
ECON 289, Lecture 2
Epistemic game theory

(or, How I learned to stop worrying
and love the common prior)

Instructor: Ben Brooks

Spring, 2023



Modeling decision-making under uncertainty

I Consider a decision maker choosing some alternative a ∈ A

I The value a depends on some state of the world θ ∈ Θ

I The most widespread and enduring model of such an agent’s
preferences is the subjective expected utility model
(Savage, 1954)

I The agent has
1. A belief φ ∈ ∆(Θ);
2. A utility index u : A×Θ→ R

I Preferences are represented by:∫
θ∈Θ

u(a, θ)φ(dθ)



Modeling strategic decision-making under uncertainty
I In strategic settings, players have preferences over everyone’s actions
I Players i = 1, . . . , n
I Player i has actions Ai , with A =

∏n
i=1 Ai

I Can still model preferences with a belief φi ∈ ∆(Θ) and preferences
ui : A×Θ→ R, and expected utility:∫

θ∈Θ

ui (a, θ)φi (dθ)

I With multiple agents, a new complication:
Can have φi 6= φj , and since ui depends on aj , player i “cares” about
j ’s beliefs, since those determine aj

I To close the model, need to model i ’s beliefs about φj
I Moreover, aj depends on what player j thinks about ai , which

depends on what j thinks about φi , etc
I Leads to an infinite regress in which preferences and strategic

behavior could depend all higher order beliefs
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Conceptual challenges

I One approach: explicitly model the belief hierarchy:
1. Each player i ’s beliefs about θ;
2. Each player i ’s beliefs about others’ beliefs about θ;
3. Beliefs about others’ beliefs about others’ beliefs, etc

I Would be very cumbersome

I Also, it immediately leads to the following issue: Suppose that
each player i is certain that
1. θ = 1;
2. each player j is certain that θ = 0

What will happen?
I The model is incomplete in the sense that the player i in our

model is different from the player i that j thinks they are
playing against

I In particular, the behavior that the analyst imputes for player i
need not coincide with how j expects i to behave
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Harsanyi’s insight

I Harsanyi (1967) proposed a modeling device that addresses
both of these issues:
I Model hierarchies implicitly to avoid the cumbersome notation

of higher order beliefs
I Complete the model, by allowing for multiple types of each

player, as an (implicit) description of every hierarchy of beliefs
that players might impute to one another

I Formally, player i has a type ti in a measurable set Ti

I Each type has a belief πi : Ti → ∆ (Θ× T−i ) where
T−i =

∏
j 6=i Tj

I T = (Θ, {Ti , πi}ni=1) is a type space
(Also referred to as an information structure; types are
sometimes referred to as signals, and Harsanyi called them
“attribute vectors”)
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Completing the model

I Consider the example from two slides ago: Players are certain
that θ = 0 and that everyone else is certain that θ = 1

I How do we model this with a Harsanyi type space?

I Ti = {0, 1} for i = 1, 2
I πi (θ = 1, tj = 0|ti = 1) = 1
I
∑

tj
πi (θ = 0, tj |ti = 0) = 1

I So, ti = 1 corresponds to the types in our original description,
and we have completed the model by adding ti = 0
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From types to beliefs

I NB by construction, the model is “closed”: each type only
assigns positive probability to types of other players that are
part of the type space

I Also, each type implies a particular belief hierarchy
I Why? Recall that πi (ti ) ∈ ∆(Θ× T−i ); the marginal on Θ

gives the first-order belief φ1
i (ti ):

φ1
i (Y |ti ) = πi (Y × T−i |ti ) ∀Y ⊆ Θ

I The second-order belief φ2
i (ti ) ∈ ∆(Θ× (∆(Θ))n−1): For

all Y ⊆ Θ× (∆(Θ)n−1),

φ2
i (Y |ti ) = πi ({(θ, t−i )|(θ, φ1

−i (t−i )) ∈ Y }|ti )

I Inductively, one can define kth order beliefs in this manner
(and we will do so shortly)
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Bayesian games and Bayes Nash equilibrium

I Type spaces are an invaluable modeling tool
I Allow us to model Bayesian games in (agent) normal form:
I Player i ’s strategy is a measurable mapping σi : Ti → ∆(Ai )

I Set of strategies is Σi , strategy profiles Σ =
∏

i Σi

I For σ ∈ Σ, ti ’s utility is

Ui (σ|ti ) =

∫
θ∈Θ,t−i∈T−i

∫
a∈A

ui (a, θ)σ(da|t)πi (d(θ, t−i )|ti )

I σ is a Bayes Nash equilibrium if for all i , ti ∈ Ti , σ′i ∈ Ai

Ui (σ|ti ) ≥ Ui (σ
′
i , σ−i |ti )



Questions about Harsanyi type spaces

I Are Harsanyi type spaces general? Do they implicitly restrict
belief hierarchies?

I Also, predictions depend on the particular type space
I What predictions are consistent with some type space?

(And indeed, Harsanyi’s original proposal was to study games
for all type spaces)

I The union of type spaces is a type space, but is there some
“canonical” largest type space that we could consider?

I Mertens and Zamir (1985) show that Harsanyi type spaces are
general in a sense, in that every belief hierarchy (subject to
mild restrictions) corresponds to a type in some type space

I They also construct a universal type space that “contains”
every type space

I Our exposition is closer to Brandenburger and Dekel (1993)
(We use the Kolmogorov Extension Theorem)
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Explicitly modeling beliefs
I First-order beliefs are probability measures on X0 = Θ, the

measurable set of states
I Second-order beliefs are probability measures on

X1 = X0 × (∆(X0))n−1

i.e., a belief over the state and others’ beliefs about the state

I Third-order beliefs are over

X2 = X1 × (∆(X1))n−1

= X0 × (∆(X0))n−1 ×
(
∆
(
X0 × (∆(X0))n−1))n−1

,

i.e., a belief about
1. The state;
2. Others beliefs’ about the state;
3. Others’ beliefs about (the state and others’ beliefs about the

state)
I Inductively, the k + 1th order belief is on

Xk = Xk−1 × (∆(Xk−1))n−1
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Belief hierarchies

I An element of ∆(Xk−1) is called a kth order belief:
a probability measure over the state and others’ beliefs up to
the k − 1th order

I A belief hierarchy is an element

t = (t1, t2, . . .) ∈
∞∏
k=0

∆(Xk) ≡ T 0

I The Xk ’s and T 0 inherit “nice” properties of Θ

I E.g., if Θ is complete/separable/metric/compact
=⇒ Xk ’s and T 0 are complete/separable/metric/compact
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Interpretation as a stochastic process
I Consider the product

Θ× (T0)n−1

= Θ× (∆(X0)×∆(X1)× . . . )n−1

= X0 ×∆(X0)n−1︸ ︷︷ ︸
≡X1

×∆(X1)n−1

︸ ︷︷ ︸
≡X2

× · · · ×∆(Xk−1)n−1

︸ ︷︷ ︸
≡Xk

×∆(Xk)n−1 × . . .

I You can think of elements of this product as possible sample
paths of a discrete time process, where
I at period k = 0 we realize a state and
I at k > 0 we realize a profile of kth order beliefs (of other

players)

I The kth order belief in Xk−1 is a distribution over the first k
elements of this sequence



Consistency

I Thus, a kth order belief tk also specifies lower order beliefs as
well, by taking the marginal on Xk−2, Xk−3, etc

I Clearly, if a hierarchy t = (t1, t2, . . .) is derived from some
type space, then it has to be that the belief at each level is
consistent with the beliefs at lower levels

I In particular, we say that t is consistent if for every k ≥ 2,

marg
Xk−2

tk = tk−1

I Let T 1 ⊂ T 0 denote the consistent belief hierarchies



Beliefs over types from belief hierarchies

Proposition (Consistent beliefs)
There exists a homeomorphism f : T 1 → ∆(Θ× (T 0)n−1).

I In other words, f associates to each type t ∈ T 1 a belief about the
state and others’ types (in T 0), and this mapping is a continuous
bijection and has a continuous inverse

I NB similar to a Harsanyi type space! Consistent hierarchies are
identified with beliefs about the state and others’ hierarchies



Beliefs over types from belief hierarchies

Proposition (Consistent beliefs)
There exists a homeomorphism f : T 1 → ∆(Θ× (T 0)n−1).

I In other words, f associates to each type t ∈ T 1 a belief about the
state and others’ types (in T 0), and this mapping is a continuous
bijection and has a continuous inverse

I NB similar to a Harsanyi type space! Consistent hierarchies are
identified with beliefs about the state and others’ hierarchies



Proof

I Recall, for t ∈ T 1, each tk is an element of

∆(Xk−1) = ∆(X0 ×∆(X0)n−1 ×∆(X1)n−1 × . . .×∆(Xk−2)n−1)

I This is a consistent family of distributions over the first k
realizations of a discrete time stochastic process in
∆(Xk−1)n−1

I In this case, the Kolmogorov extension theorem says that
there is a unique probability measure over sample paths, in T 0,
that has the specified marginals, which we denote by f (t)

I NB this relies on the space Θ being complete and separable,
so that Xk is complete and separable in the weak-∗ topology
(Mertens and Zamir just use compactness; Heifetz and Samet
(1998) give a different non-topological construction)
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Proof, continued

I Now, we need to check that f is a homeomorphism
I It must be one-to-one, because tk = margXk−1

f (t), so if
f (t) = f (t̂), then tk = t̂k for every k , so t = t̂

I Onto follows from defining f −1(t) as these marginals
I Finally, we need to prove continuity: Fix a sequence (tl)

∞
l=0

and t; then

tl → t

⇐⇒ tkl → tk

⇐⇒ tkl = f k(tl)→ f k(t) = tk

⇐⇒ f (tl)→ f (t)

I Hence, both f and its inverse are continuous �



The homeomorphism is “natural”

I Note that f (t) is a distribution over

Θ× (T 0)n−1 = X0 × (∆(X0)×∆(X1)× . . .)n−1

= X0 ×∆(X0)n−1 ×∆(X1)n−1 × . . .

I Thus, for k ≥ 2, f (t) has a marginal over

Xk−1 = X0 ×∆(X0)n−1 × . . .×∆(Xk−2)n−1

I This marginal is exactly tk !
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Commutative diagram

T 1 ∆(Θ× (T 0)N)

∆(Xk)

kth coordinate

f

margXk



Closing the model
I Suppose we define Ti = T 1 and πi (θ, t−i |ti ) = f (ti )(θ, t−i );

Is this a Harsanyi type space?

No!
I Each t ∈ T 1 can be associated with beliefs f (t) about Θ and

others’ hierarchies t−i
I But only guaranteed that t−i ∈ (T 0)n−1 (outside the domain

of the homeomorphism)
I We need to impose common knowledge of consistency
I For k ≥ 2, let

T k =
{
t ∈ T k−1|f (t)(Θ× T k−1) = 1

}
I Let T ∗ = ∩k≥2T

k , and let g denote the restriction of f to T ∗

I The set T ∗ is the universal type space

Proposition (Universal type space)
The function g is a homeomorphism from T ∗ to ∆(Θ× (T ∗)n−1).
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In what sense is the universal type space “universal”?

I Any type space T = (Θ, {Ti , πi}ni=1) can be “naturally”
embedded in T ∗

I Let φ1
i : Ti → X 1 = ∆(Θ) denote player i ’s first-order belief:

for any measurable set Y ⊆ Θ

φ1
i (Y |ti ) = πi (Y × T−i |ti )

I Given embeddings φk−1, we can define the projection

γki (θ, t−i ) = (θ, φ1
−i (t−i ), φ

2
−i (t−i ), . . . , φ

k−1
−i (t−i )) ∈ Xk−1

I kth order belief: for each Y ⊆ Xk−1, let

φki (Y |ti ) = πi ((γki )−1(Y )|ti )

I Then, φi (ti ) = (φ1
i (ti ), φ

2
i (ti ), . . .) embeds Ti into T ∗
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The canonical embedding

I The measure g(φi (ti )) is a distribution over Θ× (T ∗)n−1

I Given embeddings φk−1, we can define the mapping

γ(θ, t−i ) = (θ, φ−i (t−i ))

I g(φi (ti )) is exactly the pushforward measure defined by
πi (ti ) ◦ γ−1

i , i.e., for every measurable Y ⊆ Θ× (T ∗)n−1,

g(φi (ti ))(Y ) = πi (γ
−1
i (Y )|ti )

I In a sense, the belief relationships of types in T are preserved
by their analogues in the universal type space

I Specifically, γ−1
i (Y ) are the states and types in Θ× T−i such

that the corresponding states and hierarchies are in Y

I Probabilities of such sets are pinned down by i ’s belief
hierarchy
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Commutative diagram

Ti T ∗

∆(Θ× T−i ) ∆(Θ× (T ∗)N)

φ

πi g

γ−1



Redundant types

I Importantly, this does not mean that the likelihood of types
t−i only depends on their belief hierarchies

I The reason is that there might be more than one type that
maps into the same belief hierarchy in the universal type space

I As an example, consider a trivial case where Θ = 1 and
T1 = T2 = {0, 1}, and assume that πi (ti |ti ) = 1

I Then all types have the same higher order beliefs, but each
type has different beliefs

I Such “redudant” types could be important for characterizing
behavior under certain solution concepts, e.g., Bayes Nash
equilibrium, since they act as correlation devices
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Example with redundant types

State L, prob 1/2
A B

A (1, 1) (0, 0)
B (0, 0) (1, 1)

State R , prob 1/2
A B

A (0, 0) (1, 1)
B (1, 1) (0, 0)

I T 1:
I Ti = {ti}, πi (θ, tj |ti ) = 1/2
I Common knowledge that both players think both states are

equally likely, and equilibrium payoffs are 1/2
I T 2:

I Ti = {ti , si},
πi (R, sj |ti ) = πi (R, tj |si ) = πi (L, sj |si ) = πi (L, tj |ti ) = 1/2

I Again, common knowledge of no information
I But the types are correlated with the state (they match if

θ = L and mismatch if θ = R
I σi (A|ti ) = σi (B|si ) = 1 is an equilibrium, with payoff of 1!
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Richer type spaces

I Bottom line: Higher order beliefs are not the only strategically
relevant feature of the type space... we will return to this next
week when we study robust predictions

I Ely and Pęski (2006) in fact construct a richer universal type
space, where each type is identified with a hierarchy of higher
order conditional beliefs, i.e., the beliefs that one would have
if they learned others’ types; they showed that this expanded
type is rich enough to pin down rationalizable behavior

I But... this only works for two players, and even conditional
belief hierarchies don’t characterize Nash equilibrium
outcomes, which may depend on the presence of “pure”
correlation devices that are independent of the state
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The meaning of the product topology

I Throughout, we have been using the weak-∗ and product
topologies

I Even though T ∗ is an infinite dimensional vector space, it is
very well-behaved under this topology

I It is well-known that if Z is
complete/separable/metrizable/compact/etc, then so is ∆(Z )

I Moreover, these properties also carry over to the countable
product ∆(Z1)×∆(Z2)× · · · under the product topology

I Thus, if Θ is “nice”, then T ∗ will be nice as well
I More than that, the product topology has a natural

interpretation: convergence of belief hierarchies is equivalent
to convergence of beliefs at every level
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Is this the right topology?

Probably not

I Rubinstein’s “electronic mail game” shows that rationalizable
actions are not lower-hemicontinuous in the product topology

I Two players, “generals” deciding whether to attack
I Binary state of the world θ ∈ {B,G} (good or bad)
I θ = G with probability p < 1/2 (common prior)
I Each player has two actions {R,A} (retreat or attack), with

payoffs being
State B , prob 1− p

R A
R (M,M) (M,−L)
A (−L,M) (0, 0)

State G , prob p
R A

R (0, 0) (0,−L)
A (−L, 0) (M,M)

I Players want to attack iff the state is good, but don’t like
attacking when the other player retreats

I Assume L > M > 0
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Noisy communication

I When the true state is common knowledge, there’s an
equilibrium in which the players fight iff the state is good and
get a payoff M

I Alternative info: player 1 knows the state for sure
I Players communicate back and forth via a “noisy channel,”

parametrized by ε ∈ (0, 1):

I When θ = B, both players receive no messages
I When θ = G , player 1 gets a message that the state is G
I Player 1 then sends a message to player 2 that is lost with

probability ε
I Conditional on receiving a message, player 2 sends back a

“confirmation,” that gets lost with prob ε
I Player 1’s confirmation of the confirmation is lost with prob ε,

etc.
I Communication ends when a message gets lost
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Type distribution

Θ t1 t2 Prob
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Notation for types

I A player’s type is the number of messages they receive
I If you have received ti > 0 messages, then

I You are sure that θ = G ;
I You are sure that the other player is sure that θ = G
I You are sure that the other player is sure that you are sure

that θ = G

I
...

I ×ti
I As ti →∞, beliefs converge pointwise to common knowledge

that θ = G



Unraveling

Proposition
R is the unique rationalizable action for all types.

I Thus, no matter how “close” beliefs get to common knowledge
of the state in the product topology, they can never rationalize
attacking

I More precisely, this is a failure of lower hemicontinuity of the
rationalizable action correspondence



Proof: Base steps

I First, when θ = B , player 1 knows the state is B and has a
strictly dominant strategy to play R

I Next, suppose player 2 does not receive any messages
I This could be because the state is B , which occurs with

probability 1− p > 1/2, or because the state is G and the
message did not get through, which occurs with probability
pε < 1/2

I In ex ante probability units, the payoff from R is (1− p)M,
and the payoff from A is at most

(1− p)(−L) + pεM < pεM

(assuming player 2 attacks whenever they get a message)
I Thus, regardless of ε, the unique best response is R
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Proof: Inductive steps

I Now, suppose player i has received a given positive number of
messages

I There are two possibilities:
I Player j has k messages (received a confirmation for his last

message but didn’t send one back)
I Player j has k − 1 messages (didn’t receive a confirmation)

I The likelihoods are proportional to ε(1− ε) and ε, respectively

I Suppose inductively that player j retreats when they have k − 1
messages

I Player i ’s payoff from R is 0, but the payoff from A is at most what
they get if player j attacks for sure after k messages:

(−L)ε+ Mε(1− ε) < 0

(since L > M) �
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I Player i ’s payoff from R is 0, but the payoff from A is at most what

they get if player j attacks for sure after k messages:

(−L)ε+ Mε(1− ε) < 0

(since L > M) �



What is the right topology?

I This is an ongoing debate; there is broad agreement that
nearby types should have similar behavior under natural
solution concepts

I Dekel, Fudenberg, and Morris (DFM) (2006) define a
“strategic topology”, which formalizes this idea

I Chen et. al (2010) define what they call a “uniform weak
topology” that is slightly coarser than the DFM topology, but
does not make explicit reference to games

I These guys also have a more recent paper that evidently closes
the gap with DFM’s topology, again without explicit reference
to games

I Related to a “box topology” on belief hierarchies



The common prior assumption

I In the early days of von Neumann and Morgenstern (1944) and
Luce and Raiffa (1957), they analyzed games with uncertainty
using an extensive form, where chance moves at the beginning
of the game according to commonly agreed probabilities, and
private information is captured by players’ information sets

I Importantly, we model a prior stage before the players have
their private information, and where all the players agree on the
distribution over states that will determine payoffs and types

I Card games, e.g., poker, fall into this class, where the players
agree about the distribution of orders of cards in the deck,
before it has been shuffled and the cards have been dealt

I Games like this have the feature that differences in beliefs
are only due to differences in information

I We would now say that information that is derived in this
manner satisfies the common prior assumption



Common priors

I Formally, fix a type space T = (Θ, {Ti , πi}ni=1) such that Ti is
finite for all i

I T satisfies the common prior assumption (CPA) if there
exist π ∈ ∆(Θ× T ) and λi : Ti → R++ for all i such that

π(θ, t) = λi (ti )πi (t−i , θ|ti )

I NB Harsanyi referred to common prior types as “consistent”,
which is how we have referred to belief hierarchies in T0
(following Mertens and Zamir; Brandenburger and Dekel call
types in T0 “coherent”)



Aside on terminology

I In the language of von Neumann and Morgenstern (1944) and Luce
and Raiffa (1957), “complete information” seems to refer to any
game theoretic model in which the description of players’
information is complete, as in poker, whereas “incomplete
information” refers to a model which is not fully specified, as when
the players’ belief hierarchies are not belief-closed

I vNM and LR separately make the distinction between perfect and
imperfect information in extensive forms, where the former simply
means that each information set consists of a single history; in such
games, players are fully informed of the history of play, and
information is trivial

I Harsanyi changed this terminology so that incomplete information
refers to any setting in which players have higher order uncertainty,
and “complete information” is synonymous with the CPA

I Today, incomplete vs complete usually refers to whether or not
there is non-trivial higher order uncertainty, and incomplete
information includes common prior and non-common prior beliefs



Implications of the CPA: Correlated equilibrium

I Let’s explore the implications of the CPA regarding predictions
for behavior

I Aumann (1987): foundations of correlated equilibrium
I He uses a formalism that is distinct from the type space, that

is sometimes referred to as an epistemic model
I Let Ω be a (finite) set of states, and let Pi be a partition of Ω

for each player i
I We interpret Pi as the “events” that player i can distinguish

(replaces the type ti in the Harsanyi model)
I Agent i has a subjective belief ρi ∈ ∆(Ω)

I There is a common prior if ρ1 = ρ2 = · · · = ρn



The game form

I In addition, we assume that the players take actions that are
part of the description of the world

I Let Ai be a (finite) set of actions for each player, with
A =

∏n
i=1 Ai

I There is a mapping αi : Ω→ Ai which says which action is
taken in which state, and is measurable with respect to Pi

(so players know their own actions)
I ui : A→ R is player i ’s payoff function
I We say that an agent is rational at ω if for all ai ∈ Ai

E[ui (α(ω′))|Pi ](ω) ≥ E[ui (ai , α−i (ω
′))|Pi ](ω)

Interpretation: αi (ω) is a best response to player i ’s beliefs
about α−i (ω) at ω



Connection to Harsanyi’s model

I For some purposes, it is equivalent to the Harsanyi model, if
we take Ω = Θ× T and Pi = {Θ× {ti} × T−i |ti ∈ Ti}

I Can always pick ρi (ω) for each agent so that πi (θ, t−i |ti ) is
the posterior given ti (any weighted average of the πi ’s)

I A key difference with the Harsanyi model is that the state ω
determines everything, including players information, and also
“endogenous” outcomes like actions



Reduced form descriptions of behavior
I The epistemic model contains lots of information, but we

might more simply be interested in a reduced form description
of rational behavior

I A natural question is what are the distributions of α(ω) that
could arise from some epistemic model where players are
rational?

I But this immediately begs the question: distribution from
whose perspective?

I If there is a common prior, however, then the players all agree
about the distribution of ω, and we can assess the action
distribution from this vantage point

I In particular, an epistemic model with a common prior induces
a distribution µ ∈ ∆(A), which is just the distribution of α(ω):

µ(a) =
∑

{ω|α(ω)=a}

ρ(ω)



Necessary conditions from rationality
I Can any µ be induced by some common prior epistemic model in

which players are rational?

No! Obviously players cannot take
strictly dominated actions at any state of the world

I Indeed, we can manipulate the expression for rationality to get a
simple necessary condition on µ

I Fix an action ai
I By measurability, α−1

i (ai ) is a union of elements of Pi

I For any Pi ∈ Pi with ⊆ α−1
i (ai ), rationality says that at any ω ∈ Pi ,

the following is maximized at a′i = ai :

E[ui (a
′
i , α−i (ω

′))|Pi ](ω) =
1

ρ(Pi )

∑
ω′∈Pi

ρ(ω′)ui (a
′
i , α−i (ω

′))

I Summing over all Pi ∈ α−1
i (ai ), with weights ρ(Pi ), we find that

a′i = ai maximizes∑
{ω′|αi (ω′)=ai}

ρ(ω′)ui (a
′
i , α−i (ω

′)) =
∑
a−i

ui (a
′
i , , a−i )

∑
{ω′|α(ω′)=(ai ,a−i )}

ρ(ω′)

=
∑
a−i

ui (a
′
i , , a−i )µ(ai , a−i )
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Correlated equilibrium

I More broadly, we say that µ ∈ ∆(A) is a correlated
equilibrium if for all i , ai , and a′i ,∑

a−i

µ(ai , a−i )(ui (ai , a−i )− ui (a
′
i , a−i )) ≥ 0

I Interpretation: a mediator secretly recommends actions to
players, according to µ

I The “obedience constraints” represent players’ willingness to
obey their recommendations

I NB Includes all of the Nash equilibria
I NB The joint distribution of actions is allowed to be

correlated, in contrast to mixed-strategy Nash equilibrium,
under which the joint distribution must be independent

I NB Slightly different from Aumann’s definition
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Aumann’s theorem

Theorem
If there is a common prior and if every player is rational at every
state of the world, then the distribution of α(ω) is a correlated
equilibrium.

I Proof: We just did it! �
I Thus, correlated equilibrium is a consequence of having a

common prior over states (where “state” is broad enough to
include the actions that players are using) and common
knowledge of rationality



Strengthening to if and only if

I In fact, we could strengthen to an only if, in the sense that if µ
is a correlated equilibrium, then there is an epistemic model in
which players have a common prior and players are rational at
every state of the world

I How?

Just take Ω = A, Pi = {{ai} × A−i |ai ∈ Ai}, and
ρi = µ!
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Correlated equilibrium: example

I Consider the game BoS:
B S

B (3, 1) (0, 0)
S (0, 0) (1, 3)

I Three Nash equilibria: (B,B), (S , S), and
(3/4B + 1/4S , 1/4B + 3/4S)

I Correlated equilibrium consists of µ(B,B), µ(B,S), µ(S ,B),
µ(S , S) ∈ [0, 1] that sum to 1

I Obedience constraints:
I B to S for player 1: 3µ(B,B) ≥ µ(B,S)
I S to B for player 1: µ(S ,S) ≥ 3µ(S ,B)
I B to S for player 2: µ(B,B) ≥ 3µ(S ,B)
I S to B for player 2: 3µ(S ,S) ≥ µ(B,S)
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How often could players miscoordinate?

I As a little numerical exercise, let us compute the maximum
probability of miscoordination across all correlated equilibria

I This is a linear program!

max
µ≥0

µ(B,S) + µ(S ,B)

s.t. µ(B,S) ≤ 3µ(B,B)

µ(S ,B) ≤ µ(S , S)/3
µ(S ,B) ≤ µ(B,B)/3
µ(B,S) ≤ 3µ(S , S)

µ(B,B) + µ(B,S) + µ(S ,B) + µ(S , S) = 1

I How do we solve it?
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An educated guess
I Obedience can be rewritten

µ(S ,B) + µ(B, S) ≤ (10/3) min{µ(B,B), µ(S ,S)}

I We can guess that this constraint should bind; if not, then we
can decrease µ(B,B) and µ(S ,S) and increase
µ(S ,B) + µ(B,S), while maintaining the total probability

I Moreover, we can guess that µ(B,B) = µ(S , S); if not,
decrease the larger and increase the smaller to make a little
slack in the constraint

I This suggests that the optimal solution satisfies

(10/3)µ(B,B) + µ(B,B) + µ(B,B) = 1
⇐⇒ µ(B,B) = µ(S , S) = 3/16, µ(S ,B) + µ(B/S) = 10/16

I But this can only work if all obedience constraints bind,
meaning that µ(S ,B) = 1/16 and µ(B,S) = 9/16

I This is the outcome in the mixed strategy Nash!



Constructing a saddle point to confirm
I The variables in the dual are

I Non-negative multipliers on obedience constraints α1(B,S),
α1(S ,B), α2(B,S), α2(S ,B)

I A free multiplier λ on the probability constraint

I There are four constraints, one for each primal variable
I The dual is:

min
α≥0,λ

λ

s.t. λ ≥ 3α1(B,S) + α2(S ,B)/3 [µ(B,B)]

λ ≥ α1(S ,B)/3 + 3α2(B, S) [µ(S , S)]

λ ≥ 1− α1(B,S)− α2(S ,B) [µ(S ,B)]

λ ≥ 1− α1(S ,B)− α2(B, S) [µ(B, S)]

I Just need to find a feasible solution such that λ = 10/16, and
all constraints bind

I Obviously works with αi (ai , a
′
i ) = 3/16 for all i , ai , a′i !



Correlated equilibrium and linear programming

I Incidentally, this example illustrates the computational
tractability of correlated equilibria, being the intersection of
finitely many linear inequalities

I In particular, the optimization of a linear objective over
correlated equilibria is a linear program

I On your pset, I will ask you to expand on this exercise and
compute the set of equilibrium payoffs across all correlated
equilibria



Interpretations of the CPA: Prior stage

I What does the CPA mean?
I As we discussed, one view is that, initially, the agents do not

have private information, and they all share the same belief
over states of the world

I Differences in beliefs ex-post are generated by differences in
information, i.e., privately observed types or partition elements

I Importantly, at the prior stage, the distribution of ω and
information partitions are common knowledge

I This makes perfect sense when there really is a prior stage and
there is some physical reason why all players should agree
about probabilities at that stage (e.g., poker)

I But often there isn’t a prior stage or a compelling argument for
probabilities to agree, and then the CPA is more controversial
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Problems with the prior stage

I Gul (1998) articulated some critiques along these lines
I Our axiomatic foundations of beliefs only give us “personal

probabilities”
I At the prior stage, why should agents’ personal probabilities

over Ω necessarily agree? Even in the case of poker, players
could disagree about whether the deck is stacked!

I This seems even more problematic when Ω includes a
description of endogenous features of the world that are only
privately known, e.g., actions taken at each state

I Much stronger than just assuming a common prior over
information!

I Moreover, there often is no actual prior stage, and we only
observe agents once they have their interim beliefs



Interpretations of CPA interim beliefs

I Samet’s (1998) characterization of the CPA:
I For each E ⊆ Ω

I Agent i has a belief pi about the likelihood of E
I Agent j has an expectation pji of pi
I Agent k has an expectation pkji of pji

I The type space satisfies the CPA if and only if, for all E and
for all such sequences of iterated expectations, the sequence of
probabilities converges to the same value

I The limit is the prior probability of E !
I Pretty cool, but it seems no clearer whether this property

should hold



The CPA and no trade

I An alternative characterization of the CPA is interms of
whether risk-neutral agents would strictly prefer to trade

I Different priors would imply that agents would accept bets on
the events about whose probability they disagree

I We do see such betting in prediction markets
I But the fact that such bets are not omnipresent suggests that

violations of the CPA are modest, at least relative to agents’
risk aversion

I We can develop this formally in the risk neutral benchmark,
following Morris (1994)

I (Cf Milgrom and Stokey 1982, who only show sufficiency, in a
world with risk aversion)



Trades

I A trade is a function γ : T ×Θ→ Rn

I It is feasible if for all (t, θ)

n∑
i=1

γi (t, θ) ≤ 0

I It is acceptable if for all i and ti ,∑
t−i ,θ

πi (t−i , θ|ti )γi (ti , t−i , θ) ≥ 0,

with strict inequality for some i and ti
I There is no trade if there does not exist a feasible and

acceptable trade



No trade and common priors

Theorem
There is no trade if and only if T satisfies the CPA.

I We will prove with some helper lemmas from convex duality,
starting with:

Lemma (Farkas’ lemma)
Given A ∈ Rm×n and b ∈ Rm, exactly one of the following is true:
(i) There exists x ∈ Rn such that Ax = b and x ≥ 0
(ii) There exists y ∈ Rm such that yA ≥ 0 and yb < 0
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Variant I

Lemma
Given A ∈ Rm×n and a column j , exactly one of the following is
true:
(i) There exists x ∈ Rn such that x ≥ 0, Ax = 0, and xj > 0
(ii) There exists y ∈ Rm such that yA ≥ 0, with strict inequality

for column j

I Pf. Take an instance of the Farkas alternative where

A′ =

[
A
v

]
, vj = 1, vj ′ = 0, b = (0, . . . , 0, 1)

I Farkas =⇒ exactly one of the following is true:

(i′) There exists x ∈ Rn with A′x = b and x ≥ 0, in which case
Ax = 0 and xj = 1, i.e., (i) holds

(ii′) There exists y ∈ Rm and z ∈ R such that (y , z)b = z < 0,
yA + zv ≥ 0, i.e., yA ≥ 0 and strictly for column j , i.e., (ii)
holds �
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Variant II

Lemma
Given A ∈ Rm×n and a set S of columns, exactly one of the
following is true:
(i) There exists an x ∈ Rn such that x ≥ 0 and Ax = 0 and

xj > 0 for all j ∈ S

(ii) There exists j ∈ S and y ∈ Rm such that yA ≥ 0 for all j , with
strict inequality for column j

I Pf. From Variant I, (ii) implies ¬(i)
I Moreover, from Variant I, if (ii) doesn’t hold, then for each
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Proof of the theorem
I Existence of a trade means that there exist γi : T ×Θ→ R for each

i = 1, . . . , n such that

−
n∑

i=1

γi (t, θ) ≥ 0 ∀(t, θ);∑
t−i ,θ

πi (t−i , θ|ti )γi (ti , t−i , θ) ≥ 0 ∀i , ti

and strict for some ti

I This maps into Variant II case (ii) with rows indexed by
T ×Θ× {1, . . . , n}, columns indexed by (T ×Θ) t (tni=1Ti ), and

S = tiTi

(where γ is the y)
I So, no trade ⇐⇒ Variant II case (i) holds, i.e., there exist

φ̃ : T ×Θ→ R+ and λ̃i : Ti → R++ such that for all (i , t, θ),

λ̃i (ti )πi (t−i , θ|ti )− φ̃(t, θ) = 0

I Then φ̃/
∑

(t,θ) φ̃(t, θ) is a common prior �
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Interpreting the no trade theorem

I No trade relies on (at least) three key assumptions:
1. Common priors
2. Risk neutrality
3. All trades between agents are feasible

I Relaxing any one of these three will break the equivalence
I So, in particular, agents may not want to trade because they

are risk averse or because a trade is infeasible
I But, to the extent that agents are “close” to being risk neutral,

then agents should have common priors over the events based
on which they can trade



But do we use the CPA just at the interim stage?

I The CPA is often much more than an assumption about
interim beliefs:
I It’s the “neutral” perspective with which we evaluate Bayesian

welfare criteria, e.g., revenue in auctions
Harsanyi refers to such an evaluator as a properly informed
observer

I It’s also identified with the empirical distribution that is
measured by an econometrician

I So, the CPA is often paired with one or both of the following
even stronger assumptions:
I the analyst is an extra agent in the model with a single type
I the agents have rational expectations: the common prior

coincides with the empirical distribution of types and states

I In a stationary world, one could imagine that players converge
to a common prior through learning about the long run
distribution of (θ, t), but to my knowledge this has not been
formalized



Other arguments for the CPA

I Following Aumann (1998): the CPA is equivalent to the
hypothetical statement that “if agents had the same
information, they would have the same beliefs”

I Follows from considering counterfactual information P′i = {Ω},
in which the above statement implies that ρi = ρj

I If agents acquire more information, then their beliefs are
updated from that common prior

I Aumann argues that even if we do not observe the prior stage,
it can still a useful abstraction for understanding how beliefs
are formed and a natural benchmark that could lead to
interesting insights about behavior



A more pragmatic view
I There is little to no formal distinction between priors and

preferences; without restricting prior, we could explain any behavior
by assuming that each player puts probability one on a state in
which that behavior is optimal

I As Myerson (2004) writes:
If there is no common prior, then we can only say that these difference
in people’s beliefs are just a fundamental assumption of our model.
But then we must face the question: If we can assume any arbitrary
characteristics for the individuals in our model, then why could we
not explain the surprising behavior even more simply by assuming
that each individual has a payoff function that is maximized by this
behavior? Thus, to avoid such trivialization of the economic problem,
applied theorists have generally limited themselves to models that
satisfy Harsanyi’s consistency assumption.

I Put differently, the profession has coordinated on the (basically
untestable) hypothesis of common priors as a way of disciplining our
models, so that they generate new insights into human behavior

I A general aspiration, though, is to understand better when a
particular insight about behavior truly relies on the CPA, or would
weaker common knowledge assumptions suffice


