structure that one
would expect of a saddle point for a linear programming problem. In particular, it satisfies
a form of complementary slackness, as we now explain.

Under the limiting potential-minimizing information structure, a profile ps, θq has positive
likelihood only if the associated actions a “ s in the guarantee-maximizing mechanism
minimize the strategic virtual objective at θ. In the baseline model with θL ą N , all signals
with Σs ď x have positive likelihood under I, and the minimizers of the strategic virtual
objective in M are those for which Σa ď x. Similarly, in the enriched model when θL ą N ,
under pI, there is positive likelihood of ps, θq with Σθ “ θL only if Σs P r0, xLs, and positive
likelihood of with Σθ “ θH only if Σs P rxL, xHs. This exactly accords with the minimizers

of the strategic virtual objective in xM : If Σθ “ θL, then the minimizers are action profiles
with Σa P r0, xLs, and if Σθ “ θH , the minimizers satisfy Σa P rxL, xHs.

Similarly, under the guarantee-maximizing mechanism, an outcome has positive likeli-
hood under an action profile a only if it maximizes the associated informational virtual
objective for the potential-minimizing information structure. Since in the baseline model
the informational virtual objective is zero for all outcomes and s with Σs P r0, xq, we can
have any interior expenditure and shares in epaq for action profiles with Σa ă x. For Σs “ x,
the informational virtual objective is maximal and positive at full expenditure, but it does
not depend on the particular shares. This accords with the fact that Epxq “ 1 and epaq can
be any shares of the full expenditure when Σa “ x. The enriched model features exactly the
same pattern when we replace x with xH .
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A similar form of complementary slackness manifested in our solution of the common
value optimal auctions problem in Brooks and Du (2021). We suspect that the phenomenon
is more general. In fact, we used the ansatz that complentary slackness would hold to
engineer the strong maxmin solution for the public goods problem.

Finally, another striking feature of the strong maxmin solution for the baseline model is
that the truthful/obedient strategies are an equilibrium of the Bayesian game consisting of
the guarantee-maximizing mechanism and the limit of the potential-minimizing information
structures. This “double revelation principle” also appeared in Brooks and Du (2021). While
we have only proven this for the baseline model, we have every reason to think that it is
also true in the enriched model. The detailed calculations needed to verify optimality of
truthtelling in the baseline model are quite involved, and extending them to the richer
solution described in Section 4 is a non-trivial task. Again, we suspect it is a general
phenomenon of continuous strong maxmin solutions, and that it can be proved via a higher
level argument that remains to be discovered.

5.3 Connection to bilateral trade

When there are two agents, our model can be reinterpreted as one of bilateral trade, as we
now explain. There is a seller i “ 1 who owns a single unit of a good that can be traded to
a buyer i “ 2. The seller’s value for the good is v1, which is between 0 and vH ą 0, and the
buyer’s value v2 is known to be at least zero. Moreover, there is common knowledge that
v2 ´ v1 ě g, meaning that there is a lower bound g on the gains from trade. The outcome is
simply a likelihood of trade q P r0, 1s and a price p at which the buyer and seller trade. We
assume g ą 0, so that the gains from trade are strictly positive, and the efficient outcome is
for the agents to always trade. Note that if g ą vH , then it is common knowledge that the
buyer’s value is greater than the seller’s, and we can implement efficient trade with, e.g., a
posted price of pvH ` gq{2. So, to keep things non-trivial, we assume that g ă vH .

We now map this into the the baseline model of the public goods problem. No expenditure
is equivalent to no trade, in which case both the seller’s and the buyer’s net payoffs are zero.
Full expenditure with agent 1 paying all of the expense should be identified with an outcome
in the bilateral trade setting where trade occurs with probability one and the buyer’s lowest
possible payoff is zero, meaning that trade occurs at a low price of p “ g. In this case, the
seller’s payoff is g ´ v1 and the buyer’s payoff is v2 ´ g ě v1 ` g ´ g “ v1 ě 0. On the other
hand, full expenditure with agent 2 paying all of the expense should be identified with an
outcome where trade occurs with probability one and the seller’s lowest possible payoff is
zero, meaning that trade occurs at a high price of p “ vH . The seller’s net payoff is therefore
vH ´ v1 ě vH ´ vH “ 0.

To find the right conversion of units, note that the highest payoff for the buyer and the
seller is vH (trade at the highest price and lowest value for the seller, trade at the lowest
price and highest value for the buyer). Thus, we should identify vH “ αθL for some scaling
parameter α ą 0. Also, the gains from trade are v2 ´ v1 ě g, which should be identified
with the net social value from public expenditure, so that g “ αpθL ´ 1q. Note that this is
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consistent with the aforementioned parametric restriction that g ă vH . We obtain:

α “ vH ´ g;

θL “
vH

vH ´ g
.

It is clear that the condition θL ą 2 is equivalent to g ą vH{2. In that case, we define the
proportional pricing mechanism M̃ as follows: The seller and the buyer report non-negative
real numbers a1 and a2, respectively; trade occurs with probability Epa1 ` a2q, where E is
defined according to (6) with θL “ vH{pvH ´ gq; and trade occurs at a price equal to

ppa1, a2q ” g
a1

a1 ` a2
` vH

a2
a1 ` a2

.

In addition, we define the information structure Ĩ in which the buyer and the seller
receive non-negative signals whose density is given by ρ (again when θL “ vH{pvH ´ gq),
with a lower bound of x; conditional on the signal profile s, the seller’s value is vH with
likelihood s1{ps1 ` s2q, and is zero otherwise; and the buyer’s value is equal to the seller’s
value plus g.

As an immediate consequence of Theorem 1, we obtain the following result for the bilat-
eral trade problem:

Theorem 3. If g ą vH{2, then there exist pλ, x) with the following property: For every ϵ ą 0,
there is an x and strategies b for which pM̃, Ĩ, bq is a ϵ-strong maxmin solution. Moreover,
as ϵ Ñ 0, the guarantee and potential for gains from trade converge to αλ ą 0.

If g ď vH{2, then for every ϵ ą 0, there exists an information structure for which the
probability of trade is at most ϵ in any mechanism and equilibrium.

Importantly, in the case g ď vH{2, trade is impossible even though it is common knowl-
edge that the gains from trade are strictly positive. This is a dramatic strengthening of
the result of Akerlof (1970) and Carroll (2016), who only give conditions under which the
market may break down under posted prices. In fact, the condition g ď vH{2 is precisely
the condition for which efficient trade is impossible with a posted price in the lemons infor-
mation structure (where the buyer has no information, and the seller knows the value which
is uniformly distributed on r0, vHs). But in the information structures we construct, there is
no trade at all, no matter which mechanism is used and which equilibrium is played.

Clearly, it is possible to further weaken the assumptions on fundamentals in the bilateral
trade model along the lines of Section 4. A strong assumption that is harder to dispense
with is the upper bound on the seller’s value. It is our hope that the methodology developed
in this paper and in Brooks and Du (2023) can be fruitfully applied to richer versions of the
bilateral trade problem. We hope to pursue this topic in future work.

5.4 Alternative mechanisms

In this section we numerically compare the guarantee-maximizing proportional cost-sharing
mechanism with some alternative mechanisms.
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First, consider the unilateral mechanism where each agent is responsible for 1{N of the
public good. The agents simultaneously choose ai from Ai “ t0, 1{m, 2{m, . . . , 1u, where the
integer m ě 1 is a parameter, and eipaq “ ai{N .

Second, consider the linear proportional cost-sharing mechanism: The agents simultane-
ously choose from Ai “ t0, 1{m, 2{m, . . . , 1u, and

eipaq “

#

ai Σa ď 1,
ai
Σa

Σa ą 1.

Thus, the total expenditure function is EpΣaq “ Σa for Σa ď 1 and EpΣaq “ 1 for Σa ą 1.
Surprisingly, when N “ 2, numerical simulations suggest that the welfare guarantees

of these two mechanisms are independent of the parameter m in both the baseline and
extended models. These welfare guarantees are plotted in Figures 2 and 3, along with
that of the guarantee-maximizing proportional cost-sharing mechanisms. We see that the
unilateral mechanism generally offers poor welfare guarantees; this is not surprising since in
the unilateral mechanism, the expenditure contributed by an individual agent is at most 1{2
even if his value is equal to the social value. The welfare guarantees of the linear proportional
cost-sharing mechanism are significantly better and come close to the optimal guarantees in
the extended model. In the baseline model with a moderate θL, the guarantee-maximizing
mechanism still significantly outperforms the linear proportional cost-sharing mechanism.

2 4 6 8 10
θL

0.2

0.4

0.6

0.8

1.0

Welfare guarantee as a fraction of (θL -1)

Guarantee-max

Linear PCS

Unilateral

Figure 2: Welfare guarantees of the various mechanisms in the baseline model when N “ 2.

A takeaway from these numerical simulations is that the linear proportional-cost sharing
mechanism offers good welfare guarantees and is a good candidate for practical applications.

5.5 Comparison with proportional auctions

In Brooks and Du (2021), we studied revenue guarantee maximizing mechanisms in the
context of a common value private goods allocation problem. In the proportional auction,
agents’ actions are non-negative real numbers, bidder i is allocated the good with probability

qipaq “
ai
Σa

QpΣaq,
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Figure 3: Welfare guarantees of the various mechanisms in the extended model with θL “ 0,
θH “ 10, and N “ 2.

and bidder i makes a payment to the seller of

tipaq “ qipaqT pΣaq.

Thus, the auction is parametrized by a pair of functions Q and T , which describe the
aggregate allocation and the price per unit, respectively, as a function of the aggregate
action.

In proportional auctions, the good is only allocated to one agent, and also the allocation
is “decoupled” from the transfer (although the optimal Q and T are related to one another
through the strategic virtual objective). In proportional cost-sharing mechanisms, on the
other hand, the good is allocated in same quantity to all agents, and budget balance directly
links the expenditure on the public good to the total payment of the agents. Nonetheless,
the aggregate-proportional functional form appears in both mechanisms (the sum across
agents depends only on the aggregate action, and individual shares are proportional to
actions). As best we can tell, this is because in both problems, agents’ preferences are
quasilinear in the utility from the allocation and payments, and the utility from the allocation
is multiplicatively separable in the type. As a result, the divergence of the agents’ utilities,
which appears in the strategic virtual objective, reduces to a weighted sum of the divergences
of the payment and the allocation. The aggregate-proportional form gives rise to a divergence
for the payment rule that only depends on how the aggregate action is related to the aggregate
payment. As a result, incentives are controlled with the choice of the functionsQ and T in the
case of auctions, and the function E in the case of public goods. In the auction context, the
optimal rules induce assortative matching between common values and aggregate actions, in
that the higher is the value, the higher are the aggregate actions that minimizes the strategic
virtual objective. In the case of public goods, there is also assortative matching, with higher
social values being matched to higher aggregate actions, as in the model of Section 4.

To summarize, while there are high level structural similarities between proportional
auctions and proportional cost-sharing mechanisms, they are distinct mechanisms tailored
to distinct economic environments. The aggregate-proportional form arises in both cases due
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to the additive separability between payments and utility from consumption of the good. We
would not be surprised if similar structures arise from applications of the framework of Brooks
and Du (2023) to other settings with quasilinear preferences.

6 Conclusion

This paper has used an informationally-robust welfare criterion to derive new proportional
cost-sharing mechanisms for the public goods problem, as well as the proportional-price
trading mechanism for the bilateral trade problem. These mechanisms are shown to provide
unimprovable guarantees for welfare, even with minimal assumptions about the nature of
private information and the social value of the good. These mechanisms seem simple enough
that they could actually be implemented in practice.9 They are parameterized only by the
total expenditure rule, and the performance of the mechanism is robust to misspecification
of the fundamentals. Moreover, they completely mitigate the free-rider problem in the limit
when the social value is large.

An important limitation of our analysis is that the social value has to be relatively
large in order for the guarantee to be non-degenerate. In particular, the ratio of per capita
social value to each dollar spent must be greater than one. This condition seems more
likely to be satisfied when the number of agents is also relatively small. As mentioned in
the introduction, a potential application could be to climate change mitigation policies, for
instance to the design of a treaty that would assign country-level greenhouse gas emissions
reduction targets. Individual countries can refuse to participate in the treaty at the interim
stage, but once it is signed, there is an enforcement mechanism that compels countries to
meet their assigned targets. As long as the social value of mitigating climate change is
relatively large and the number of countries involved is relatively small, our results show
that proportional cost-sharing mechanisms provide non-trivial welfare guarantees.

The fact that the guarantee is zero when the social value per capita is small is, in a sense,
a consequence of the weakness of our assumptions about the information structure. For the
potential-minimizing information structures, no mechanism can achieve positive welfare, no
matter what equilibrium is played. Thus, to obtain non-trivial guarantees in such cases, it
seems necessary to restrict the degree of heterogeneity in values across agents. Changes to
other aspects of the model may be needed as well, as the following example shows. Suppose
that the social value is greater than one, so that production is efficient, but the social value
per capita is less than one. Further suppose that all agents have the same expected value.
Then any participation secure mechanism will have an equilibrium in which all of the agents
play their participation secure actions: An agent who deviates from this strategy profile
will have to cover the entire cost of the public good, which is less than its private value
to the deviator. As a result, under this information structure, any budget balanced and

9At no point in our analysis did we explicitly rule out more complicated mechanisms. For example, since
the information structure is common knowledge among the agents, it is in principle possible for the designer
to ask the agents to report that common knowledge, and then run the social welfare maximizing mechanism
for the true information structure. But such a mechanism cannot improve upon proportional cost-sharing
mechanisms in the worst case. And focusing on the smooth mechanisms and the strategic virtual objective
led us to less elaborate and contrived solutions.
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participation secure mechanism will have a welfare guarantee of zero. Thus, in generalizing
the theory to the case where the social value is low, it may also be necessary to modify the
participation constraint, the budget constraint, the equilibrium selection rule, or all of the
above.

29



References

Akerlof, G. A. (1970): “The Market for “Lemons”: Quality Uncertainty and the Market
Mechanism,” The Quarterly Journal of Economics, 488–500.

Bergemann, D., B. Brooks, and S. Morris (2016): “Informationally Robust Optimal
Auction Design,” Tech. rep., Princeton University and the University of Chicago and Yale
University, working paper.

Brooks, B. and S. Du (2021): “Optimal auction design with common values: An infor-
mationally robust approach,” Econometrica, 89, 1313–1360.

——— (2023): “On the Structure of Informationally Robust Optimal Mechanisms,” Tech.
rep., The University of Chicago and University of California-San Diego, working paper.

Carroll, G. (2016): “Informationally robust trade and limits to contagion,” Journal of
Economic Theory, 166, 334–361.

Chung, K.-S. and J. C. Ely (2007): “Foundations of Dominant-Strategy Mechanisms,”
The Review of Economic Studies, 74, 447–476.

d’Aspremont, C. and L.-A. Gérard-Varet (1979): “Incentives and incomplete infor-
mation,” Journal of Public economics, 11, 25–45.

Du, S. (2018): “Robust mechanisms under common valuation,” Econometrica, 86, 1569–
1588.

Güth, W. and M. Hellwig (1986): “The private supply of a public good,” Journal of
Economics, 46, 121–159.

Mailath, G. J. and A. Postlewaite (1990): “Asymmetric information bargaining prob-
lems with many agents,” The Review of Economic Studies, 57, 351–367.

Milgrom, P. R. and R. J. Weber (1982): “A Theory of Auctions and Competitive
Bidding,” Econometrica, 1089–1122.

——— (1985): “Distributional Strategies for Games with Incomplete Information,” Mathe-
matics of Operations Research, 10, 619–632.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Research,
6, 58–73.

Myerson, R. B. and M. A. Satterthwaite (1983): “Efficient mechanisms for bilateral
trading,” Journal of Economic Theory, 29, 265–281.

Roesler, A.-K. and B. Szentes (2017): “Buyer-Optimal Learning and Monopoly Pric-
ing,” American Economic Review, 107, 2072–2080.

Samuelson, P. A. (1954): “The pure theory of public expenditure,” The Review of Eco-
nomics and Statistics, 387–389.

30



A Omitted proofs for Section 3

Lemma 1. For α P p0, 1q and x ą 0, define

gpxq “ expp´xqxα

ż x

y“0

exppyqy´α dy. (17)

Then we have

g1
pxq “ αgpxq{x ´ gpxq ` 1. (18)

Moreover, we have limxÑ0 gpxq “ 0, limxÑ0 gpxq{x “ limxÑ0 g
1pxq “ 1{p1 ´ αq, and

limxÑ8 gpxq “ 1. Thus, gpxq and g1pxq are continuous and bounded functions on r0,8q.

Proof. Equation (18) follows from straightforward calculations.
We have limxÑ0 gpxq “ 0 since

ż x

y“0

exppyqy´α dy ď

ż x

y“0

exppxqy´α dy “ exppxqx1´α
{p1 ´ αq.

L’Hôpital’s rule implies that

lim
xÑ0

gpxq{x “ lim
xÑ0

şx

y“0
exppyqy´α dy

x1´α
“ lim

xÑ0

exppxqx´α

p1 ´ αqx´α
“

1

1 ´ α

and

lim
xÑ8

gpxq “ lim
xÑ8

exppxqx´α

exppxqx´α ´ α exppxqx´α´1
“ 1.

Proposition 5. Suppose Epxq “ λ
θL´1

gpxq for α “ N´1
θL´1

P p0, 1q. There exist pλ, xq such

that Epxq “ 1 and E
1
pxq “ 0.

Proof. Set

λ “
θL ´ 1

gpxq
.

This ensures that Epxq “ 1, whatever the value we choose for x. We now choose a value for

x such that E
1
pxq “ 0. Note this is is equivalent to g1pxq “ 0. We therefore show that there

exists x such that g1pxq “ 0.
By Lemma 1, limxÑ0 gpxq “ 0, limxÑ8 gpxq “ 1 and g1pxq is continuous for x ą 0.

Suppose there was some x such that gpxq ą 1. Then there must be some x1 ą x such that
g1px1q ă 0. Since limxÑ0 gpxq “ 0, there must also be some x2 ă x for which g1px2q ą 0.
Hence, by the mean value theorem, g1px3q “ 0 for some x3 P px2, x1q. It therefore suffices to
show that gpxq ą 1 for some x ą 0.

To that end, define

hpxq “
gpxq ´ 1

xα exppxq

“

ż x

y“0

exppyqy´αdy ´ exppxqx´α.
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Clearly, hpxq ą 0 if and only if gpxq ą 1. Notice

h1
pxq “ α exppxqx´α´1,

which tends to infinity as x Ñ 8. Hence, we have that hpxq tends to infinity as x Ñ 8, and
so hpxq ą 0 for some x. But then for this x, we also have gpxq ą 1, which completes the
proof.

Proof of Theorem 1. For a fixed ϵ ą 0, the informational virtual objective of I is

γps, e; ϵq “ ρpΣsqpθL ´ 1qΣe ´
1

ϵ

N
ÿ

i“1

ˆ

ρpΣs ` ϵq

ˆ

si ` ϵ

Σs ` ϵ
θLΣe ´ ei

˙

´

´

ρpΣsq

´ si
Σs

θLΣe ´ ei

¯¯

˙

.

By Proposition 2, the welfare potential of I is at most

ż

s

max
ePΩ

γps, e; ϵqds “

ż

xďΣsăx´ϵ

max
ePΩ

γps, e; ϵqds `

ż

Σsěx´ϵ

max
ePΩ

γps, e; ϵqds. (19)

When Σs P rx, xq, maxePΩ γps, e; ϵq tends to zero as ϵ Ñ 0, since by construction the limit
satisfies (cf. equation (11))

γps, eq “

ˆ

pρpΣsq ´ ρ1
pΣsqqpθL ´ 1q ´

pN ´ 1qθLρpΣsq

Σs

˙

Σe “ 0

for every e P Ω. Since ρ and ρ1 are bounded on rx, xq, by the Dominated Convergence
Theorem, the first term in (19) tends to zero as ϵ Ñ 0.

Now consider the second term in (19). Recall that for x P px ´ ϵ, xq, ρpx ` ϵq “ 0.
Therefore the second term in is equal to

ż

x´ϵďΣsďx

max
ePΩ

˜

ρpΣsqpθL ´ 1qΣe ´

N
ÿ

i“1

0 ´ ρpΣsqp
θLsi
Σs

Σe ´ eiq

ϵ

¸

ds

“

ż x

x“x´ϵ

max
ΣePΩ

ˆ

ρpxqpθL ´ 1qΣe `
ρpxqpθL ´ 1qΣe

ϵ

˙

ds.

We now change the variable of integration from s to Σs:

“

ż x

x“x´ϵ

max
ΣePr0,1s

ˆ

ρpxqpθL ´ 1qΣe `
ρpxqpθL ´ 1qΣe

ϵ

˙

px ´ xqN´1

pN ´ 1q!
dx

“

ż x

x“x´ϵ

ˆ

ρpxqpθL ´ 1q `
ρpxqpθL ´ 1q

ϵ

˙

px ´ xqN´1

pN ´ 1q!
dx

which, as ϵ Ñ 0, converges to

ρpxqpθL ´ 1q
px ´ xqN´1

pN ´ 1q!
“

exppxqx´pN´1qθL{pθL´1qpx ´ xqN´1

şx

y“x
exppyqy´pN´1qθL{pθL´1qpy ´ xqN´1dy

. (20)
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When θL ą N (respectively, θL ď N), (20) converges to λ (respectively, 0) as x Ñ 0.
Thus, the welfare potential of I can be made arbitrarily close to λ (respectively, 0).

To finish the proof of an ϵ-strong maxmin solution, we need to show that an equilibrium
exists in pM, Iq. When θL ą N (the other case is trivial), we will verify the hypotheses of
Theorem 1 of Milgrom and Weber (1985), namely, that (i) the action spaces are compact,
(ii) payoffs are equicontinuous over actions, and (iii) the distribution of signals is absolutely
continuous with respect to the product of the marginals. Condition (iii) follows immediately
from the fact that the distribution of signals is absolutely continuous with respect to Lebesgue
measure. Condition (i) can be satisfied because any action ai ą x in M is weakly dominated
by ai “ x, since any action beyond x does not change the total expenditure but increases
one’s share of the expenditure; so for equilibrium existence it is without loss to restrict the
action space of M to r0, xs. With regard to condition (ii), note that an agent’s payoff is

´

vipsq ´
ai
Σa

¯

EpΣaq.

Since E has bounded derivatives and satisfies Ep0q “ 0 by Lemma 1, equicontinuity of the
payoff follows from the fact that vipsq is bounded above by θL. Hence, there exists an equi-
librium in distributional strategies, which implies existence of an equilibrium in behavioral
strategies.

Proof of Proposition 3. We will show that under the mechanism M and information struc-
ture I, truthtelling, i.e. playing ai “ si, is an equilibrium. Suppose a´i “ s´i and agent i
plays s1

i when her signal is si. Then i’s interim utility can be written as:

Uipsi, s
1
iq “

ż

s´i

pvipsi, s´iqEps1
i ` Σs´iq ´ eips

1
i, s´iqq ¨ ρpsi ` Σs´iqds.

We now change the variable of integration from s to Σs´i:

Uipsi, s
1
iq “

ż 8

y“0

ˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙

Eps1
i ` yqρpsi ` yq

yN´2

pN ´ 2q!
dy

“ C

ż x´si

y“0

ˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙

gps1
i ` yq exppsi ` yqpsi ` yq

´α´pN´1qyN´2 dy,

where C ą 0 is a constant, α “ N´1
θL´1

, gpxq is defined by equation (17) when x ď x, and
gpxq “ gpxq when x ě x. We will show Uipsi, siq ě Uipsi, s

1
iq for all si P p0, xs and s1

i ě 0, by
showing that BUipsi, s

1
iq{Bs1

i is non-negative for s1
i ď si and non-positive for s1

i ě si.
We calculate:

1

C

BUi

Bs1
i

psi, s
1
iq

“

ż x´si

y“0

ˆˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙

g1
ps1

i ` yq ´
y

ps1
i ` yq2

gps1
i ` yq

˙

exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy.
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Let us simplify the integrand when s1
i ď si using the differential equation (18):

ˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙

g1
ps1

i ` yq ´
y

ps1
i ` yq2

gps1
i ` yq

“

ˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙ ˆ

αgps1
i ` yq

s1
i ` y

´ gps1
i ` yq ` 1

˙

´
y

ps1
i ` yq2

gps1
i ` yq

“
si

si ` y
θL ´

s1
i

s1
i ` y

`

ˆˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙ ˆ

α

s1
i ` y

´ 1

˙

´
y

ps1
i ` yq2

˙

gps1
i ` yq.

(21)

Therefore, for s1
i ď si:

1

C

BUi

Bs1
i

psi, s
1
iq

“

ż x´si

y“0

ˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙

exppsi ` yqpsi ` yq´α´pN´1qyN´2 dy

`

ż x´si

y“0

ˆˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙ ˆ

α

s1
i ` y

´ 1

˙

´
y

ps1
i ` yq2

˙

gps1
i ` yq exppsi ` yqpsi ` yq´α´pN´1qyN´2 dy

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

A

.

Note that the term A implicitly involves a double integral, though the function g, which we
now aim to simplify. According to Mathematica, we have

ż
ˆˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙ ˆ

α

s1
i ` y

´ 1

˙

´
y

ps1
i ` yq2

˙

exppsi ´ s1
iqps1

i ` yqαpsi ` yq´α´pN´1qyN´2 dy

“
exppsi ´ s1

iq

N ´ 1
yN´1psi ` yq

´
pN´1qθL

θL´1 ps1
i ` yq

N´θL
θL´1 pN ´ 1 ` s1

i ` y ´ ps1
i ` yqθLq. (22)

Therefore, integrating by parts, we have

A “
exppsi ´ s1

iq

N ´ 1
yN´1psi ` yq

´
pN´1qθL

θL´1 ps1
i ` yq

N´θL
θL´1 pN ´ 1 ` s1

i ` y ´ ps1
i ` yqθLq

ż y`s1
i

z“0

exppzqz´α dz

ˇ

ˇ

ˇ

ˇ

ˇ

x´si

y“0

´

ż x´si

y“0

exppsi ´ s1
iq

N ´ 1
yN´1psi ` yq

´
pN´1qθL

θL´1 ps1
i ` yq

N´θL
θL´1 pN ´ 1 ` s1

i ` y ´ ps1
i ` yqθLq expps1

i ` yqps1
i ` yq´α dy.

Thus,

1

C

BUi

Bs1
i

psi, s
1
iq

“
exppsi ´ s1

iq

N ´ 1
px ´ siq

N´1x
´

pN´1qθL
θL´1 ps1

i ` x ´ siq
N´θL
θL´1 pN ´ 1 ´ ps1

i ` x ´ siqpθL ´ 1qq

ż x´si`s1
i

z“0

exppzqz´α dz

`

ż x´si

y“0

ˆ

si
si ` y

θL ´
s1
i

s1
i ` y

´
y

s1
i ` y

ˆ

1 ´
s1
i ` y

α

˙˙

exppsi ` yqpsi ` yq´α´pN´1qyN´2 dy

“ exppsi ´ s1
iqpx ´ siq

N´1x
´

pN´1qθL
θL´1 ps1

i ` x ´ siq
N´θL
θL´1

ˆ

1 ´
s1
i ` x ´ si

α

˙
ż x´si`s1

i

z“0

exppzqz´α dz

`

ż x´si

y“0

ˆ

si
si ` y

θL ´ 1 `
y

α

˙

exppsi ` yqpsi ` yq´α´pN´1qyN´2 dy.

(23)
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We next argue that (23) is zero when s1
i “ si, i.e., that the first-order condition BUipsi, siq{Bs1

i “

0 is satisfied. This is equivalent to showing that

´ px ´ siq
N´1x´N

ˆ

1 ´
x

α

˙
ż x

z“0

exppzqz´α dz

“

ż x´si

y“0

ˆ

si
si ` y

θL ´ 1 `
y

α

˙

exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy

“

ż x

z“si

´si
z
θL ´ 1 `

z ´ si
α

¯

exppzqz´α´pN´1q
pz ´ siq

N´2 dz.

(24)

By construction, we have g1pxq “ 0, so by equation (18),

exppxqx´α
“

´

1 ´
α

x

¯

ż x

z“0

exppzqz´α dz.

Substituting this into (24) gives
´

1 ´
si
x

¯N´1

exppxqx´α
“α

ż x

z“si

´si
z
θL ´ 1 `

z ´ si
α

¯

exppzqz´α´pN´1q
pz ´ siq

N´2 dz

“

ż x

z“si

ˆ si
z

pα ` N ´ 1q ´ α

z ´ si
` 1

˙

exppzqz´α
´

1 ´
si
z

¯N´1

dz

“

ż x

z“si

ˆ

´
α

z
`

sipN ´ 1q

zpz ´ siq
` 1

˙

exppzqz´α
´

1 ´
si
z

¯N´1

dz,

(25)

using αθL “ α ` N ´ 1. But the above equation holds since
ż x

z“si

α

z
exppzqz´α

´

1 ´
si
z

¯N´1

dz

“ ´z´α exppzq

´

1 ´
si
z

¯N´1
ˇ

ˇ

ˇ

ˇ

x

z“si

`

ż x

z“si

z´α d

dz

ˆ

exppzq

´

1 ´
si
z

¯N´1
˙

dz

“ ´x´α exppxq

´

1 ´
si
x

¯N´1

`

ż x

z“si

z´α exppzq

´

1 ´
si
z

¯N´1
ˆ

1 `
pN ´ 1qz

z ´ si

si
z2

˙

dz,

using integration by parts.
Next, we argue that BUipsi, siq{Bs1

i is decreasing in s1
i for s

1
i ď si. Defining x “ x´psi´s1

iq,
the derivative of (23) with respect to s1

i is

d

dx

ˆ

exppx ´ xqx
N´θL
θL´1

´

1 ´
x

α

¯

ż x

z“0

exppzqz´α dz

˙

“ exppx ´ xqx
N´θL
θL´1

ˆ

´

´

1 ´
x

α

¯

`
N ´ θL
θL ´ 1

x´1
´

1 ´
x

α

¯

´
1

α

˙
ż x

z“0

exppzqz´α dz

` exppx ´ xqx
N´θL
θL´1

´

1 ´
x

α

¯

exppxqx´α

“ exppx ´ xqx
N´θL
θL´1

ˆ

´2 `
x

α
`

N ´ θL
pθL ´ 1qx

˙
ż x

z“0

exppzqz´α dz ` exppxqx´1
´

1 ´
x

α

¯

“ exppxqx´1

ˆ

´2 `
x

α
`

α ´ 1

x

˙

gpxq ` exppxqx´1
´

1 ´
x

α

¯

.
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Now define

fpxq “

ˆ

2 ´
x

α
`

1 ´ α

x

˙

gpxq `
x

α
´ 1

for all x P r0, xs. We calculate

fp0q “ 0,

fpxq “
2 ´ x

α
` 1´α

x

1 ´ α
x

`
x

α
´ 1 “

1 ´ x
α

` 1
x

1 ´ α
x

`
x

α
“

1
x

1 ´ α
x

ą 0,

using the facts that limxÑ0 gpxq{x “ 1
1´α

and g1pxq “ 0 and hence gpxq “ 1
1´α{x

ą 0 from
Lemma 1.

It therefore remains to show that fpxq ě 0 for all x P p0, xq. At any point where fpxq “ 0,
we must have

gpxq “
1 ´ x{α

2 ´ x{α ` p1 ´ αq{x

“
xpx ´ αq

x2 ´ 2αx ´ αp1 ´ αq

“
xpx ´ αq

px ´ α ´
?
αqpx ´ α `

?
αq

” hpxq.

So, it suffices to show that x “ 0 is the unique point where the functions g and h intersect.
Note that because α P p0, 1q, only one of the roots of the denominator of h is positive. We
have to consider separately what happens for on either side of the positive root α `

?
α.

If x ă α `
?
α, then the denominator of hpxq is positive, and we clearly have that

hpxq “
1 ´ x{α

2 ´ x{α ` p1 ´ αq{x
ď

1

2 ` p1 ´ αq{x
ď

1

1 ` p1 ´ αq{x
“

x

x ` 1 ´ α
” phpxq,

so it suffices to show that g ě ph, and they are equal only at zero. Note that

ph1
pxq “

1 ´ α

px ` 1 ´ αq2
.

Now, suppose that at x ą 0 we have gpxq “ phpxq. Then

g1
pxq “

´α

x
´ 1

¯ x

x ` 1 ´ α
` 1

“
α ´ x

x ` 1 ´ α
` 1

“
1

x ` 1 ´ α

“
x ` 1 ´ α

1 ´ α
ph1

pxq,

so that g1pxq ě ph1pxq, and the inequality is strict of x ą 0. Thus, by Lemma 2 of Milgrom

and Weber (1982), gpxq ě phpxq for all x, and the inequality is strict if x ą 0.
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Now consider x ą α `
?
α. Note that

hpxq “
xpx ´ αq

x2 ´ 2αx ´ αp1 ´ αq

“
px ´ αq2

x2 ´ 2αx ´ αp1 ´ αq

x

x ´ α

“
x2 ´ 2αx ` α2

x2 ´ 2αx ` α2 ´ α

x

x ´ α

ą
x

x ´ α
“ gpxq.

Moreover, we claim that h1pxq ă 0 for x ą α `
?
α, and since g1 ą 0, we cannot have

hpxq “ gpxq in this range:

h1
pxq “

p2x ´ αqpx2 ´ 2αx ´ αp1 ´ αqq ´ px2 ´ αxqp2x ´ 2αq

px2 ´ 2αx ´ αp1 ´ αqq2

“
2x3 ´ 4αx2 ´ 2αp1 ´ αqx ´ αx2 ` 2α2x ` α2p1 ´ αq ´ 2x3 ` 2αx2 ` 2αx2 ´ 2α2x

px2 ´ 2αx ´ αp1 ´ αqq2

“
´2αx ´ αx2 ` 2α2x ` α2p1 ´ αq

px2 ´ 2αx ´ αp1 ´ αqq2

“
´α rx2 ` 2p1 ´ αqx ´ αp1 ´ αqs

px2 ´ 2αx ´ αp1 ´ αqq2
.

Thus, h1 has the opposite sign as the term in brackets, which is clearly increasing in x, and
is therefore minimized at x “ α `

?
α. Plugging in, we get

pα `
?
αq

2
` 2p1 ´ αqpα `

?
αq ´ αp1 ´ αq

“ α2
` 2α

?
α ` α ` 2α ` 2

?
α ´ 2α2

´ 2α
?
α ´ α ` α2

“ 2α
?
α ` 2α ą 0.

Thus, h1 ă 0, and we are done. This completes the proof that fp0q “ 0, and fpxq ą 0 for all
x P r0, xs. This in turn completes the proof that BUipsi, s

1
iq{Bs1

i ě 0 for s1
i ď si.

Finally, we consider the case where s1
i ě si, in which we have:

1

C

BUi

Bs1
i

psi, s
1
iq

“

ż maxpx´s1
i,0q

y“0

ˆˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙

g1
ps1

i ` yq ´
y

ps1
i ` yq2

gps1
i ` yq

˙

exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy

´

ż x´si

y“maxpx´s1
i,0q

y

ps1
i ` yq2

gpxq exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy,

since g1pxq “ 0 and gpxq “ gpxq for x ą x. Clearly, BUi

Bs1
i
psi, s

1
iq ď 0 when s1

i ě x. So to show
BUi

Bs1
i
psi, s

1
iq ď 0 it suffices to consider only s1

i P rsi, xs.
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Applying equation (21), we get for s1
i P rsi, xs:

1

C

BUi

Bs1
i

psi, s
1
iq

“

ż x´s1
i

y“0

ˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙

exppsi ` yqpsi ` yq´α´pN´1qyN´2 dy

`

ż x´s1
i

y“0

ˆˆ

si
si ` y

θL ´
s1
i

s1
i ` y

˙ ˆ

α

s1
i ` y

´ 1

˙

´
y

ps1
i ` yq2

˙

gps1
i ` yq exppsi ` yqpsi ` yq´α´pN´1qyN´2 dy

looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon

B

´

ż x´si

y“x´s1
i

y

ps1
i ` yq2

gpxq exppsi ` yqpsi ` yq´α´pN´1qyN´2 dy,

where, by (22) we have

B “
exppsi ´ s1

iq

N ´ 1
yN´1psi ` yq

´
pN´1qθL

θL´1 ps1
i ` yq

N´θL
θL´1 pN ´ 1 ` s1

i ` y ´ ps1
i ` yqθLq

ż y`s1
i

z“0

exppzqz´α dz

ˇ

ˇ

ˇ

ˇ

ˇ

x´s1
i

y“0

´

ż x´s1
i

y“0

exppsi ´ s1
iq

N ´ 1
yN´1psi ` yq

´
pN´1qθL

θL´1 ps1
i ` yq

N´θL
θL´1 pN ´ 1 ` s1

i ` y ´ ps1
i ` yqθLq expps1

i ` yqps1
i ` yq´α dy.

Thus, for s1
i P rsi, xs,

1

C

BUi

Bs1
i

psi, s
1
iq

“ exppsi ´ s1
iqpx ´ s1

iq
N´1

px ´ s1
i ` siq

´
pN´1qθL

θL´1 x
N´θL
θL´1

ˆ

1 ´
x

α

˙
ż x

z“0

exppzqz´α dz

`

ż x´s1
i

y“0

ˆ

si
si ` y

θL ´ 1 `
y

α

˙

exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy

´

ż x´si

y“x´s1
i

y

ps1
i ` yq2

gpxq exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy.
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Changing variable to x “ x ´ s1
i and applying (25), we get for s1

i P rsi, xs:

1

C

BUi

Bs1
i

psi, s
1
iq

“ exppx ` siqx
N´1

px ` siq
´α´pN´1q

ˆ

1

x
´

1

α

˙

gpxq

`

ż x`si

z“si

´si
z
θL ´ 1 `

z ´ si
α

¯

exppzqz´α´pN´1q
pz ´ siq

N´2 dz

´

ż x´si

y“x´s1
i

y

ps1
i ` yq2

gpxq exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy

“ exppx ` siqx
N´1

px ` siq
´α´pN´1q

ˆ

1

x
´

1

α

˙

gpxq

`
1

α

ˆ

1 ´
si

x ` si

˙N´1

exppx ` siqpx ` siq
´α

´

ż x´si

y“x´s1
i

y

ps1
i ` yq2

gpxq exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy

“ ´

ż x´si

y“x´s1
i

y

ps1
i ` yq2

gpxq exppsi ` yqpsi ` yq
´α´pN´1qyN´2 dy ď 0

where in the last equality we use
`

α
x

´ 1
˘

gpxq ` 1 “ g1pxq “ 0.

B Proof of Theorem 2

B.1 Bound on the welfare guarantee of
proportional cost-sharing mechanisms

First, we derive a modified bound for the guarantee of proportional cost-sharing mechanisms.
Recall the notion of a smooth mechanism on page 9 and the definition of the strategic virtual
objective λpθ, aq in equation (3). Proposition 1 implies the following lower bound on the
welfare guarantee:

W pM, I, bq ě inf
µP∆

pθ

ż

θ

´

inf
a
λpθ, aq

¯

µpdθq, (26)

where ∆
pθ “ tµ P ∆pΘq :

ş

θ
Σθµpdθq ě pθu and Θ “ tθ P RN

` : θL ď Σθ ď θHu.
For a proportional cost-sharing mechanism, the strategic virtual objective only depends

on Σθ and Σa, and in a slight abuse of notation simplifies to

λpΣθ,Σaq “ pΣθ ´ 1qEpΣaq ` pΣθ ´ 1qE 1
pΣaq ´

pN ´ 1qEpΣaq

Σa
.

Suppose EpΣaq is non-decreasing in Σa, as will be the case for the mechanisms to which
we apply what follows. Since λpΣθ,Σaq is non-decreasing and linear in Σθ for every a,
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infa λpΣθ,Σaq is a non-decreasing and concave function of Σθ. Thus, the righthand-side of

(26) is minimized when the expected value is exactly pθ. If not, then we can reduce the

likelihood of some realization for which Σθ ą pθ and increase the likelihood of pθ. Moreover,
concavity implies that the minimizing µ induces a two-point distribution (supported on θL
and θH) for Σθ. Therefore, the welfare guarantee of a proportional cost-sharing mechanism
for which E is increasing is at least

µL inf
a
λpθL,Σaq ` µH inf

a
λpθH ,Σaq,

where

µH “
pθ ´ θL
θH ´ θL

, µL “ 1 ´ µH .

B.2 Case 1: θL ď N and pθ ą N .

For Case 1 let us denote λH ” λθH . Consider the proportional cost-sharing mechanism with
the expenditure function

Epxq “

#

λH

θH´c

şx

y“0
ey´x

`

y
x

˘´pN´1q{pθH´1q
dy x ď xH ,

1 x ą xH ,

where the parameters pλH , xHq satisfy EpxHq “ 1 and E
1
pxHq “ 0 (Proposition 5). By

construction we have

λpθH , xq “ pθH ´ 1qpEpxq ` E
1
pxqq ´

pN ´ 1qEpxq

x

#

“ λH x P r0, xHs,

ą λH x P pxH ,8q.
(27)

This gives:

λpθL, xq “ pθL ´ 1qpEpxq ` E
1
pxqq ´

pN ´ 1qEpxq

x

#

“ λH ´ pθH ´ θLqpEpxq ` E
1
pxqq x P r0, xHs,

ą λH ´ pθH ´ θLqpEpxq ` E
1
pxqq x P pxH ,8q.

By the argument in Lemma 5, Epxq ` E
1
pxq is decreasing in x P r0,8q. Lemma 1 implies

Ep0q “ 0 and E
1
p0q “ 1

1´α
for α “ N´1

θH´1
. Thus we have

λpθL, xq ě λpθL, 0q “ λH ´ pθH ´ θLq
λH

θH ´ 1

1

1 ´ N´1
θH´1

“ λH
θL ´ N

θH ´ N
.

Therefore, applying the bound we derived at the beginning of the proof gives that the welfare
guarantee of the proportional-cost sharing mechanism is at least

ˆ

µH ` µL
θL ´ N

θH ´ N

˙

λH . (28)

By Theorem 1, as x Ñ 0 the welfare potential of IθH tends to λH , while the welfare
potential of IN tends to 0. Thus, the welfare potential of Ĩ, which is a public randomization
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between IN and IθH with probabilities θH´pθ
θH´N

and
pθ´N
θH´N

respectively, tends to λH
pθ´N
θL´N

, which
is exactly (28).

It remains only to show that there exists an equilibrium at pM θH , Ĩq. This can be estab-
lished by showing separately that there are equilibria of pM θH , INq and pM θH , IθH q, which
follows from the same argument in the proof of Theorem 1.

This proves the first case of Theorem 2.

B.3 Case 2: θL ą N .

Recall the proportional cost-sharing mechanism xM with expenditure pE in equation (14),

and the information structure pI defined by equations (15) and (16). By construction, pE is
continuous on r0, xHs and satisfies

λL “ λpθL, xq “ pθL ´ 1qp pEpxq ` pE 1
pxqq ´

pN ´ 1q pEpxq

x
(29)

for x P r0, xLs, and

λH “ λpθH , xq “ pθH ´ 1qp pEpxq ` pE 1
pxqq ´

pN ´ 1q pEpxq

x
(30)

for x P rxL, xHs.
We need the following conditions to be satisfied:

pEpxHq “ pEpxLq exppxL ´ xq

´xL

x

¯´pN´1q{pθH´1q

`
λH

θH ´ 1

ż x

y“xL

exppy ´ xq

´y

x

¯´pN´1q{pθH´1q

dy “ 1,

(31)

pE 1
pxHq “ 0 ðñ θH ´ 1 ´

pN ´ 1q

xH

“ λH , (32)

pE 1
px´

Lq ` pEpxLq “
λH ´ λL

θH ´ θL
“ pE 1

px`
Lq ` pEpxLq, (33)

and

pθH ´ 1qpρpx`
Lq “ pθL ´ 1qpρpx´

Lq, (34)

when x “ 0.

Lemma 2. Condition (33) is equivalent to

λH `
pEpxLqpN´1q

xL

θH ´ 1
“

λL `
pEpxLqpN´1q

xL

θL ´ 1
. (35)
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Proof. By equations (29) and (30), we have

pEpxLq ` pE 1
px´

Lq “
λL `

pEpxLqpN´1q

xL

θL ´ 1
,

pEpxLq ` pE 1
px`

Lq “
λH `

pEpxLqpN´1q

xL

θH ´ 1
.

Thus, condition (33) implies condition (35).

Now, suppose condition (35) holds, so pE 1px´
Lq “ pE 1px`

Lq. Subtracting (29) from (30) at
x “ xL then gives condition (33).

Lemma 3. There exist pxL, xH , λL, λHq such that conditions (31), (32), (33) and (34) are
satisfied.

Proof. Define

gpxq “

ż x

y“0

exppy ´ xq

´y

x

¯´pN´1q{pθL´1q

dy.

We can rewrite (34) as
ż xH

x“xL

exppx ´ xLqpx{xLq
´pN´1q{pθH´1qdx “ gpxLq

µHpθH ´ 1q

µLpθL ´ 1q
. (36)

Given xL ą 0, define xHpxLq as the unique xH ě xL that satisfies equation (36).

Substituting the formula for pEpxLq, we can rewrite (35) as

θH ´ 1 `
pN ´ 1qpθH ´ θLq

xLpθL ´ 1q
gpxLq “

λHpθL ´ 1q

λL

. (37)

Since λH “ θH ´ 1 ´
pN´1q

xHpxLq
(condition (32)), equation (37) gives λL as a function of xL.

Thus, equation (31) can be rewritten as

exppxHpxLq ´ xLq

ˆ

xHpxLq

xL

˙´pN´1q{pθH´1q

“
λL

θL ´ 1
gpxLq `

λH

θH ´ 1

µHpθH ´ 1q

µLpθL ´ 1q
gpxLq

“

ˆ

θH ´ 1 ´
pN ´ 1q

xHpxLq

˙

˜

1

θH ´ 1 `
pN´1qpθH´θLq

xLpθL´1q
gpxLq

`
µH

µLpθL ´ 1q

¸

gpxLq,

where we used (36) in the first equality and (37) in the second equality.
Thus, finding a pxL, xH , λL, λHq to satisfy conditions (31), (32), (33) and (34) is equivalent

to finding a xL to satisfy

exppxHpxLq ´ xLq

ˆ

xHpxLq

xL

˙´pN´1q{pθH´1q

“

ˆ

θH ´ 1 ´
pN ´ 1q

xHpxLq

˙

˜

1

θH ´ 1 `
pN´1qpθH´θLq

xLpθL´1q
gpxLq

`
µH

µLpθL ´ 1q

¸

gpxLq.

(38)
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Let x˚
L be the critical point of g: g1px˚

Lq “ 0. We will now show that there exists a
xL P p0, x˚

Ls that satisfies (38), which proves the proposition.
The lefthand side of (38) is clearly positive when xL is sufficiently small, while the

righthand side of (38) is clearly negative when xL is sufficiently small (since xHpxLq Ñ 0 as
xL Ñ 0).

We now show that when xL “ x˚
L, the lefthand side of (38) is less than or equal to the

righthand side.
We have

gpx˚
Lq

ˆ

1 ´
pN ´ 1q

x˚
LpθL ´ 1q

˙

“ 1.

Thus,

θH ´ 1 `
pN ´ 1qpθH ´ θLq

x˚
LpθL ´ 1q

gpx˚
Lq “

ˆ

θH ´ 1 ´
pN ´ 1q

x˚
L

˙

gpx˚
Lq.

Thus at xL “ x˚
L, the righthand side of (38) can be rewritten as

ˆ

θH ´ 1 ´
pN ´ 1q

xHpx˚
Lq

˙

¨

˝

1
´

θH ´ 1 ´
pN´1q

x˚
L

¯

gpx˚
Lq

`
µH

µLpθL ´ 1q

˛

‚gpx˚
Lq,

where x˚
H “ xHpx˚

Lq.
We can rewrite the above as

1 ´ α
x˚
H

1 ´ α
x˚
L

`

ż x˚
H

x“x˚
L

exppx ´ x˚
Lqpx{x˚

Lq
´αdx

ˆ

1 ´
α

x˚
H

˙

where α “ N´1
θH´1

. Thus, we want to show

exppx˚
H ´ x˚

Lq

ˆ

x˚
H

x˚
L

˙´α
1

1 ´ α
x˚
H

ď
1

1 ´ α
x˚
L

`

ż x˚
H

x“x˚
L

exppx ´ x˚
Lqpx{x˚

Lq
´αdx. (39)

The left-hand side of (39) is clearly equal to the right-hand side when x˚
H “ x˚

L. The
derivative of the left-hand side of (39) with respect to x˚

H can be simplified to be

exppx˚
H ´ x˚

Lq

ˆ

x˚
H

x˚
L

˙´α
px˚

H ´ αq2 ´ α

px˚
H ´ αq2

while the derivative of the right-hand side of (39) with respect to x˚
H is

exppx˚
H ´ x˚

Lq

ˆ

x˚
H

x˚
L

˙´α

.

Lemma 4. Suppose conditions (31), (32), (33) hold. Then we have pEpxq P r0, 1s for all
x P r0, xHs.
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Proof. Differentiating (30) with respect to x gives:

pE2
pxq “

ˆ

pN ´ 1q

pθH ´ 1qx
´ 1

˙

pE 1
pxq ´

pN ´ 1q

pθH ´ 1qx2
pEpxq.

Thus, for x P rpN ´ 1q{pθH ´ 1q,8q, pE 1pxq ą 0 implies pE2pxq ă 0. Thus, by Lemma 2 of

Milgrom and Weber (1982), on the interval rpN ´ 1q{pθH ´ 1q,8q pE 1pxq across 0 at most

once, and in which case it does so from above. Since condition (32) says that pE 1pxHq “ 0,

we conclude that pEpxq ě 0 for x P rpN ´ 1q{pθH ´ 1q, xHs. Using equation (30) it is easy to

see that pE 1pxq ą 0 when x ă pN ´ 1q{pθH ´ 1q. Thus, pE 1pxq ě 0 for all x P rxL, xHs for the
q defined by (30).

By the smooth pasting condition (33), we have pE 1pxLq ě 0 for the pE defined by (29) as
well. By the same argument applied to the differential equation in (30), we conclude that
pE 1pxq ě 0 for all x P r0, xLs for the q defined by (29).

Finally, condition (31) says that pEpxHq “ 1. So pE 1pxq ě 0 for all x P r0, xHs implies that
pEpxq ď 1 for x P r0, xHs.

Lemma 5. Suppose condition (33) holds. Then pEpxq ` pE 1pxq is decreasing in x P r0, xHs.

Proof. By equations (29) and (30), it suffices to show that fpxq “ pEpxq{x decreases with x.
We first focus on the interval r0, xLs. We calculate, using (29),

f 1
pxqx2

“ pE 1
pxqx ´ pEpxq

“
pN ´ 1q

θL ´ 1
pEpxq ´ x pEpxq `

λL

θL ´ 1
x ´ pEpxq

“ x

ˆ

´p1 ´ αq pEpxq{x ´ pEpxq `
λL

θL ´ 1

˙

,

i.e.,

f 1
pxq “

´p1 ´ αqfpxq ´ pEpxq `
λL

θL´1

x
,

where α “ N´1
θL´1

.

Lemma 1 implies that limxÑ0 fpxq “
λL

pθL´1qp1´αq
and limxÑ0

pEpxq “ 0, so by L’Hôpital’s
rule we have

lim
xÑ0

f 1
pxq “ ´p1 ´ αq lim

xÑ0
f 1

pxq ´ lim
xÑ0

pE 1
pxq,

i.e.,

lim
xÑ0

f 1
pxq “ ´

λL

pθL ´ 1qp2 ´ αqp1 ´ αq
ă 0,

since Lemma 1 implies that limxÑ0
pE 1pxq “

λL

pθL´1qp1´αq
.

For the sake of contradiction, suppose F “ tx P R` : f 1pxq ą 0u ‰ H.
Since limxÑ0 f

1pxq ă 0, there exist 0 ă x1 ă x2 such that f 1px1q “ 0 and px1, x2s Ď F .

This implies that fpx2q ą fpx1q and pEpx2q ą pEpx1q (since f 1pxq ą 0 implies pE 1pxq ą 0),
which is a contradiction since

f 1
px2

qx2
“ ´p1´αqfpx2

q ´ pEpx2
q `

λL

θL ´ 1
ă ´p1´αqfpx1

q ´ pEpx1
q `

λL

θL ´ 1
“ f 1

px1
qx1

“ 0.

44



Thus, we conclude that f 1pxq ď 0 for x P r0, xLs. By (33), this implies that f 1px`
Lq ď 0.

On the interval rxL, xHs, because of equation (30) we have

f 1
pxq “

´p1 ´ αqfpxq ´ pEpxq `
λH

θH´1

x
,

for α “ N´1
θH´1

. By exactly the same argument as in the previous paragraph, we conclude that
f 1pxq ď 0 for x P rxL, xHs.

Lemma 6. Suppose conditions (31), (32), (33) hold. Then we have

inf
x
λpθL, xq “ λL,

and
inf
x
λpθH , xq “ λH .

Thus, the welfare guarantee of the proportional cost-sharing mechanism is at least µLλL `

µHλH .

Proof. Given conditions (29) and (30), we need to show that

λpθL, xq “ λH ` p pEpxq ` pE 1
pxqqpθL ´ θHq ě λL, (40)

for x P rxL, xHs, and

λpθH , xq “ λL ` p pEpxq ` pE 1
pxqqpθH ´ θLq ě λH , (41)

for x P r0, xLs. Conditions (40) and (41) follow from Lemma 5 and equation (33).
Conditions (31) and (32) then imply that

λH “ λpθH , xHq “ pθH ´ 1q ´
pN ´ 1q

xH

ă λpθH , xq “ pθH ´ 1q ´
pN ´ 1q

x

and
λpθL, xq “ λpθH , xq ` pθL ´ θHq ą λH ` pθL ´ θHq ě λL,

for x P pxH ,8q, where the last inequality follows from (40) when x “ xH .

Lemma 7. Suppose condition (34) holds, then the welfare potential of pI converges to

pθH ´ 1qpρpxHqpxHqN´1

pN ´ 1q!
(42)

as x Ñ 0.

Proof. The limit informational virtual objective is

γps, eq “

ˆ

ppρpΣsq ´ pρ1
pΣsqqpΣpvpΣsq ´ 1q ´

pN ´ 1qΣpvpΣsqpρpΣsq

Σs

˙

Σe,

45



where ΣpvpΣsq “ θL when Σs P rx, xLq and ΣpvpΣsq “ θH when Σs P rxL, xHq. By construc-
tion, we have γps, eq “ 0 whenever Σs P rx, xLq and Σs P pxL, xHq.

For a fixed ϵ ą 0, the upper bound from Proposition 2 can be written as

ż

ΣsPrx,xL´ϵqYrxL,xH´ϵq

max
ePΩ

γps, e; ϵqds`

ż

ΣsPrxL´ϵ,xLs

max
ePΩ

γps, e; ϵqds`

ż

ΣsPrxH´ϵ,xH s

max
ePΩ

γps, e; ϵqds.

By the argument in the proof of Theorem 1, sending first ϵ Ñ 0 and then x Ñ 0, the first
term tends to 0 and the third term tends to (42). We can rewrite the second term as

ż

ΣsPrxL´ϵ,xLs

max
ΣePr0,1s

˜

pρpΣsqppθ ´ 1qΣe ´
1

ϵ

N
ÿ

i“1

ˆ

pρpΣs ` ϵqθH
si ` ϵ

Σs ` ϵ
´ pρpΣsqθL

si
Σs

˙

Σe

`
pρpΣs ` ϵq ´ pρpΣsq

ϵ
Σe

¸

ds

which, as ϵ Ñ 0 and x Ñ 0, converges to 0 by condition (34).

Proposition 6. Suppose conditions (31), (32), (33) and (34) hold. Then the welfare guar-

antee of xM is equal to the welfare potential of pI as x Ñ 0.

Proof. We can rewrite equation (34) as

µLλL exppxLqpxLq´pN´1q{pθL´1q

λL

θL´1

şxL

x“0
exppxqx´pN´1q{pθL´1qdx

“
µHλH exppxLqpxLq´pN´1q{pθH´1q

λH

θH´1

şxH

x“xL
exppxqx´pN´1q{pθH´1qdx

,

or
µLλL

pEpxLq
“

µHλH exppxL ´ xHqpxL{xHq´pN´1q{pθH´1q

1 ´ pEpxLq exppxL ´ xHqpxL{xHq´pN´1q{pθH´1q
.

Therefore, the welfare guarantee from Lemma 6 is

µLλL ` µHλH

“ µHλH
1

1 ´ pEpxLq exppxL ´ xHqpxL{xHq´pN´1q{pθH´1q

“
µHλH

λH

θH´1

şxH

y“xL
exppy ´ xHq

´

y
xH

¯´pN´1q{pθH´1q

dy

“
pθH ´ 1qpρpxHqpxHqN´1

pN ´ 1q!

which is equal to the welfare potential from Lemma 7.

Finally, we note that an equilibrium exists for pxM, pIq by exactly the same argument given
in the proof of Theorem 1.

The case of θL ą N in Theorem 2 then follows from Proposition 6.
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