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Overview for the course
I Topics:

I Linear programming
I Epistemic game theory
I Robust predictions
I Bayesian mechanism design
I Robust mechanism design

I Evaluation:
I Problem sets in Python/Gurobi
I Final project/presentation in which you formulate a new

model and analyze it numerically, using tools from the
class

I Gestalt:
I The synergy between simulation and analysis, especially

in the context of linear models
(which come up all the time in game theory and
mechanism design)



Ordered fields

I Fix an ordered field F
I A set endowed with addition/multiplication,
I Identities 0 and 1
I Additive and multiplicative inverses (except there is no

multiplicative inverse for 0)
I A linear order > that is compatible with

addition/multiplication in the usual way

I Think of R or Q
I But also includes more exotic ordered fields, e.g.,

algebraic numbers, rational functions, hyperreals

I (Why do I care that we are working with fields rather
than R? To emphasize the conceptual point that all of
our arguments are algebraic, rather than topological)



Vectors and matrices

I Fn is the set of n-vectors

I Think of them as column vectors, but for the most part it
won’t matter

I For x ∈ Fn, we write x ≥ 0 if all coordinates are
non-negative

I If x and y are vectors of same length, then
xy =

∑n
i=1 xiyi

I Fm×n is the set of matrices with m rows and n columns

I Given A ∈ Fm×n, Ai is the ith row and Ai is the ith
column



Matrix/vector operations

I Given x ∈ Fn, y ∈ Fm, and A ∈ Fm×n, we define
I Ax is the vector of products of x with rows of A
I yA is the vector of products of y with columns of A

I NB I am following Gale (1960) in generally ignoring
whether a vector is “row” or “column” (but when we
build block matrices, we will regard them as row vectors)

I Transpose of A ∈ Fm×n is the matrix A>, with A>ij = Aji

I Identity matrix I ∈ Fm×m has Iii = 1 and Iij = 0 for j 6= i



Linear Programs

I A linear program (LP) is an finite-dimensional
optimization problem (maximization or minimization)
with a linear objective and linear constraints

I Any linear program can be put in the “canonical” or
“standard”1 form

max
x∈Fn

cx s.t. x ≥ 0,Ax ≤ b (P)

I Parameterized by (A, b, c) ∈ Fm×n × Fm × Fn

I The dimension is m × n

1In scare quotes because there are many different “standards”



Manipulating LPs into standard form

I On your problem set, you will prove that any LP can be
rewritten in standard form

I For example, any equality constraints of the form Ax = b
can be converted into a pair of inequality constraints
Ax ≤ b and −Ax ≤ − b

I NB In the other direction, Ax ≤ b can be rewritten as
Ax + z = b, z ≥ 0 (indeed, another “standard” form is to
write the LP constraints as Ax = b)

I In some cases, optimization problems that don’t appear
to be LPs can be reformulated as such, e.g., an objective
that is a ratio of linear functions, or constraints involving
a max or min

I These kinds of programs can be rewritten as LPs by
introducing auxiliary variables



Toy example
I Consider the LP

max x1 + x2 s.t. x1 ≥ 0, x2 ≥ 0

2x1 + x2 ≤ 1, x1 + 2x2 ≤ 1

x1

x2

c

I From the picture, it is self-evident what is the optimum:
The northeast corner of the feasible set, at x1 = x2 = 1/3

I Optimal value is x1 + x2 = 2/3



More economic examples: Production

I From Dorfman, Samuelson, Solow (1958)

I The auto plant can produce cars and trucks

I The plant has four departments, each of which has 100%
capacity; here are the percent capacity usages per vehicle

Cars Trucks
Metal stamping 0.004 0.00286

Engine Assembly 0.003 0.006
Car assembly 0.00444 0

Truck assembly 0 0.00667

I The net profit per car is $300 and the net profit per truck
is $250

I How many cars and trucks should the plant produce,
without exceeding plant capacity, to maximize profit?



Production formulated as an LP

I Cars x1 and trucks x2
I Constraints:

x1 ≥ 0, x2 ≥ 0;

100 ≥ 0.004x1 + 0.00286x2

100 ≥ 0.003x1 + 0.006x2

100 ≥ 0.00444x1

100 ≥ 0.00667x2

I Objective: Maximize 300x1 + 250x2
I Solution: On your pset!



More economic examples: Transportation

I You own a firm that sells a certain divisible goods

I You have a collection of warehouses i = 1, . . . ,m and
stores j = 1, . . . , n

I Each warehouse has a supply si and each store has a
demand dj

I Transporting inventory from warehouse i to store j costs
cij per unit of the good

I What is the “flow” of inventory from the warehouses to
the stores that fulfills the demands at minimum cost?



The optimal transport problem

I The flow from i to j is xij ≥ 0

I The objective is to minimize the total cost:
∑

ij cijxij
I The supply and demand constraints are:∑

j

xij ≤ si ∀i = 1, . . . ,m∑
i

xij ≥ dj ∀j = 1, . . . , n

I NB the program is infeasible unless
∑

i si ≥
∑

j dj



Dual programs

I For any LP (A, b, c) as in (P), we there is an associated
dual LP

min
y∈Fm

by s.t. y ≥ 0, yA ≥ c (D)

I In the context of its dual, the program (P) is referred to
as the primal LP

I On your pset, you’ll verify that the dual of the dual is the
primal, so that LPs do in fact come in pairs

I We refer to the primal-dual pair of LPs (P) and (D) as a
linear programming problem

I Much of the theory of linear programming concerns the
relationship between these two programs



Lagrangian duality
I The variables y are effectively Lagrange multipliers on the

constraints Ax ≤ b in (P), and x are multipliers on the
constraints yA ≥ c in (D)

I Indeed, consider the Lagrangian for (P):

max
x≥0

cx + y(b − Ax) = max
x≥0

by + (c − yA)x

I If yA 6≥ c , then the maximum can be made arbitrarily large by
sending xi →∞, where yAi < ci

I So, the value is finite only if yA ≥ c

I Similarly, consider

min
y≥0

by + (c − yA)x = min
y≥0

y(b − Ax) + cx

I The value is again finite iff Ax ≤ b
I NB The two programs have the same Lagrangian!
I In fact, we can interpret the LP problem as a zero-sum game,

where the objective is cx + by − yAx , the maximizer chooses
x , and the minimizer chooses y ... more on this in a bit
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Weak duality

Proposition (Weak duality)
If x , y ≥ 0, Ax ≤ b, yA ≥ c , then cx ≤ by .

Proof.
cx ≤ (yA)x = y(Ax) ≤ yb

I So, any feasible solution of the dual gives us an upper
bound on the value of the primal, and vice versa

I Relatedly, the optimal value of (P) must be weakly below
that of (D) (that is, if optima exist!)

I Thus, if we solve both (P) and (D) simultaneously, then
as we refine our solutions to each program, we also obtain
refine bounds on how far we are from optimality



Toy example (2)
I What is the dual of our example LP?

I In this case, c = (1, 1) = b, A = [2 1; 1 2]

I min y1 + y2 subject to y1 ≥ 0, y2 ≥ 0, 2y1 + y2 ≥ 1,
y1 + 2y2 ≥ 1

y1

y2

b

I Solution is again obvious; go to the SW corner, at
y1 = y2 = 1/3!

I Optimal value is 2/3... same as the primal!



Dual of the transportation problem
I We attach dual variables pj ≥ 0 to each of the demand

constraints and qi ≥ 0 to each of the supply constraints

I The objective is to maximize∑
j

pjdj −
∑
i

qi si

subject to

pj − qi ≤ cij

I If we interpret the pi as prices and qj as costs, then this is
saying that we are maximizing the net value of transportation,
subject to the gain in value from moving good from i to j
being at most cij , the cost of production!

I A meta theorem about linear programming is that given
enough effort, dual variables can always be reinterpreted as
prices; see DSS for further evidence



Saddle points

I A saddle point is a pair (x , y) that are feasible for (P)
and (D), resp., and such hat cx = by

I An immediate implication of weak duality is that if we
can find x and y that are feasible and cx = by , then x
and y are both optimal for their respective problems

I So, saddle points “certify” the optimal value of the LP
problem

I Much of our focus then is on understanding when saddle
points exist and finding them



Complementary slackness
I A pair (x , y) satisfies complementary slackness if

(yA− c)x = 0 and y(b − Ax) = 0

I In other words, for each column i , at least one of xi = 0
and yAi = ci holds, and for each row i , at least one of
yi = 0 and Aix = bi holds

Theorem
A pair (x , y) is a saddle point if and only if it is feasible and
satisfies complementary slackness.

I Proof:
by − cx = by − yAx + yAx − cx = y(b−Ax) + (yA− c)x

I If (x , y) is feasible, then y(b − Ax) ≥ 0 and
(yA− c)x ≥ 0, so that the duality gap is zero iff
y(b − Ax) = 0 and (yA− c)x = 0

I So, (x , y) is a saddle point iff it is feasible and satisfies
complementary slackness �



The zero-sum game revisited
I Why are saddle points so named? Well, they correspond

equilibria of the two-player zero-sum game with payoff

u(x , y) = cx + by − yAx ,

where maximizer and minimizer choose x ≥ 0 and y ≥ 0, resp

I Indeed, if (x , y) is a saddle point, then by complementary
slackness, the value of the game at these strategies is just the
optimal value of the LP problem:

cx + y(b − Ax)︸ ︷︷ ︸
=0

= (c − yA)x︸ ︷︷ ︸
=0

+by

I Moreover, since b − Ax ≥ 0, for any y ′ ≥ 0, we have that
y ′(b − Ax) ≥ 0, so that u(x , y ′) ≥ cx = u(x , y)

I Similarly, since c − yA ≤ 0, if x ′ ≥ 0, then
u(x ′, y) ≤ by = u(x , y)
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Bounding the value of LPs

I Bottom line: The optimal multipliers minimize the value
of the Lagrangian

I An immediate implication is that for any choice of y ≥ 0,
maxx≥0 cx + yb − yAx is an upper bound on the optimal
value of the primal

I Similarly, for any x ≥ 0, miny≥0 cx + yb − yAx is a lower
bound on the value of the dual

I As we will see, this fact can be quite useful:
It makes it easy to get bounds on the optimal value of an
LP, even if you don’t know the exact optimal multipliers



Toy example (3)
I In light of this, a good way of finding a saddle point is to

engineer (x , y) to satisfy complementary slackness
I In our example, let’s conjecture that we have a saddle

point with all variables strictly positive
I In this case, all of the constraints would bind (the dual

variable is non-zero so the constraint has to hold as an
equality), and we would need to have

2x1 + x2 = 1

x1 + 2x2 = 1

2y1 + y2 = 1

y1 + 2y2 = 1

I This system reduces to x1 = x2 = y1 = y2 = 1/3
I Clearly this solution is feasible, and we have

cx = 2/3 = yb, so this is the solution!



Strong duality
I But do saddle points exist???

I Say that (P) is feasible if there exists x ≥ 0 with Ax ≤ b

I Moreover, (P) is unbounded if for any M > 0, there
exists a feasible x with cx > M

I We extend these definitions in the obvious way to (D)

Theorem (Strong duality)
Given an LP problem (A, b, c), exactly one of the following is
true:

(i) Both (P) and (D) are feasible and a saddle point exists; a
fortiori, the programs have the same value;

(ii) At least one of (P) and (D) is infeasible, and the other
program is infeasible or unbounded

I NB True in any ordered field!!! Don’t need
compactness/continuity for the existence of optima



Examples for case (ii)
I Consider the LP

max
x1≥0,x2≥0

c1x1 + c2x2

s.t. x1 − x2 ≤ − 1

− x1 + x2 ≤ − 1

I Clearly infeasible, because

x1 − x2 ≤ −1 =⇒ − x1 + x2 ≥ 1

I The dual is

min
y1≥0,y2≥0

−y1 − y2

s.t. y1 − y2 ≥ c1

− y1 + y2 ≥ c2

I With c1 = c2 = 0, the dual is unbounded (take y1 = y2 ≥ 0
arbitrarily large)

I With c1 = c2 = 1, the dual is infeasible!



Why is strong duality important?

I In the words of Aeschylus, as Prometheus explains how he
angered Zeus, so that he was punished by being chained
to the rock in the Caucasus:

prometheus: Yes, I caused mortals to cease foreseeing
their doom.

chorus: Of what sort was the cure that you found for
this affliction?

prometheus: I caused blind hopes to dwell within
their breasts.

chorus: A great benefit was this you gave to mortals.

I An approach to solving LP problems is to find a saddle
point; this can be hard to do in general, and there is no
guarantee that a search will be successful

I But strong duality gives us a blind hope that we can
succeed, so that it is worth looking!



Farkas’ Lemma

I We will prove the strong duality theorem via Farkas’
lemma:

Lemma (Farkas)
Given A ∈ Fm×n and b ∈ Fm, exactly one of the following is
true:

(i) There exists x ∈ Fn, x ≥ 0, such that Ax = b;

(ii) There exists y ∈ Fm such that yA ≥ 0 and yb < 0



Interpretation and proof

I Either b is in the positive convex cone generated by the
columns of A, or else there is a hyperplane that separates
the columns of A from b

A1

A2
b

A1x1

A2x2

(a) A1x1 + A2x2 = b has a
solution.

A1

A2

b

y

(b) ([A1 A2], b) is separated by y .



Proof of Farkas (1)

I First, at most one alternative can hold: If Ax = b, x ≥ 0,
and yA ≥ 0, then 0 ≤ yAx = yb, so that yb 6< 0

I Now, we prove that ¬(i) implies (ii), by induction on the
number of columns (following Tucker (1956) or Gale
(1960))

I If n = 0, then there are no columns, variables, and
Ax = b can hold iff b = 0; so if (i) does not hold, then
b 6= 0, and we can take y = −b, and hence
yb = −bb < 0
(and trivially yA = 0 because there is nothing to sum)



Proof of Farkas (2)

I Now the inductive step: Suppose Farkas holds for n′ < n

I Let A′ be the first n − 1 columns of A; then exactly one
of the following holds:

(i′) There is an x ′ ≥ 0 such that A′x ′ = b;
(ii′) There is a y ′ such that y ′A ≥ 0 y ′b < 0

I If (i′) holds, then so does (i), taking xi = x ′i for i < n and
xn = 0, so we must be in case (ii′)

I If y ′An ≥ 0, then (ii) holds, and we are done

I So the remaining thorny case is if (ii′) holds but
y ′An < 0...



Proof of Farkas (3)
I High level idea: Project onto the subspace orthogonal to

y , and then apply Farkas again

I We can always use An to “walk” to the level of b; the
question is whether we can reach b using the other
columns, in the subspace orthogonal to y ′

A1

A2

A3

b

y ′

(a) Before projecting.

b

y ′

b̂

Â1
Â2

(b) And after.



Proof of Farkas (4)
I Define the projected Â and b̂:

Âi = Ai − y ′Aj

y ′An
An, b̂ = b − y ′b

y ′An
An

(net off from each vector how far we need to walk in the
direction An to correct the level in the direction y ′)

I Now apply Farkas to (Â, b̂), and we have two cases:

(i′′) There exists x̂ with Âx̂ = b̂
Then take xi = x̂i for i < n and
xn =

(
y ′b −

∑
i<n y

′Ai x̂ − i
)
/(y ′An), so that

Ax =
∑
i<n

Ai x̂i + An(y ′b −
∑
i<n

y ′Ai x̂i )/(y ′An)

= Âx̂ + Any ′b/(y ′An)

= b̂ + Any ′b/(y ′An) = b

and (i) holds, a contradiction



Proof of Farkas (5)
(ii′′) There exists ŷ with ŷ Â ≥ 0, ŷ b̂ < 0
I In this case, let

y = ŷ − y ′
ŷAn

y ′An

I This new direction strictly separates the component
orthogonal to An:

yAn = ŷAn − y ′An ŷA
n

y ′An
= 0

I Moreover,

yAi = ŷAi − y ′Ai ŷA
n

y ′An
= ŷ Âi ≥ 0 ∀i < n

yb = ŷb − y ′b
ŷAn

y ′An
= ŷ b̂ < 0

so that (ii) holds, as desired �



Alternate form of Farkas
I I like the version of Farkas just introduced because it has a

natural geometric interpretation

I There are many ways to rearrange the Farkas alternative, and
here is one that will be immediately useful:

Lemma
Given (A, b), exactly one of the following holds:

(i) There exists x ≥ 0 such that Ax ≤ b;
(ii) There is a y ≥ 0 such that yA ≥ 0 and yb < 0

I Proof: Let z ∈ Rm, I is the n× n identity matrix, then Farkas
applied to ([A I ], b) implies exactly one of the following is
true

(i’) There exist x , z ≥ 0 and [A I ](x , z) = b; or
(ii’) There exist y s.t. yb < 0 and y [A I ] ≥ 0

I In case (i′), we have x ≥ 0 and Ax ≤ b, and in case (ii′), we
have yA ≥ 0, y ≥ 0, yb < 0 �

I z are sometimes called slack variables



Another interpretation of Farkas
I The feasibility of x ≥ 0 and Ax ≤ b is decidable via a finite

procedure, as shown by Fourier-Motzkin elimination:
I Pick a variable, say x1; every equation involving x1 can

be rearranged to either x1 ≤ a(x2, . . . , xn) + b or
x1 ≥ a(x2, . . . , xn) + b; call these class L and class G

I Now replace x1 with more inequalities, of the form

a(x2, . . . , xn) + b ≤ a′(x2, . . . , xn) + b′

for every (a, b) in class G and (a′, b′) in class L (where
x1 ≥ 0 is in class G); clearly, this new system is feasible
iff the original system is feasible

I Repeat to replace x2, x3, etc with more inequalities
I After n steps, every variable is eliminated, and we are left

with a (very large but) finite collection of inequalities, to tell
us if the original system is feasible

I If it is feasible, one can work backwards to find a feasible
solution to the original system, and otherwise there is a
procedure to find the unbounded direction



Proof of Strong Duality (1)

I There is a saddle point iff there exist x , y ≥ 0 s.t.
Ax ≤ b, −yA ≤ −c , and by − cx ≤ 0, or equivalently: A 0

0 −A>
−c> b>

 (x , y) ≥

 b
−c
0


I If no saddle point exists, then (inequality) Farkas implies

that there exist x̂ , ŷ , ẑ ≥ 0 of lengths m, n, and 1, s.t.

(ŷ , x̂ , ẑ)

 A 0
0 −A>
−c b

 ≥ 0, (ŷ , x̂ , ẑ)

 b>

−c>
0

 < 0

i.e., ŷA− cẑ ≥ 0, ẑb − Ax̂ ≥ 0, and ŷb − x̂c < 0

I Observe that 0 = ŷAx̂ − ŷAx̂ ≤ ẑ(ŷb− x̂c) ≤ 0, so ẑ = 0



Proof of Strong Duality (2)

I Thus, there exist (x̂ , ŷ) s.t. ŷA ≥ 0, Ax̂ ≤ 0, ŷb < x̂c

I Brooks and Reny (2021) refer to such a (x̂ , ŷ) as a
unbounded direction (UD) for the LP problem

I We will prove that the existence of a UD implies that one
program is infeasible and the other, if feasible, is
unbounded

I Note that if ŷb ≥ 0, then x̂c > 0, so that at least one of
ŷb < 0 and x̂c > 0 is true



Proof of Strong Duality (3)

I The UD (x̂ , ŷ) satisfies ŷA ≥ 0, Ax̂ ≤ 0, and (ŷb < 0 or
x̂c > 0 or both)

I Suppose ŷb < 0:
I If (P) is feasible, then there is an x ≥ 0 such that

Ax ≤ b; but then ŷAx ≥ 0 and so ŷb ≥ 0, a
contradiction

I Moreover, if (D) is feasible, then there is a y ≥ 0 such
that yA ≥ c ; but then y + tŷ is also feasible for all t ≥ 0
since (y + tŷ)A = yA + tŷA ≥ c , and the corresponding
objective is yb + tŷb, which is unbounded below since
ŷb < 0

I The case where cx̂ > 0 is analogous and is on your
problem set! �



Aside on theorems of the alternative
I There are all sorts of “theorems of the alternative,” e.g.,

Farkas, Tucker, strong duality, minimax

I In my view, LP duality is the most general and easiest to use

I If we take the primal to be maximization, and dual to be
minimization, then there are easy rules to remember for going
back and forth that follow the logic of the envelope theorem:

Primal Dual

max min
xi ≥ 0 yAi ≥ ci
xi free yAi = ci
xi ≤ 0 yAi ≤ ci

Aix ≤ bi yi ≥ 0
Aix = bi yi free
Aix ≥ bi yi ≤ 0

I Many theorems of the alternative can be easily derived as
special cases of strong duality



Lagrangian relaxations
I Suppose that (x , y) is a saddle point

I Consider the alternative LP, for any λ > 0:

max cx s.t. x ≥ 0, λyAx ≤ λyb (R)

I Any x that was feasible for the original LP will also be feasible
for this “relaxation”, so it must have a weakly higher value

I But in fact, the two LPs must have the same value!

I Why? Well, (x , λ−1) is a saddle point: the dual of (R) is

min zλyb s.t. z ≥ 0, zλyA ≥ c

and if we take z = λ−1, then feasibility follows from that of
y , and the value is yb

I What is the bottom line? If we aggregate constraints with
weights that are proportional to the optimal Lagrange
multipliers, then the value of the program remains the same;
this elementary observation will be useful to us in the sequel



Solving LPs numerically

I An important feature of LPs (and a recurring theme of
this lecture) is that it is relatively easy to verify a solution
by exhibiting a saddle point

I An important strategy for finding a saddle point is to
simply compute it numerically, and then analytically
describe the solution

I We will discuss how to do this repeatedly in this course!

I Fortunately, there are now numerous high quality
methods and implementations for solving LPs, which you
are putting to good use on your problem set

I It is useful to talk in a bit more detail about how these
algorithms work, so you can interpret the solution



Basic solutions

I The oldest and one of the best methods for solving LPs is
the simplex algorithm, due to Dantzig, which finds a
basic solution

I For this discussion, it is useful to formulate the LP as

max cx s.t. x ≥ 0,Ax = b

I A basic solution of an LP is one for which we select a
subset of the variables to be non-zero, and there is a
unique solution to the corresponding subsystem

I In particular, fix a basis I ⊆ {1, . . . , n}, and let AI be the
matrix consisting of columns in I

I If AI is full rank, then the system AIxI = b has a unique
solution where only variables xi for i ∈ I are non-zero

I We refer to this as the basic solution corresponding to I



Sufficiency of basic solutions

I If an optimum exists, then there’s a basic optimal solution
(Follows from a similar logic as Caratheodory’s theorem)

I Why? Let x be optimal and has a minimal number of
positive entries (among optimal solutions)

I Suppose the coordinates xi for i ∈ I are strictly positive

I If x is not basic, then there is another x ′ ≥ 0 such that
Ax ′ = b, x ′ 6= x , and x ′i > 0 only if xi > 0

I Notice that x̂ = x + t(x ′ − x) also satisfies Ax̂ = b, and
for t small, x̂ ≥ 0
I cx ′ 6= cx , then x̂ will be a strict improvement for t 6= 0

small, contradicting optimality of x
I Thus, cx ′ = cx ; but then x̂ is also optimal for t small;

we can move in some direction until some coefficient
hits zero (because x 6= x ′), which contradicts x having
the fewest number of positive coordinates



The combinatorial natural of solutions & simplex

algorithm

I Equivalently: Basic solutions are extreme points of the
feasible set; since the objective is linear, there is an
extreme point which is optimal

I The problem of finding an optimal basic solution is
combinatorial, since we have to search through the
(finitely) many bases

I The simplex algorithm operates by iterative “pivoting”
between bases until an optimum is found:
I Start from some incumbent basic feasible solution
I Adding a new variable to the basis that increases the

objective, drive out some existing variable
I Repeat until an optimum is reached



Pivoting

I Take some xi not currently in the basis, so xi = 0

I We “introduce” xi by making it positive, and adjusting all
other variables to maintain feasibility:

AIxI + Aixi = b ⇐⇒ xI = (AI )−1(b − Aixi)

I As xi increases, either some variable j ∈ I eventually hits
zero (and we’ve reached a new basic solution with basis
I ∪ {i} \ {j}), or the solution can increase without bound
(in case we are moving along an extreme ray of the
feasible set)



Reduced costs

I But what is the effect on the objective?

I The objective as a function of the entering variable xi is

cIxI + cixi = cI (A
I )−1b + (ci − cI (A

I )−1Ai︸ ︷︷ ︸
≡ri

)xi

I The quantity ri is the reduced cost for variable i

I The simplex algorithm operates by iteratively introducing
a new variable into the basis for which ri > 0

I Provided the LP is feasible, this procedure will either
converge in finitely many steps to an optimum, or it will
identify an unbounded ray

I The reason is that there are only finitely many basic
solutions, and at every iteration, the value must strictly
increase



Cold starting the simplex algorithm

I But where does the pivoting procedure start? How do you
find an initial basic feasible solution?

I The most straightforward approach is to just add variables
to the LP, so that it becomes Ax + y − z = b, where y
and z are non-negative but otherwise unconstrained

I This LP is always feasible with x = 0 and y − z = b

I Then solve a first stage LP where the objective is to
minimize Σy + Σz

I This “drives out” the artificial variables y and z , and the
original LP is feasible iff the optimal value of the first
stage is zero, and the optimum corresponds to a feasible
solution to the original LP



Degeneracy

I This discussion presumes that the solution to AIxI = b
has all variables strictly positive, so that there is a
one-to-one mapping between basic solutions and bases

I If this is the case, the LP is non-degenerate

I If the LP is degenerate, then there can be more than one
basis corresponding to a given basic solution, and the
pivoting procedure can lead to cycling

I Fortunately, various methods have been developed to
address degeneracy, including introducing and removing
perturbations to the coefficients, so this is not an issue
we really need to worry about



Drawbacks of the simplex method

I Simplex is incredibly powerful and often quite fast

I Also, the combinatorial structure of basic solutions is
convenient if, for example, you want to resolve the
problem with a different objective

I But it has two irritating attributes:

(i) It is very slow on certain kinds of optimization problems;
in particular, the worst-case runtime is exponential in the
size of the problem

(ii) More importantly for our purposes, simplex finds an
optimal basic solution, meaning that if there are multiple
optimal solutions, it will force variables to be zero (in a
somewhat arbitrary way) to pin down an optimal basis;
this can obscure the essential structure of the solution,
meaning, which variables have to be zero in an optimal
solution



Interior point methods

I As an alternative, there are various “interior point” or
“barrier” methods for solving LPs

I Basic idea: transform the optimization problem with
constraints into an unconstrained optimization problem,
by replacing the constraints with a penalty:

max
x≥0

cx + µ
∑
i

log
(
bi − Aix

)
I Starting with a large µ, we iteratively take a step of an

unconstrained optimization algorithm (e.g., some form of
gradient descent or Newton’s method), and then decrease
the penalty µ

I As long as µ→ 0, this method will converge to an
optimal solution of the original problem



Advantages of the interior point
I It was famously shown by Karmarkar that the interior-point

algorithm runs in polynomial time (as a function of the size of
the problem in bits and the error in the approximation) and is
often efficient in practice
(Ellipsoid algorithm was previously known to be polynomial
but is inefficient in practice)

I (Aside: It is unknown whether there are strongly polynomial
time algorithms for LPs, meaning that runtime is polynomial
in the dimension (m, n), although the answer is yes for certain
LPs, e.g., the transportation problem)

I Also, because the sequence approaches the optimum from
inside the feasible set, it does not necessarily result in as
many binding constraints as does the simplex algorithm (and
in my experience it will result in many fewer binding
constraints)

I This is important, because what we really want to know is:
Which variables have to be zero and which constraints have
to hold as equalities



Implementation and practical considerations

I On your problem set, I have asked you to use Python and
Gurobi to solve LPs numerically, and plot the solutions

I Gurobi by default will solve an LP using a variety of
algorithms

I It also solves both primal and dual simultaneously, so that
we can verify how far we are from a solution

I Gurobi (and other commercial LP solvers like CPLEX)
will also “cross over” from barrier to simplex

I I generally force Gurobi to use barrier and turn off the
crossover

I Of course, solving the LP is only one half of the task; the
other is visualizing the solution and extracting useful
information about the optimal basis and the functional
form of the saddle point



Simulation and approximation
I For small LPs, the software will often do a very convincing

job of finding an exact optimum (as in our toy example)

I For larger LPs, it gets a bit murkier; computers have
limited numerical precision (on the order of 2−52 10−15 for
many modern 64 bit computers)

I This is not as hard to approach as you might think,
especially when using discrete models as an
approximation of continuous ones

I Programs like Gurobi judge whether complementary
slackness is satisfied up to some numerical tolerance

I So, when interpreting the solution, you may need to
remember that the algorithm cannot solve the program
exactly, and especially when extrapolating to continuous
models, you will have to make some conceptual leaps
about the form of the solution



Rest of the course
I We will now go on a journey through several topics in

information economics, game theory, and mechanism
design, largely relying on tools from linear programming

I For the models we consider, there are accompanying
problem sets written in Python, in which you will
“simulate” the model, and connect the numerical results
in the simulation to the theoretical results and arguments
in lecture

I For your final project, you will propose a new model,
most likely in mechanism design or robust predictions

I You will have to write code to simulate the model and
guess the analytical structure of the solution

I The last couple of weeks of the course will be in-class
presentations of your preliminary findings

I My goal is to help you get started on a research project!


