Tutorial on Robust Auction Design Lecture 4

Instructors: Ben Brooks and Songzi Du

Slides @ https://benjaminbrooks.net/ https://econweb.ucsd.edu/~sodu/

EC 2021

The question

- You are a seller of a good
- You know the set of bidders
- You know the distribution of bidders values
- You are uncertain about the model of bidders' information
- You cannot (or won't) quantify this uncertainty in terms of a Bayesian prior
- What auction should you run?

An answer

- In many cases, the auction you should run is proportional auction: $A_{i}=\mathbb{R}_{+}$for each bidder i,

$$
q_{i}^{*}(a)=\frac{a_{i}}{\Sigma a} \cdot Q^{*}(\Sigma a), \quad t_{i}^{*}(m)=\frac{a_{i}}{\Sigma a} \cdot T^{*}(\Sigma a)
$$

where $\Sigma a=\sum_{i=1}^{N} a_{i}$,

$$
Q^{*}(\Sigma a)= \begin{cases}\Sigma a / x & \Sigma a<x^{*} \\ 1 & \Sigma a \geq x^{*}\end{cases}
$$

Values

- A single unit for sale
- N bidders
- Value $v_{i} \in V_{i} \subset[0, \infty),\left|V_{i}\right|<\infty$
- $v=\left(v_{1}, \ldots, v_{N}\right)$
- Prior $\mu \in \Delta(V)$

Mechanisms

- A mechanism is a triple $\mathcal{M}=(A, q, t)$
- Finite actions A_{i} for $i=1, \ldots, N$
- Action profiles $A=A_{1} \times \cdots \times A_{N}$
- Allocations $q: A \rightarrow[0,1]^{N}, \Sigma q(a) \leq 1$ $\left(\Sigma x=x_{1}+\cdots+x_{N}\right.$ for $\left.x \in \mathbb{R}^{N}\right)$
- Transfers: $t: A \rightarrow \mathbb{R}^{N}$

Mechanisms

- A mechanism is a triple $\mathcal{M}=(A, q, t)$
- Finite actions A_{i} for $i=1, \ldots, N$
- Action profiles $A=A_{1} \times \cdots \times A_{N}$
- Allocations $q: A \rightarrow[0,1]^{N}, \Sigma q(a) \leq 1$

$$
\left(\Sigma x=x_{1}+\cdots+x_{N} \text { for } x \in \mathbb{R}^{N}\right)
$$

- Transfers: $t: A \rightarrow \mathbb{R}^{N}$
- Participation security: For all i, there exists a action $0 \in A_{i}$ such that $t_{i}\left(0, a_{-i}\right)=0 \forall v_{i}, a_{-i}$

Mechanisms

- A mechanism is a triple $\mathcal{M}=(A, q, t)$
- Finite actions A_{i} for $i=1, \ldots, N$
- Action profiles $A=A_{1} \times \cdots \times A_{N}$
- Allocations $q: A \rightarrow[0,1]^{N}, \Sigma q(a) \leq 1$

$$
\left(\Sigma x=x_{1}+\cdots+x_{N} \text { for } x \in \mathbb{R}^{N}\right)
$$

- Transfers: $t: A \rightarrow \mathbb{R}^{N}$
- Participation security: For all i, there exists a action $0 \in A_{i}$ such that $t_{i}\left(0, a_{-i}\right)=0 \forall v_{i}, a_{-i}$
- \boldsymbol{M} set of participation-secure mechanisms

Information structures (aka type spaces)

- An information structure is a pair $\mathcal{I}=(S, \sigma)$
- Finite signals S_{i}
- Signal profiles $S=S_{1} \times \cdots \times S_{N}$
- Joint distribution $\sigma \in \Delta(S \times V)$ where marginal on V is μ
- I is the set of information structures

Equilibrium

- Given $(\mathcal{M}, \mathcal{I})$, (behavioral) strategies $b_{i}: S_{i} \rightarrow \Delta\left(A_{i}\right)$
- $B(\mathcal{M}, \mathcal{I})$ is the set of Bayes Nash equilibria
- Induced profit from b :

$$
\Pi(\mathcal{M}, \mathcal{I}, b)=\sum_{v, s, a, i} t_{i}(a) b(a \mid s) \sigma(s, v)
$$

A strong minimax theorem

Theorem
Suppose $\mu(v)>0$ for all $v \in V$. Then
$\sup _{\mathcal{M} \in \boldsymbol{M}} \inf _{\mathcal{I} \in \boldsymbol{I}} \inf _{b \in B(\mathcal{M}, \mathcal{I})} \Pi(\mathcal{M}, \mathcal{I}, b)=\inf _{\mathcal{I} \in \boldsymbol{I}} \sup _{\mathcal{M} \in \boldsymbol{M}} \sup _{b \in B(\mathcal{M}, \mathcal{I})} \Pi(\mathcal{M}, \mathcal{I}, b)$.

- LHS is "MAX-2MIN", RHS is "MIN-2MAX"
- The value of these programs is Π^{*}, the profit guarantee
- Equilibrium selection does not matter!
- $\left(\mathcal{M}^{\text {MAX-2MIN }}, \mathcal{I}^{\text {MIN-2MAX }}\right)$ is a saddle point
- Builds on Chung and Ely (2007)

An even stronger theorem

- We construct sequences of linear programs that, for a finite number of actions/signals, bound the MAX-2MIN and MIN-2MAX profits
- For each $k \geq 1$ and i :

$$
X_{i}(k)=\left\{0, \frac{1}{k}, \ldots, \frac{k^{2}-1}{k}, k\right\}
$$

- $X(k)=\times_{i \in N} X_{i}(k)$

An even stronger theorem

- We construct sequences of linear programs that, for a finite number of actions/signals, bound the MAX-2MIN and MIN-2MAX profits
- For each $k \geq 1$ and i :

$$
X_{i}(k)=\left\{0, \frac{1}{k}, \ldots, \frac{k^{2}-1}{k}, k\right\}
$$

- $X(k)=\times_{i \in N} X_{i}(k)$
- $\boldsymbol{M}(k)$ are the participation-secure mechanisms with actions $X(k)$

$$
\Pi^{\mathrm{MAX}-2 \operatorname{MIN}}(k)=\sup _{\mathcal{M} \in \boldsymbol{M}(k)} \inf _{\mathcal{I} \in \boldsymbol{I}} \inf _{b \in B(\mathcal{M}, \mathcal{I})} \Pi(\mathcal{M}, \mathcal{I}, b)
$$

An even stronger theorem

- We construct sequences of linear programs that, for a finite number of actions/signals, bound the MAX-2MIN and MIN-2MAX profits
- For each $k \geq 1$ and i :

$$
X_{i}(k)=\left\{0, \frac{1}{k}, \ldots, \frac{k^{2}-1}{k}, k\right\}
$$

- $X(k)=\times_{i \in N} X_{i}(k)$
- $\boldsymbol{M}(k)$ are the participation-secure mechanisms with actions $X(k)$

$$
\Pi^{\mathrm{MAX}-2 \operatorname{MIN}}(k)=\sup _{\mathcal{M} \in \boldsymbol{M}(k)} \inf _{\mathcal{I} \in \boldsymbol{I}} \inf _{b \in B(\mathcal{M}, \mathcal{I})} \Pi(\mathcal{M}, \mathcal{I}, b)
$$

- $\boldsymbol{I}(k)$ is the set of information structures with signal space $X(k)$

$$
\Pi^{\mathrm{MIN}-2 \operatorname{MAX}}(k)=\inf _{\mathcal{I} \in \boldsymbol{I}(k)} \sup _{\mathcal{M} \in \mathcal{M}} \sup _{b \in B(\mathcal{M}, \mathcal{I})} \Pi(\mathcal{M}, \mathcal{I}, b)
$$

Discrete derivatives

- Let $f: X(k) \rightarrow \mathbb{R}^{N}$, and define the discrete upward partial derivative:

$$
\nabla_{i}^{+} f(x)=\mathbb{I}_{x_{i}<k}(k-1)\left(f_{i}\left(x_{i}+1 / k, x_{-i}\right)-f_{i}(x)\right)
$$

- $\nabla^{+} f(x)=\left(\nabla_{1}^{+} f(x), \ldots, \nabla_{N}^{+} f(x)\right)$
- $\nabla^{+} \cdot f(x)=\sum_{i=1}^{N} \nabla_{i}^{+} f(x)$

Linear relaxation for MAX-2MIN

$$
\begin{align*}
\underline{\Pi}^{\mathrm{MAX}-2 \mathrm{MIN}} & (k)= \\
& \max _{q: X(k) \rightarrow \mathbb{R}_{+}^{N}, t: x(k) \rightarrow \mathbb{R}^{N},}: \sum_{v \in V \rightarrow \mathbb{R}} \mu(v) \lambda(v) \tag{1}\\
\text { s.t. } & \Sigma q(x) \leq 1 \forall x ; \\
& t_{i}\left(0, x_{-i}\right)=0 \forall i, x_{-i} ; \\
& \lambda(v) \leq \Sigma t(x)+v \cdot \nabla^{+} q(x)-\nabla^{+} \cdot t(x) \forall v, x
\end{align*}
$$

- Maximizing a lower bound on revenue across mechanisms, subject to local IC

Linear relaxation for MAX-2MIN

- For a fixed mechanism, minimize the revenue across (local) Bayes correlated equilibria
(BCE)

$$
\begin{aligned}
& \min _{\sigma \geq 0} \sum_{x, v, i} t_{i}(x) \sigma(x, v) \\
& \text { s.t. } \\
& \sum_{x} \sigma(x, v)=\mu(v) \forall v ; \\
& \sum_{x_{-i}, v}\left(v_{i} \nabla_{i}^{+} q\left(x_{i}, x_{-i}\right)\right. \\
& \left.\quad-\nabla_{i}^{+} t\left(x_{i}, x_{-i}\right)\right) \sigma\left(x_{i}, x_{-i}, v\right) \leq 0 \forall i, x_{i}
\end{aligned}
$$

(D-BCE)

$$
\begin{aligned}
& \max _{\alpha \geq 0, \lambda} \sum_{v} \mu(v) \lambda(v) \\
& \text { s.t. } \\
& \begin{aligned}
\lambda(v) \leq & \Sigma t(x) \\
& +\sum_{i, x_{i}} \alpha_{i}\left(x_{i}\right)\left(v_{i} \nabla_{i}^{+} q(x)-\nabla_{i}^{+} t(x)\right) \forall x, v
\end{aligned}
\end{aligned}
$$

Censored geometric distribution

- Now define

$$
\begin{gathered}
\rho_{i}\left(x_{i}\right)=\left(1-\frac{1}{k}\right)^{k x_{i}}\left(\frac{1}{k}\right)^{\mathbb{I}_{x_{i}}<k} \\
\rho(x)=\prod_{i=1}^{N} \rho_{i}\left(x_{i}\right)
\end{gathered}
$$

- (PMF of the censored geometric with arrival rate $1 / k$)

Linear relaxation for MIN-2MAX

$$
\begin{align*}
\bar{\Pi}^{\mathrm{MIN}-2 \operatorname{MAX}}(k)= & \\
& \min _{\sigma: X(k) \times v \rightarrow \mathbb{R}_{+}, w: X(k) \rightarrow \mathbb{R}_{+}^{N},}^{\gamma: X(k) \rightarrow \mathbb{R}_{+}} \sum_{x \in X(k)} \gamma(x) \\
\text { s.t. } & \sum_{x \in X(k)} \sigma(x, v)=\mu(v) \forall v ; \tag{2}\\
& \sum_{v \in V} \sigma(x, v)=\rho(x) \forall x ; \\
& w(x)=\frac{1}{\rho(x)} \sum_{v \in V} v \sigma(x, v) \forall x \\
& \gamma(x) \geq \rho(x)\left[w_{i}(x)-\nabla_{i}^{+} w(x)\right] \forall x ;
\end{align*}
$$

- Minimizing the highest virtual value across information structures where the signal distribution is ρ

Linear relaxations converge as $k \rightarrow \infty$

Theorem
For all $k>0$,
$\bar{\Pi}^{\mathrm{MIN}-2 \mathrm{MAX}}(k) \geq \Pi^{\mathrm{MIN}-2 \mathrm{MAX}}(k) \geq \Pi^{\mathrm{MAX}-2 \mathrm{MIN}}(k) \geq \underline{\Pi}^{\mathrm{MAX}-2 \mathrm{MIN}}(k)$.
If $\mu(v)>0$ for all $v \in V$, then

$$
\lim _{k \rightarrow \infty} \bar{\Pi}^{\mathrm{MIN}-2 \mathrm{MAX}}(k)=\lim _{k \rightarrow \infty} \underline{\Pi}^{\mathrm{MAX}-2 \mathrm{MIN}}(k)=\Pi^{*}
$$

Linear relaxations converge as $k \rightarrow \infty$

Theorem
For all $k>0$,
$\bar{\Pi}^{\mathrm{MIN}-2 \mathrm{MAX}}(k) \geq \Pi^{\mathrm{MIN}-2 \mathrm{MAX}}(k) \geq \Pi^{\mathrm{MAX}-2 \mathrm{MIN}}(k) \geq \underline{\Pi}^{\mathrm{MAX}-2 \mathrm{MIN}}(k)$.
If $\mu(v)>0$ for all $v \in V$, then

$$
\lim _{k \rightarrow \infty} \bar{\Pi}^{\mathrm{MIN}-2 \mathrm{MAX}}(k)=\lim _{k \rightarrow \infty} \underline{\Pi}^{\mathrm{MAX}-2 \mathrm{MIN}}(k)=\Pi^{*}
$$

Moreover,

- If (q, t) solves (1), then profit in $(X(k), q, t)$ is at least $\underline{\square}^{\mathrm{MAX}-2 \mathrm{MIN}}(k)$ for any information structure and equilibrium.
- If σ solves (2), then profit in $(X(k), \sigma)$ is at most $\bar{\Pi}^{\mathrm{MIN}-2 \mathrm{MAX}}(k)$ in any mechanism and equilibrium.

Two programs

$$
\max _{q \geq 0, t, \lambda} \sum_{v} \mu(v) \lambda(v)
$$

s.t. $\Sigma q(x) \leq 1 \forall x$

$$
\begin{aligned}
& t_{i}\left(0, x_{-i}\right)=0 \forall i, x_{-i} \\
& \begin{aligned}
\lambda(v) & \leq \Sigma t(x) \\
& +v \cdot \nabla^{+} q(x)-\nabla^{+} \cdot t(x) \forall x, v
\end{aligned}
\end{aligned}
$$

$$
\min _{\sigma \geq 0, \gamma \geq 0, w} \sum_{x} \gamma(x)
$$

$$
\text { s.t. } \sum_{x} \sigma(x, v)=\mu(v) \forall v \text {; }
$$

$$
\sum_{v} \sigma(x, v)=\rho(x) \forall x
$$

$$
w_{i}(x)=\frac{1}{\rho(x)} \sum_{v} v_{i} \sigma(x, v) \forall i, x
$$

$$
\gamma(x) \geq \rho(x)\left[w_{i}(x)-\nabla_{i}^{+} w_{i}(x)\right] \forall i, x
$$

Solving out transfers from (1)

- In program (2), we "solved out" the transfers
- Can do the same thing in (1):
- Let $\equiv(x)=\nabla^{+} \cdot t(x)-\Sigma t(x)$ denote the aggregate excess growth
- For fixed \equiv, there exists a t that satisfies this equation iff $\sum_{x} \rho(x) \equiv(x)=0$ (implied by, e.g., Farkas' lemma)
- So, in program (1), we can substitute in 三 for t and add the expectation of \equiv to the objective:

Two programs

$$
\begin{array}{ll}
\max _{\lambda, q \geq 0, t} \sum_{v} \mu(v) \lambda(v)+\sum_{x} \rho(x) \equiv(x) & \min _{\sigma \geq 0, \gamma \geq 0, w} \sum_{x} \gamma(x) \\
\text { s.t. } \Sigma q(x) \leq 1 \forall x ; & \text { s.t. } \sum_{x} \sigma(x, v)=\mu(v) \forall v ; \\
\lambda(v)+\equiv(x) \leq v \cdot \nabla^{+} q(x) \forall x, v . & \sum_{v} \sigma(x, v)=\rho(x) \forall x ; \\
& w_{i}(x)=\frac{1}{\rho(x)} \sum_{v} v_{i} \sigma(x, v) \forall i, x ; \\
& \gamma(x) \geq \rho(x)\left[w_{i}(x)-\nabla_{i}^{+} w_{i}(x)\right] \forall i, x
\end{array}
$$

(1') and dual of (2)

$$
\max _{\lambda, \equiv, q \geq 0} \sum_{v} \mu(v) \lambda(v)+\sum_{x} \rho(x) \equiv(x)
$$

$$
\text { s.t. } \sum q(x) \leq 1 \forall x \text {; }
$$

$$
\lambda(v)+\equiv(x) \leq v \cdot \nabla^{+} q(x) \forall x, v
$$

(D-2)

$$
\max _{\equiv, \lambda, q \geq 0} \sum_{v} \mu(v) \lambda(v)+\sum_{x} \rho(x) \equiv(x)
$$

s.t. $\Sigma q(x) \leq 1 \forall x$;

$$
\lambda(v)+\equiv(x) \leq v \cdot \nabla^{-} q(x) \forall x, v
$$

Shifting

- We complete the proof of the theorem by showing that (1') and (2) have almost the same value when k is large
- They are "almost" a dual pair, except for the direction of local IC

Shifting

- We complete the proof of the theorem by showing that (1') and (2) have almost the same value when k is large
- They are "almost" a dual pair, except for the direction of local IC
- Given a feasible q for (D-2), we construct a feasible q^{\prime} for (1^{\prime}), so that (1^{\prime}) and (2) have almost the same value
- If q^{\prime} is non-decreasing, can use:

$$
q_{i}^{\prime}(x)= \begin{cases}q_{i}\left(x_{i}-1 / k, x_{-i}\right) & \text { if } x_{i}>0 \\ 0 & \text { if } x_{i}=0\end{cases}
$$

Shifting

- We complete the proof of the theorem by showing that (1') and (2) have almost the same value when k is large
- They are "almost" a dual pair, except for the direction of local IC
- Given a feasible q for (D-2), we construct a feasible q^{\prime} for (1'), so that (1') and (2) have almost the same value
- If q^{\prime} is non-decreasing, can use:

$$
q_{i}^{\prime}(x)= \begin{cases}q_{i}\left(x_{i}-1 / k, x_{-i}\right) & \text { if } x_{i}>0 \\ 0 & \text { if } x_{i}=0\end{cases}
$$

- Complication: If q decreases, could have $\Sigma q^{\prime}(x)>1$
- Last step: decrease in q is bounded below, and the bound goes to zero faster than $1 / k \Longrightarrow$ we can "rescale" q ' to make it feasible without significantly changing the objective

As $k \rightarrow \infty$

$$
\begin{array}{cc}
\underline{\Pi}^{\mathrm{MAX}-2 \mathrm{MIN}} & \bar{\Pi}^{\mathrm{MIN}-2 \operatorname{MAX}} \\
\max _{\lambda, q \geq 0, t} \sum_{v} \mu(v) \lambda(v)+\sum_{x} \rho(x) \equiv(x) & \min _{\sigma \geq 0, \gamma \geq 0, w} \sum_{x} \gamma(x) \\
\text { s.t. } \sum q(x) \leq 1 \forall x ;[\gamma(x)] \\
\lambda(v)+\equiv(x) \leq v \cdot \nabla q(x) \forall x, v ;[\sigma(x, v)] & \text { s.t. } \sum_{x} \sigma(x, v)=\mu(v) \forall v ;[\equiv(x)] \\
& \sum_{v} \sigma(x, v)=\rho(x) \forall x ;[\lambda(v)] \\
& w_{i}(x)=\frac{1}{\rho(x)} \sum_{v} v_{i} \sigma(x, v) \forall i, x ; \\
& (x) \geq \rho(x)\left[w_{i}(x)-\nabla_{i} w_{i}(x)\right] \forall i, x ;\left[q_{i}(x)\right]
\end{array}
$$

- Suppose the two programs are an exact dual pair as $k \rightarrow \infty$
- Then at the optimal, complementary-slackness conditions should hold

Binary common values

- Suppose $v_{i} \in\{0,1\}$, and $\mu\left(\left\{v_{1}=v_{2}=\cdots=v_{N}\right\}\right)=1$.
- That is, the seller only knows the expected common value.

Binary common values

- Suppose $v_{i} \in\{0,1\}$, and $\mu\left(\left\{v_{1}=v_{2}=\cdots=v_{N}\right\}\right)=1$.
- That is, the seller only knows the expected common value.
- As $k \rightarrow \infty, \rho_{i}\left(x_{i}\right)=\exp \left(-x_{i}\right)$.
- Value function:

$$
w_{i}^{*}(x)= \begin{cases}C \exp (\Sigma x) & \Sigma x<x^{*} \\ 1 & \Sigma x \geq x^{*}\end{cases}
$$

- All bidders have the same virtual value, which is 0 if $\Sigma x<x^{*}$ and is 1 otherwise
- The last constraint in $\underline{\square}^{\mathrm{MAX}-2 \mathrm{MIN}}$ is always binding, so $q_{i}^{*}(x)$ is free to be interior

MAX-2MIN mechanisms

- w^{*} implies:
- $\sigma^{*}(x, v)>0$ for both $v=\overrightarrow{0}$ and $v=\overrightarrow{1}$ when $\Sigma x<x^{*}$
- $\sigma^{*}(x, v)>0$ only for $v=\overrightarrow{1}$ when $\Sigma x \geq x^{*}$
- By complementary-slackness:
- $\lambda^{*}(v)+\Xi^{*}(x) \leq v \cdot \nabla q^{*}(x)$ binds for both v when $\Sigma x<x^{*}$
- it only binds for $v=\overrightarrow{1}$ when $\Sigma x \geq x^{*}$

MAX-2MIN mechanisms

- w^{*} implies:
- $\sigma^{*}(x, v)>0$ for both $v=\overrightarrow{0}$ and $v=\overrightarrow{1}$ when $\Sigma x<x^{*}$
- $\sigma^{*}(x, v)>0$ only for $v=\overrightarrow{1}$ when $\Sigma x \geq x^{*}$
- By complementary-slackness:
- $\lambda^{*}(v)+\Xi^{*}(x) \leq v \cdot \nabla q^{*}(x)$ binds for both v when $\Sigma x<x^{*}$
- it only binds for $v=\overrightarrow{1}$ when $\Sigma x \geq x^{*}$
- With some additional regularity and boundary conditions, an allocation q is MAX-2MIN optimal as long as $\nabla_{i} q(x)=1 / x^{*}$ $\left(<1 / x^{*}\right)$ if $\Sigma x<x^{*}\left(\geq x^{*}\right)$
- For example, these conditions are satisfied by the proportional allocation:

$$
q_{i}^{*}(x)=\frac{x_{i}}{\max \left\{x^{*}, \Sigma x\right\}}
$$

Transfers

- We show that for any such allocation,

$$
\Xi^{*}(x)=\nabla \cdot q^{*}(x)-\lambda^{*}(\overrightarrow{1})
$$

satisfies $\int_{\mathbb{R}_{+}^{N}} \Xi^{*}(x) \rho(d x)=0$

- As a result, there always exists a transfer rules that solves

$$
\Xi^{*}(x)=\nabla \cdot t(x)-\Sigma t(x)
$$

Transfers

- We show that for any such allocation,

$$
\Xi^{*}(x)=\nabla \cdot q^{*}(x)-\lambda^{*}(\overrightarrow{1})
$$

satisfies $\int_{\mathbb{R}_{+}^{N}} \Xi^{*}(x) \rho(d x)=0$

- As a result, there always exists a transfer rules that solves

$$
\Xi^{*}(x)=\nabla \cdot t(x)-\Sigma t(x)
$$

- For the proportional allocation q^{*}, there is a transfer that solves this equation and has the proportional form:

$$
t_{i}^{*}(x)=q_{i}^{*}(x) T^{*}(\Sigma x)
$$

where T^{*} solves an ODE

- We call this MAX-2MIN mechanism proportional auction.

Truthful equilibrium

- In the finite bounding programs, we use a revelation principle, so the strategies are truthful/obedient
- Another heuristic for the continuum limit is that truthtelling/obedience should be locally optimal at the saddle point
- In fact, we show directly that the truthful/obedient strategies are an equilibrium for the saddle point we construct

Robustness of proportional auction

- If the value is common but not binary, proportional auction remains MAX-2MIN optimal.
- If each bidder's expected value is known and the same, but the correlation and information structure are unknown, proportional auction remains MAX-2MIN optimal.
- Common value is the worst-case (MIN-2MAX) information structure.

Common value full surplus extraction

Proposition

The profit guarantee of the proportional auction converges to the full surplus (expected common value) as $N \rightarrow \infty$ at the rate of $\frac{1}{\sqrt{N}}$.

- Optimal profit guarantee for uniform distribution

Literature

- Bergemann, Brooks and Morris (2017), Brooks and Du (2021a,b,c)
- Robustness to correlation under private value: He and Li (2020), Zhang (2021)
- Distributional robustness under private value: Che (2020)
- Robustness to strategic uncertainty: Yamashita (2015)
- Robustness to resale opportunity: Carroll and Segal (2018)

Conclusion

- Linear programs that compute the optimal profit guarantee over all information structures and equilibria
- In many cases, the optimal (MAX-2MIN) mechanism is the proportional auction
- Guarantees full surplus extraction in common value setting with large markets
- Open questions:
- Lower bounds on information? Private values?
- Simple mechanisms that guarantee a good approximation of the full surplus?
- Other welfare criteria? (Minmax regret for social surplus?)
- Relax equilibrium assumption? (Rationalizability? Adaptive agents?)

