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Abstract

According to Dantzig (1949), von Neumann was the first to observe that for any

finite two-person zero-sum game, there is a feasible linear programming (LP) problem

whose saddle points yield equilibria of the game, thus providing an immediate proof

of the minimax theorem from the strong duality theorem. We provide an analogous

construction going in the other direction. For any LP problem, we define a game and,

with a brief and elementary proof, show that every equilibrium either yields a saddle

point of the LP problem or certifies that one of the primal or dual programs is infeasible

and the other is infeasible or unbounded. We thus obtain an immediate proof of the

strong duality theorem from the minimax theorem. Taken together, von Neumann’s

and our results provide a succinct and elementary demonstration that matrix games

and linear programming are “equivalent” in a classical sense.
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1 Introduction

Since at least the early 1950’s, starting with the work of Dantzig (1951), it was widely

understood that the theory of two-person zero-sum games (matrix games) and the theory

of linear programming (LP) had been shown to be “equivalent,” both in the sense that a

solution to any matrix game can be obtained by solving a suitably chosen LP problem and

vice versa, as well as in the sense that their fundamental theorems, minimax and strong

duality, each follow from the other. At least, this was the perceived state of affairs prior to

2013.

In an important paper, Adler (2013) points out that there are significant flaws in the

classical arguments for equivalence which “. . . led to incomplete proofs of the relationship

between the Minimax Theorem of game theory and the Strong Duality Theorem of linear

programming” (p. 165). Adler then makes sufficient repairs to these flaws so as to correctly

establish a certain equivalence between matrix games and linear programming.

As Adler notes, the flaws in the classical arguments occur only in one direction, namely

when attempting to reduce an LP problem (i.e., a primal and dual pair of linear programs)

to a game problem and when attempting to prove the strong duality theorem from the

minimax theorem. The other direction, reducing games to LP problems and proving the

minimax theorem from strong duality, was correctly settled very early. Indeed, according

to Dantzig (1949, 1951, 1982), von Neumann observed in 1947 that any matrix game can

be solved by solving a suitably chosen feasible LP problem. Since the chosen LP problem

is feasible, this construction yields an immediate proof of the minimax theorem from the

strong duality theorem.1

To correct the flaws in the classical arguments, Adler (2013) does two things.2 First, for

any LP problem, he constructs a matrix game with the property that any equilibrium of

that game yields a saddle point of the LP problem whenever a saddle point exists, thereby

correctly reducing an LP problem to a game problem. Second, and entirely separately, he

provides a proof of the strong duality theorem from the minimax theorem by showing that

the minimax theorem implies Ville’s theorem implies Tucker’s theorem implies Farkas’ lemma

implies strong duality.

1It is evident that von Neumann explained to Dantzig the reduction of a game to a linear program, Farkas
lemma, and von Neumann’s (1947) LP duality theorem, during a private meeting in 1947 that is recounted in
Dantzig (1982, p. 45). So whenever we refer here to “von Neumann’s construction/result,” we are referring
both to the reduction of a game to an LP problem whose primal program is as given in Dantzig (1951,
pp. 330-331), and to the immediate implication that the minimax theorem follows from the strong duality
theorem.

2Adler (2013) also obtains computability results which we will not discuss here.
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A key point for our purposes here is that, while von Neumann’s LP problem construction

for solving games yields an immediate proof of the minimax theorem from the strong duality

theorem, Adler’s game construction for solving LP problems does not yield an immediate

proof of the strong duality theorem from the minimax theorem. Indeed, in order to prove

that his game solves LP problems, Adler must appeal to the strong duality theorem itself.

Thus, even after Adler’s (2013) corrections, the natural counterpart to von Neumann’s result

remained missing.

The purpose of the present paper is to provide the counterpart to von Neumann’s result

by constructing for any LP problem a matrix game with the property that every equilibrium

of the game either provides a saddle point of the LP problem or provides what we call an

unbounded direction of the LP problem. An unbounded direction is a pair of vectors, a

primal direction and a dual direction, such that starting from a feasible solution to one of

the programs, it is feasible to move in the corresponding direction and improve the objective

without bound.3 To see that a game with these properties achieves the desired goal, notice

first that if the LP problem has a saddle point, then both the primal and dual programs are

feasible and bounded, and so there can exist no unbounded direction. So every equilibrium of

the game must yield a saddle point, and the LP problem has been reduced to a game problem.

Additionally however—and this is the crucial distinction between our game construction and

Adler’s (2013)—a game with these properties provides an immediate proof of strong duality

from minimax. Indeed, by the minimax theorem, the constructed game has an equilibrium.

By the properties of the game, either, the equilibrium yields a saddle point, in which case

a saddle point exists, or, the equilibrium yields an unbounded direction, in which case if

either one of the constituent programs is feasible then it is unbounded. From this last fact,

it follows (by the elementary weak duality inequality) that the other program is infeasible.

Thus, from the minimax theorem, it immediately follows that either a saddle point exists or

one of the constituent programs is infeasible and the other is infeasible or unbounded, which

is precisely the conclusion of the strong duality theorem.

So analogous to von Neumann’s construction, the game constructed here not only reduces

any LP problem to a game problem, it also furnishes an immediate proof of the strong

duality theorem from the minimax theorem. Furthermore, the proof that our game has these

3Unbounded directions are output by the simplex algorithm, in the event that no saddle point exists.
This is how Dantzig (1963) proves the strong duality theorem. Another well-known proof of strong duality
establishes the existence of either a saddle point or an unbounded direction by an application of Farkas’
Lemma (see, e.g., Gale, 1960, Chapter 3). Indeed, an unbounded direction is a solution to the Farkas dual
of the inequality system characterizing saddle points. Thus, in reducing LP problems to matrix games, it is
natural to seek a game whose equilibria yield either saddle points or unbounded directions. Note that the
proof that equilibria of our game have this property does not invoke Farkas’ lemma or any other separation
result.
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properties is brief and elementary, using only the defining property of linearly independent

vectors. Taken together, von Neumann’s classical result and the present result provide a

natural formalization of the very old idea that matrix games and linear programming are

“equivalent.”

2 Preliminaries

Let F be any ordered field with total order >, e.g., the reals or the rationals with their usual

order.4 Henceforth, all entries of any matrix or vector are in F . All vectors are column

vectors (so any transposed vector, x⊤, is a row vector), and (x, y) denotes the concatenation

of vectors x and y. The ith row (column) of A is denoted Ai (A
i). Given vectors x and y of

the same length, we write x ≥ y to mean xi ≥ yi for every coordinate i, and x ≥ 0 means

that every coordinate of x is non-negative. We use “0” to denote either a matrix or a vector

of zeroes, “1” to denote a vector of 1’s, and I to denote the identity matrix. In each case,

their sizes are those that are uniquely appropriate given the context.

A linear programming (LP) problem is a dual pair of constituent linear programs. For-

mally, for any m × n matrix A and vectors b and c of lengths m and n respectively, the

(m× n dimensional) LP problem (A, b, c) is the pair of optimization problems:

max
x≥0

c⊤x s.t. Ax ≤ b; (1a)

min
y≥0

b⊤y s.t. A⊤y ≥ c. (1b)

We refer to (1a) as the primal program and to (1b) as the dual program. A feasible

solution to (1a) is any non-negative x ∈ F n that satisfies Ax ≤ b, and an optimal solution is

a feasible solution that attains the maximum. These terms are defined analogously for (1b).

It is well known that if x and y are feasible solutions for (1a) and (1b), respectively, then

cx ≤ yb (a result known as weak duality), since

c⊤x ≤ y⊤Ax ≤ y⊤b. (2)

4Because the minimax theorem, the strong duality theorem, and Farkas’ lemma are valid in any ordered
field (see, e.g., Gale, 1960), we have constructed our proofs so that they too are valid in any ordered field. In
particular, we avoid the use of topological results such as the fact that bounded sequences have convergent
subsequences, which are valid for the field of real numbers but not for, e.g., the field of rational numbers.
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We say that (1) is feasible if both (1a) and (1b) have feasible solutions. A saddle point of

(1) is a pair of feasible solutions that have the same value, i.e., a pair of non-negative vectors

(x, y) such that Ax ≤ b, A⊤y ≥ c, and c⊤x = b⊤y. By the weak duality inequality (2),

any saddle point consists of optimal solutions. The strong duality theorem states that for

every LP problem, either there exists a saddle point, or one of the constituent programs is

infeasible and the other is either infeasible or unbounded.

All definitions up to now have been standard. We next introduce a definition that will

play an important role in our main result. Say that a pair of non-negative vectors (x, y) is

an unbounded direction of the LP problem (A, b, c) if Ax ≤ 0, A⊤y ≥ 0, and c⊤x > b⊤y.

The sense in which an unbounded direction (x̄, ȳ) of an LP problem is “unbounded”

is that starting from a feasible solution to one of the constituent programs, moving in the

corresponding direction, x̄ for the primal, ȳ for the dual, will improve the objective without

bound. Indeed, suppose that the primal program is feasible. Then there is x ≥ 0 such that

Ax ≤ b. Hence, 0 ≤ (ȳ⊤A)x = ȳ⊤(Ax) ≤ ȳ⊤b < x̄⊤c and A(x + λx̄) ≤ b for every λ ≥ 0.

Consequently, the primal program is unbounded (above) because its value, c⊤(x + λx̄), at

the feasible solution x+ λx̄ increases without bound as λ → ∞.

Of course, if the primal (dual) program is unbounded, then the dual (primal) program

is infeasible by the weak duality inequality (2). Therefore, and importantly, the existence

of an unbounded direction establishes that one of the constituent programs is infeasible and

the other is infeasible or unbounded.

Consider any m× n-dimensional LP problem (A, b, c). Define the (m+ n+ 1)× (m+ n)

matrix Â and the (m+ n+ 1)-vector b̂ by,

Â :=

 0 −A⊤

A 0

−c⊤ b⊤

 b̂ :=

 −c

b

0

 , (3)

and let C :=
[
Â I −1

]
.5 Say that α ∈ F is a solution bound for (A, b, c) if

∑
j wj < α

whenever w ≥ 0, Cw = b̂, and the columns j of C with ŵj > 0 are linearly independent, i.e.,

whenever w is a so-called basic feasible solution of Cw = b̂.

Since for any set of linearly independent columns of C there is at most one solution w ≥ 0

to Cw = b̂ that places its positive weights on that particular set of columns, and because C

has only finitely many sets of linearly independent columns, every LP problem has a solution

5Here I is the (m + n + 1)-dimensional identity matrix, and the −1 is a column vector all of whose
(m+ n+ 1) entries are equal to −1.
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bound.6 As we will show, solution bounds permit the search for saddle points to be confined

to a bounded set such that either a saddle point exists within this set or the LP problem

admits an unbounded direction.

Finally, a matrix game is simply a matrix P . For any positive integer k, let Sk be the

set of non-negative elements of F k whose entries sum to one. An equilibrium of the (m× n)

matrix game P is a pair (ŝ, t̂) ∈ Sm × Sn such that

ŝ⊤P t̂ = max
s∈Sm

s⊤P t̂ = min
t∈Sn

ŝ⊤Pt.

If v = maxs∈Sm mint∈Sn s⊤Pt = mint∈Sn maxs∈Sm s⊤Pt then v is called the value of the game

P. If P has a value v, then (ŝ, t̂) is an equilibrium if and only if v = ŝ⊤P t̂ = maxi∈{1,...,m} Pit̂ =

minj∈{1,...,n} ŝ
⊤P j. The minimax theorem states that every matrix game has a value and an

equilibrium. See von Neumann (1928) for the original result and Gale (1960) for the extension

to any ordered field.

3 The Canonical Game

We can now state our main result.

Theorem 1. Fix an m × n dimensional LP problem (A, b, c). Choose any positive α ∈ F

that is a solution bound for (A, b, c). Then the matrix game P with n + m + 1 rows and

columns defined by

P := α

 0 −A⊤ 0

A 0 0

−c⊤ b⊤ 0

+

 c · · · c

−b · · · −b

0 · · · 0

 . (4)

has the following property: If (x, y, z), (x∗, y∗, z∗) ∈ F n × Fm × F are equilibrium strategies

for the row and column players, respectively,7 then either (αx∗, αy∗) is a saddle point of

(A, b, c), or (x, y) is an unbounded direction of (A, b, c).

6In fact, using the rank theorem (i.e., row-rank equals column-rank), which is not needed for the proof
of our main result, it is easy to show that α = 1 + (n+m+ 1)2 max{||b||, ||c||}maxW ||W−1||, is a solution
bound for (A, b, c), where || � || is the maximum absolute value of the entries in the given vector or matrix,
and where the second maximum is over all square invertible submatrices W of C.

7So, for example, x gives the weights placed by the row player on the first n rows of P , y on the next m
rows, etc.

6



Proof. Suppose that (s, t) = ((x, y, z), (x∗, y∗, z∗)) is any equilibrium of P . Then the value

is v := s⊤Pt. Letting q∗ := (αx∗, αy∗) and given Â and b̂ defined in (3), Pt = Âq∗ − b̂ and

v = s⊤(Âq∗ − b̂). There are two cases, v ≤ 0 and v > 0.

Suppose first that v ≤ 0. Then 0 ≥ v = maxi Pit = maxi(Âiq
∗ − b̂i), and so Âq∗ ≤ b̂,

which implies that A(αx∗) ≤ b, A⊤(αy∗) ≥ c, and b⊤(αy∗) ≤ c⊤(αx∗). Weak duality (2) then

implies that b⊤(αy∗) = c⊤(αx∗). Hence, (αx∗, αy∗) is a saddle point.

Next, suppose that v > 0. The proof will be complete if we show that (x, y) is an

unbounded direction. To accomplish this, it suffices to show that v = −s⊤b̂. Then, −s⊤b̂ =

v ≤ s⊤P j = αs⊤Âj − s⊤b̂ for all j ≤ n + m, which implies that s⊤Â ≥ 0 (since α > 0).

Hence, y⊤A ≥ zc⊤ and Ax ≤ zb, and so z(c⊤x − y⊤b) ≤ y⊤Ax − y⊤Ax = 0. Since

c⊤x− y⊤b = −s⊤b̂ = v > 0, it follows that z = 0 and c⊤x > y⊤b. Hence, y⊤A ≥ 0, Ax ≤ 0

and (x, y) is an unbounded direction as desired. The remainder of the proof shows that

v = −s⊤b̂ by constructing for the column player a best reply to s that puts positive weight

on the last column of P (and so v = s⊤Pm+n+1 = −s⊤b̂).

Since v = maxi(Âiq
∗ − b̂i), we have Âq∗ ≤ b̂ + 1v, and so there is a non-negative u ∈

Fm+n+1 such that Âq∗ + u = b̂ + 1v. (So ui is row’s gain from optimally deviating from

row i.) Choose a (q̂, û, v̂) ≥ 0 with the fewest number of positive coordinates such that

Âq̂ + û = b̂ + 1v̂, v̂ ≤ v, and ûi = 0 whenever ui = 0. Observe that s⊤(Âq̂ − b̂) = v̂

because si > 0 implies that ui = 0 (which in turn implies ûi = 0). Let ŵ := (q̂, v̂, û) and

C :=
[
Â I −1

]
. We claim that the columns j of C with ŵj > 0 are linearly independent.

Otherwise,8 there is d ̸= 0 such that Cd = 0 and dj ̸= 0 implies ŵj > 0. We may assume that

that, either, the last coordinate of d is positive, or, the last coordinate is zero and some other

coordinate is positive (if not then replace d with −d). Then, setting λ := minj:dj>0(ŵj/dj),

the non-negative vector (q̃, ũ, ṽ) := (q̂, û, v̂)− λd has strictly fewer positive coordinates than

(q̂, û, v̂) which, since Âq̃ + ũ = b̂+ 1ṽ, ṽ ≤ v̂ ≤ v, and ui = 0 ⇒ ûi = 0 ⇒ ũi = 0 for every i,

contradicts the choice of (q̂, û, v̂) and proves the claim.

Since ŵ ≥ 0 satisfies Cŵ = b̂ and the columns j of C with ŵj > 0 are linearly independent,

we have
∑

j ŵj < α because α is a solution bound for (A, b, c). So since ŵ := (q̂, v̂, û) ≥ 0, we

have
∑

j q̂j < α. Hence, t̂ :=
(
q̂/α, 1−

∑
j q̂j/α

)
is in Sm+n+1 and t̂m+n+1 = 1−

∑
j q̂j/α > 0.

Moreover, because s⊤(Âq̂ − b̂) = v̂ ≤ v = s⊤(Âq∗ − b̂), we have

v ≤ s⊤P t̂ = s⊤(Âq̂ − b̂) ≤ s⊤(Âq∗ − b̂) = s⊤Pt = v.

Therefore, s⊤P t̂ = v and so t̂, which puts positive weight on the last column of P , is a best

reply to s as desired.

8Note that by definition the empty set of vectors is linearly independent.
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Remark 1. Theorem 1 is the result we desire because it delivers two key requirements.

I. Every equilibrium of P provides a saddle point of (1) whenever one exists. Indeed, given

any equilibrium, Theorem 1 states that either (a) or (b) holds. If a saddle point exists, then

both constituent programs are feasible and bounded and hence there can be no unbounded

direction. Consequently, (b) cannot hold and so (a) must hold. Thus, the column player’s

strategy provides a saddle point whenever one exists.

II. The properties of P yield an immediate proof of strong duality from the minimax theorem.

Indeed, for any LP problem (A, b, c), the minimax theorem ensures that P has an equilibrium.

By Theorem 1, either (a) holds and the column player’s strategy demonstrates that a saddle

point exists, or (b) holds and the row player’s strategy provides an unbounded direction,

demonstrating that one of the constituent programs is infeasible and the other is infeasible

or unbounded.

Remark 2. Note that Theorem 1 does not assume that P has an equilibrium. Theorem

1 merely states that if P has an equilibrium, then either (a) or (b) must hold for that

equilibrium. In particular, Theorem 1 (and hence the equivalence described in the preceding

remark) does not itself rely on the minimax theorem.

Remark 3. The game P is canonical in that it has a natural interpretation in terms of a pair

of adversaries, one of whom is trying to exhibit a saddle point of (A, b, c), and the other of

whom is trying to prove that no saddle point exists by exhibiting an unbounded direction.

By the weak duality inequality (2), a saddle point is simply a non-negative pair (x̃, ỹ) that

satisfies Ax̃ ≤ b, A⊤ỹ ≥ c, and c⊤x̃ ≥ b⊤ỹ. Defining Â and b̂ as in the proof of Theorem 1,

we can write this system of inequalities as Â(x̃, ỹ) ≤ b̂. As the proof of Theorem 1 shows,

the value of P is non-positive if and only if a saddle point exists. Indeed, to force the

maximizer’s (row player’s) payoff to be non-positive, any equilibrium strategy (x∗, y∗, z∗)

for the minimizer (column player) in our game P must be such that (x̃, ỹ) := (αx∗, αy∗)

is feasible for the system (Â, b̂), meaning that (αx∗, αy∗) is a saddle point. Even so, the

maximizer can still obtain a payoff of zero by playing the last row and so the value is

never negative. On the other hand, the maximizer wants to establish that the minimizer’s

proposed solution is infeasible by exhibiting a violated constraint. The proof of Theorem 1

shows that, in equilibrium, either the minimizer succeeds in identifying a saddle point, or

the maximizer finds a weighted average of the constraints that shows that any candidate

solution is infeasible. In the latter case, the maximizer’s strategy (x, y, z) solves the Farkas

alternative to Â(x̃, ỹ) ≤ b̂, i.e., Â⊤(x, y, z) ≥ 0 and b̂⊤(x, y, z) < 0. Since, as shown in our

proof, these inequalities imply that z = 0, they reduce to our definition of (x, y) as an

unbounded direction for the original LP problem.
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Remark 4. As is well known, saddle points of an LP problem may be unbounded. In contrast,

strategies in a matrix game (including in our game P ) are necessarily bounded. So a key

step in reducing an LP problem to a matrix game problem is to show that the search for a

saddle point, i.e., a non-negative solution (x̃, ỹ) to the system Â(x̃, ỹ) ≤ b̂ can be confined

to a bounded set, which, after normalizing, may be identified with the strategies in a game.

As is well-known, if this system has a feasible solution, then it has a so-called basic feasible

solution, in which the submatrix defined by all of the columns of Â that are given positive

weight and by all of the rows of Â corresponding to constraints that are satisfied with

equality, has linearly independent columns.9 So it would be natural when seeking to confine

one’s saddle point search to a bounded set, to choose a bound α̃ that is just large enough to

include each of the finitely many basic feasible solutions. Indeed, this is the approach taken

by Adler (2013). But in fact such a bound is not large enough for our purpose. Indeed, when

the value of the resulting game P̃ (with α = α̃) is positive, the bound is large enough to

conclude that no saddle point exists, but it is not large enough for us to conclude that the row

player’s strategy yields an unbounded direction, and so we would be unable to conclude that

the LP problem is infeasible/unbounded. Thus, the game P̃ would not prove strong duality

from minimax. Consequently, the bound that we choose is larger and includes all (x̃, ỹ) such

that (x̃, ỹ, ṽ) is a basic feasible solution to Â(x̃, ỹ) ≤ b̂+ 1ṽ, which has a solution even when

the original LP problem has no saddle point. Our solution bound is large enough to not

only include all basic feasible solutions to Â(x̃, ỹ) ≤ b̂ when any exist, thereby admitting a

strategy for the minimizer that makes the value of P zero, it is also large enough to ensure

that when Â(x̃, ỹ) ≤ b̂ has no non-negative solution, the maximizer can guarantee the value

of P , which now is positive, only by using a strategy that yields an unbounded direction.

Remark 5. The proof of Theorem 1 provides an immediate proof of Farkas’ lemma from the

minimax theorem. Indeed, fix any k× l matrix Â and any vector b̂ of length k, where neither

need be as in (3). The proof in fact shows that if s ∈ F k and t = (q∗, z∗) ∈ F l × F are any

equilibrium strategies for the row and column players, respectively, of the game10

P̂ :=
[
αÂ 0

]
+
[
−b̂ · · · −b̂

]
,

9The type of argument that is used to establish the existence of a basic feasible solution is standard, being
also the core part of the argument used to prove Caratheodory’s theorem. We use this type of argument
in our proof to establish the independence of the columns of C :=

[
Â I −1

]
that are given positive

weight by ŵ. We include this (elementary) argument explicitly rather than appealing to the properties of
basic feasible solutions so as to make our proof entirely self-contained.

10Here, 0 < α ∈ F must satisfy
∑

j wj < α whenever w ≥ 0 solves Cw = b̂ and the columns j of

C :=
[
Â I −1

]
with wj > 0 are linearly independent.
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then exactly one of the following holds: (a) Âq∗ ≤ b̂, or (b) Â⊤s ≥ 0 and b̂⊤s < 0. Con-

sequently, Farkas’ lemma (in its inequality form) follows immediately from the minimax

theorem.

Remark 6. For a second immediate proof of Farkas’ lemma from minimax, simply apply

Theorem 1 to the LP problem (A, b, c) where c = 0. Then, by the minimax theorem,

Theorem 1 implies that either, (A, b, c) has a saddle point (x, y) in which case, in particular,

Ax ≤ b holds, or (A, b, c) has an unbounded direction (x, y) in which case A⊤y ≥ 0 and

b⊤y < 0 holds, because with c = 0 we cannot have Ax ≤ 0 and cx > 0.

Remark 7. Just as von Neumann’s construction is not unique, P is not the only matrix game

that achieves our goals here. After the circulation of previous drafts of this paper, which

included the game P and Theorem 1, Rakesh Vohra (private communication) and Bernard

von Stengel (2022) each independently obtained distinct game constructions that yield the

desired counterpart to von Neumann’s result. Both constructions require finding a suitably

large bound analogous to our α. The game P , however, may permit the most elementary,

short, and direct self-contained proof.

4 Addendum: A Symmetric Perspective

An apparent asymmetry between matrix games and linear programs is that matrix games

always have solutions, i.e., equilibria, while the constituent programs of an LP problem might

not have any optimal solutions at all. We show here that this asymmetry can be eliminated

with an appropriate modification of the meaning of a “solution” of an LP problem.

Say that a pair of non-negative vectors (x, y) is a solution of an LP problem (A, b, c) if

(x, y) is either a saddle point or an unbounded direction.

With this definition, the relationship between matrix games and linear programs becomes

completely symmetric. Indeed, we can now state the following.

(1) Every LP problem has a solution.

(2) Every matrix game has a solution.

(3) For every matrix game there is an LP problem whose solutions provide solutions to

the game.

(4) For every LP problem there is a matrix game whose solutions provide solutions to the

LP problem.
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Statement (1) is a consequence of the minimax theorem combined with Theorem 1, and is a

slight strengthening of the strong duality theorem;11 (2) is the minimax theorem; (3) is von

Neumann’s result; and (4) is our main result, Theorem 1.
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