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Bayesian games and their limitations

I Harsanyi type spaces and Bayesian games are powerful tools
for analyzing strategic behavior in the presence of (possibly
higher order) uncertainty

I But there are two issues, one technical and one conceptual:

1. Even though we know how to model rich higher order
information, it can be quite challenging to solve for equilibrium,
either numerically or analytically, without strong assumptions

2. Moreover, unlike the actions and the payoffs, which often have
physically observable counterparts, the type space is more
abstract... Which type space is empirically relevant?

I One response to the second issue is to be agnostic about
which is the correct type space... and as we’ll see, this can
also help with the first issue
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Incomplete information correlated equilibrium

I There is an analogy here with correlated equilibrium, which
captures the analyst’s uncertainty about which correlation
devices are available to the players
I Aumann’s theorem says that any behavior that is consistent

with a common prior and common knowledge of rationality is a
correlated equilibrium

I Moreover, correlated equilibrium often ends up being more
tractable than Nash under an arbitrary correlation device, due
to the linearity of the obedience constraints in the joint
distribution of actions

I A natural idea is to adapt correlated equilibrium to games of
incomplete information

I We will operationalize this idea using Bayes correlated
equilibrium (BCE) (Bergemann and Morris, 2013, 2016)

I NB lots of alternative definitions of incomplete info correlated
equilibrium, notably Cotter (1991) and Forges (1993)



Basic environment

I Payoff relevant state θ ∈ Θ

I Players i = 1, . . . , n, actions Ai

I Payoff functions ui : A×Θ→ R
I Fix a common prior Harsanyi type space T = (Θ,T , π)

I Assume all sets are finite



Bayes Nash equilibrium

I Together, (Θ, {Ai}, {ui}) and T constitute a Bayesian game

I Player i ’s strategies are mappings σi : Ti → ∆(Ai )

I Under the strategy profile σ = (σ1, . . . , σn), player i ’s
expected payoff is

Ui (σ) =
∑
θ,t,a

π(θ, t)σ(a|t)ui (a, θ)

I A Bayes Nash equilibrium is a strategy profile σ such that
for all i and σ′i ,

Ui (σ) ≥ Ui (σ
′
i , σ−i )



Implications of rationality in Bayesian games

I Suppose that the agents know their types ti ∈ Ti for sure

I What are the outcomes that are consistent with common
knowledge of rationality and consistent with a common prior
such that the distribution of (θ, t) is π(θ, t)?

I This is equivalent to asking, what are the outcomes that could
arise in a Bayes Nash equilibrium when the players know “at
least as much” as they know under T ?

I For example, in the auction context, maybe θ = (θ1, . . . , θN)
encodes the player’s values, and we want to assume that each
player knows their own value, ti = θi , but we are uncertain
about what else the players might know beyond their own
value



Expansions and outcomes

I An expansion of T = (T , π) is a type space
T ′ = (T × T ′, π′) such that for all t∑

t′

π′(θ, t, t ′) = π(t)

I In other words, T ′ is equivalent to observing T plus the an
extra dimension t ′

I An outcome is just a joint distribution µ over Θ× T × A

I Any type space T ′ that expands T and strategy profile σ on
T ′ induce the outcome given by

µ(θ, t, a) =
∑

{t′|(t,t′)∈T ′}

π′(θ, t, t ′)σ(a|t, t ′)



Bayes correlated equilibrium

I A Bayes correlated equilibrium of (Θ, {Ai}, {ui}, T ) is an
outcome such that

∑
a∈A

µ(θ, t, a) = π(θ, t)

and for all i , ti , ai , and a′i ,∑
θ,t−i ,a−i

µ(θ, (ti , t−i ), (ai , a−i ))(ui (ai , a−i , θ)− ui (a
′
i , a−i , θ)) ≥ 0

I We refer to the first of these as the marginal constraints and
the second as the obedience constraints

I Like with CE, we have an interpretation that a disinterested
mediator sees (θ, t) and can make secret “recommendations”
to the players, and the resulting outcome is a BCE iff it is an
equilibrium for the agents to “obey” the mediator



Bayes correlated equilibrium

I A Bayes correlated equilibrium of (Θ, {Ai}, {ui}, T ) is an
outcome such that ∑

a∈A
µ(θ, t, a) = π(θ, t)

and for all i , ti , ai , and a′i ,∑
θ,t−i ,a−i

µ(θ, (ti , t−i ), (ai , a−i ))(ui (ai , a−i , θ)− ui (a
′
i , a−i , θ)) ≥ 0

I We refer to the first of these as the marginal constraints and
the second as the obedience constraints

I Like with CE, we have an interpretation that a disinterested
mediator sees (θ, t) and can make secret “recommendations”
to the players, and the resulting outcome is a BCE iff it is an
equilibrium for the agents to “obey” the mediator



Bayes correlated equilibrium

I A Bayes correlated equilibrium of (Θ, {Ai}, {ui}, T ) is an
outcome such that ∑

a∈A
µ(θ, t, a) = π(θ, t)

and for all i , ti , ai , and a′i ,∑
θ,t−i ,a−i

µ(θ, (ti , t−i ), (ai , a−i ))(ui (ai , a−i , θ)− ui (a
′
i , a−i , θ)) ≥ 0

I We refer to the first of these as the marginal constraints and
the second as the obedience constraints

I Like with CE, we have an interpretation that a disinterested
mediator sees (θ, t) and can make secret “recommendations”
to the players, and the resulting outcome is a BCE iff it is an
equilibrium for the agents to “obey” the mediator



Bayes correlated equilibrium

I A Bayes correlated equilibrium of (Θ, {Ai}, {ui}, T ) is an
outcome such that ∑

a∈A
µ(θ, t, a) = π(θ, t)

and for all i , ti , ai , and a′i ,∑
θ,t−i ,a−i

µ(θ, (ti , t−i ), (ai , a−i ))(ui (ai , a−i , θ)− ui (a
′
i , a−i , θ)) ≥ 0

I We refer to the first of these as the marginal constraints and
the second as the obedience constraints

I Like with CE, we have an interpretation that a disinterested
mediator sees (θ, t) and can make secret “recommendations”
to the players, and the resulting outcome is a BCE iff it is an
equilibrium for the agents to “obey” the mediator



Epistemic characterization

Theorem
An outcome µ is a BCE of (Θ, {Ai}, {ui}, T ) iff there exists some
expansion T ′ of T and a BNE σ of the game (Θ, {Ai}, {ui}, T ′)
such that µ is induced by T ′ and σ.

I So, BCE are the outcomes that are consistent with rationality
and players knowing T

I That play follows a BCE is a “safe” prediction, that entails
weak assumptions about types, aside from the common prior

I Also, like correlated equilibrium, it is described as the
intersection of a family of linear incentive constraints, which
makes it analytically tractable



Proof: Only if
I First, if µ is a BCE, then we can define the expansion to have

type spaces T ′i = Ti × Ai and prior π′(θ, t, a) = µ(θ, t, a)

I The strategies are the identity mapping, i.e.,

σi (ai |ti , ai ) = 1

I IC follows from the obedience constraint; if player i deviates
to σ′i , then the expected payoff is

∑
θ,t′,a

π′(θ, t, a)σ′i (a
′
i |ti , ai )ui (a′i , a−i , θ)

=
∑

ti ,ai ,a
′
i

σ′i (a
′
i |ti , ai )

∑
θ,t−i ,a−i

µ(θ, (ti , t−i ), (ai , a−i ))ui (a
′
i , a−i , θ)

≤
∑

ti ,ai ,a
′
i

σ′i (a
′
i |ti , ai )

∑
θ,t−i ,a−i

µ(θ, (ti , t−i ), (ai , a−i ))ui (ai , a−i , θ)

= Ui (σ)
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Proof: If
I We simply verify the induced outcome is a BCE:

µ(θ, t, a) =
∑
t′

π′(θ, t, t ′)σ(a|t, t ′)

I Suppose there exists i , ti , ai , a
′
i , such that∑

θ,t−i ,a−i

µ(θ, (ti , t−i ), (ai , a−i ))(ui (ai , a−i , θ)− ui (a
′
i , a−i , θ)) < 0

I Consider the σ′i that plays a′i whenever ti would play ai under σi
I Resulting payoff is

Ui (σ) +
∑

θ,t−i ,t′,a−i

π′(θ, ti , t−i , t
′)σ(ai , a−t |ti , t−i , t ′)(ui (a

′
i , a−i , θ)− ui (a, θ))

= Ui (σ) +
∑

θ,t−i ,a−i

µ(θ, ti , t−i , ai , a−i )(ui (a
′
i , a−i , θ)− ui (a, θ))

> Ui (σ)

which contradicts σ being a BNE �
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A “revelation principle”
I Our original motivation was to make “safe” predictions by

considering the range of outcomes across lots of type spaces
and equilibria

I In particular, suppose we have some welfare function
φ(a, t, θ), and we are interested in the range of possible values

I This is essentially the optimization problem of maximizing∑
a,t,t′,θ

π′(θ, t, t ′)σ(a|t, t ′)φ(a, t, θ)

over all equilibria on expansions (T × T ′, π′) of (T , π)

I This problem looks intractable! The space of expansions is
vast, and characterizing BNE on a given expansion is often
quite demanding

I But, the BCE characterization shows is that it is actually a
finite dimensional LP

I Why? WLOG to optimize the expectation of φ over all BCE...



The BCE LP

I Maximizing a Bayesian objective φ(a, t, θ) over BCE:

max
µ(θ,t,a)≥0

φ(a, t, θ)µ(θ, t, a)

s.t.
∑

θ,t−i ,a−i

µ(θ, ti , t−i , ai , a−i ) (ui (ai , a−i , θ)− ui (a
′
i , a−i , θ)) ≥ 0 ∀i , ai , ti , a′i∑

a

µ(θ, t, a) = π(θ, t) ∀θ, t

I Dual:

min
αi (ti ,ai ,a′i )≥0,λ(θ,t)

∑
θ,t

λ(θ, t)π(θ, t)

s.t. λ(θ, t) ≥ φ(a, t, θ) +
∑
i,a′i

αi (ti , ai , a
′
i )(ui (ai , a−i , θ)− ui (a

′
i , a−i , θ))



Interpreting αi

I The dual variables αi (ti , ai , a
′
i ) are Lagrange multipliers on the

obedience constraints

I As pointed out previously, if we aggregate constraints with
weights proportional to the optimal multipliers, the value of
the objective cannot change

I In this context, such a sum across (ti , ai , a
′
i ) would be∑

ti ,ai ,a′i

αi (ti , ai , a
′
i )µ(θ, ti , t−i , ai , a−i ) (ui (ai , a−i , θ)− ui (a

′
i , a−i , θ)) ≥ 0

I What does this constraint mean?

It corresponds to a
probabilistic deviation in the normal form, where player i
type ti deviates from ai to a′i with prob proportional to αi

I So, in other words, the optimal αi telling us which are the
relevant deviations in the normal form

I We could drop all others without changing the optimal BCE
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Informationally robust predictions and information design

I When we compute extremal BCE, we are “designing”
information to maximize a linear objective

I This is a metaphor for the analyst trying to understand the
range of possible behavior in a given environment

I A more literal interpretation is that there is an actual agent
who knows (θ, t) and can commit to a rule that sends players
private signals

I This is the perspective often taken in the literature on
strategic communication with commitment, e.g., Bayesian
persuasion

I Both interpretations are valid, but for the latter to be
plausible, the information designer has to both have a lot of
commitment power and the ability to implement any
(recommendation) information structure



Application: First-price auctions

I Next we will discuss a rich application of BCE to the study of
first-price auctions/Bertrand competition, based on
Bergemann, Brooks, and Morris (2017)

I n bidders

I Values vi ∈ [v , v ]

I Bidders do not necessarily know anything about the value

I In other words, the base type space T is no info, i.e., |Ti | = 1
for each i

I The bidders compete in a first-price auction:

I Bids bi ∈ R+

I High bidder wins
I Winner pays their bid
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Connection to Bertrand

I We can equivalently interpret the model as one of Bertrand
competition (i.e., a procurement auction)

I Seller ⇐⇒ consumer with unit demand, willingness to pay w

I Bidder ⇐⇒ firm

I Value vi ⇐⇒ cost ci
I Bid bi ⇐⇒ take-it-or-leave-it price pi
I Firm wins if w − pi ≥ max{0} ∪ {w − pj |j 6= i}, ties broken

uniformly

I Winner’s payoff vi − bi ⇐⇒ pi − ci



Historical analysis of the FPA
I Strategic analysis of FPA started with Vickrey (1961) who

studied the symmetric independent-private value model,
where vi are iid draws from a CDF F with pdf f

I Symmetric monotonic pure strategy equilibrium, in which
bi = β(vi ), where β(vi ) = 1

F n−1(vi )

∫ vi
w=v wdF

n−1(w)

I Same (interim) welfare outcome as in second-price auction,
where the high value bidder wins and pays the expected
second-highest value

I To see that this is an equilibrium, note that the bidding
function solves the ODE

β′(w) =
dF n−1(w)

F n−1(w)
(w − β(w))

I If a bidder with value v bids β(w), the resulting surplus is
(v − β(w))F n−1(w), which has derivative

(v − β(w))dF n−1(w)− β′(w)F n−1(w) = (v − w)dF n−1(w),

so that surplus is single-peaked at w = v
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Known solutions of the FPA beyond IPV

I Vickrey also solved some asymmetric examples, revenue
equivalence breaks

I Wilson (1977) who constructed a monotonic pure strategy
equilibrium of the mineral rights model, where there are pure
common values, and bidders’ observe the value plus iid noise

I When values are interdependent (as opposed to private),
bidders must take into account the winner’s curse, i.e.,
adverse selection from winning the auction:
If you win when others’ signals are low, then you will tend to
update downwards about the value from the event that you
win, and must bid less accordingly

I When value/noise distributions are fixed and N →∞, the
bidders compete away their rents

I Both models later generalized by Milgrom and Weber’s (1982)
symmetric affiliated values model

I Equilibria have also been found for a handful of other cases...



Towards a theory with richer information

I The classical literature focused on settings with monotonic
pure strategy equilibria

I This essentially limits us to environments with linearly ordered
types

I In particular, for bidders with higher types to bid more, we in
general need higher types to be associated with
I higher expected values
I higher conditional distributions of others’ types

(so that higher types =⇒ others bidding more aggressively)

I This are strong assumptions... In practice, we would not think
there is necessarily such a tight link between information
about one’s own value and about others information. What
happens if types are multidimensional? Separate information
about own and others’ values? What kinds of behavior could
we be missing?

I To analyze this question, we will study the BCE of the FPA



Common values

I Focus mostly on common values: vi = v ∼ F

I Assume that F has a strictly positive density f (v)

I No reserve price =⇒ Total surplus is

v̂ =

∫ 1

v=0
vf (v)dv

I The split between seller and buyers depends on information

I What is the range of things that might happen?
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Example 1: public information

I Same information: T1 = T2 = · · · = Tn

I η(t|v) = 0 if ti 6= tj for any i and j

I The bidders compete away their rents and simply bid the
interim expectation of their value given the public signal

I Revenue is R = v̂ and Ui = 0
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Example 2: Insider trading

I Engelbrecht-Wiggans, Milgrom, and Weber (1983)
I One bidder is informed:

I T1 = [v , v ]
I |T2| = · · · = |Tn| = 1
I t1 = v with prob 1

I There is an equilibrium in which the informed bidder bids

β(v) =
1

F (v)

∫ v

w=v
w f (w)dw

I Uninformed bidders “simulate” independent draws si from
(F (v))1/(n−1), and bid β(si )

I Interpretation: the high bidder bids as if they are in the two
bidder IPV model, with values drawn from F

I In the aggregate, the uninformed bidders “simulate” a second
value drawn from F , and bid as if it were their true value
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I There is an equilibrium in which the informed bidder bids

β(v) =
1

F (v)

∫ v

w=v
w f (w)dw

I Uninformed bidders “simulate” independent draws si from
(F (v))1/(n−1), and bid β(si )

I Interpretation: the high bidder bids as if they are in the two
bidder IPV model, with values drawn from F

I In the aggregate, the uninformed bidders “simulate” a second
value drawn from F , and bid as if it were their true value



Proof that this is an equilibrium

I That the informed bidder is playing a best response is
immediate

I If an uninformed player bids β(w), they win if they outbid the
other uninformed bidders (which is independent of the value)
and if the true value is less than w

I But when they win, they pay the expected value conditional
on it being less than w , so the net surplus is zero! �

I NB as in IPV, expected revenue is the expected
second-highest of two draws from F , which is strictly below v̂
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Minimum revenue

I These examples show that there is a non-degenerate range of
revenues in the common value FPA

I How low can revenue go? Can R = 0 if there is a common
prior and a Nash equilibrium?

No!

I That could only happen if everyone bids zero and ties, so
bidder surplus is v̂/N

I But then any bidder could deviate to a bid of ε, and earn v̂ − ε
I This suggests that revenue should be bounded away from

zero, because if the bid distribution is too low, then the
temptation to bid higher will be too great:
The probability of winning would increase too fast relative to
the additional cost

I But what is the exact minimum?
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Evidence from simulations

I On your problem set, I asked you to solve for the revenue
minimizing BCE when the common value is standard uniform
and there are two bidders

I In that exercise, you took a large discrete grid of values and
bids

I The solution has a number of distinct features:

1. Minimum expected revenue is ≈ 0.161 when there are 51
values

2. Bids are independent
3. The high bid is perfectly comonotonic with the value
4. The binding obedience constraints are precisely those

associated with upward deviations
5. Moreover, the Lagrange multiplier on the obedience constraint

only depends on the deviation, not the recommendation!

I We will use these key pieces of evidence to reverse engineer
the BCE and the proof of optimality
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Constructing the revenue-minimizing BCE

I From the BCE logic, without loss to take signals equal to
bids, bi iid draws from G , the distribution in the simulation

I But we don’t have to! Indeed, we could draw real signals si
from another distribution G̃ for signals, and then there is a
monotonic bidding function β(si ), and G (β(si )) = G̃ (si ), e.g.,
we could take G̃ to be uniform if we want, and then β = G−1

I Is there a more convenient choice of units?

I The true value is comonotonic with the highest bid, so it’s
monotonic with the highest signal as well, i.e., v = λ(maxi si )
for some non-decreasing λ, and F (λ(maxi si )) = (G̃ (maxi si ))n

I Seems natural to pick units for the signals so that
SOMETHING is simplified... Since we don’t even know G yet,
might as well make λ the identity, in which case G̃ = F 1/n,
and the highest signal equals the highest value

I Then the winning bid is β(maxi si ) = β(v)!
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The winning bid function
I But what is the correct choice of β?

I Well, it must be that bidders are indifferent between following
their equilibrium strategy and all upward deviations

I Consider a bidder of type ti who bids β(si ) for si ≥ ti
I The resulting payoff is

tiF
(N−1)/N(si ) +

∫ si

x=ti

xdF (N−1)/N(x)− β(si )F
(N−1)/N(si )

I Why? Clearly they will win and pay β(si ) if and only if every
other bidder’s type is less than si

I And the value conditional on winning is the maximum of ti
and the highest of the others types

I Bidders are indifferent to upward deviations

⇐⇒ β(si ) = β
i
(si ) ≡

1

F (N−1)/N(x)

∫ si

x=v
xdF (N−1)/N(x)

i.e., the Vickrey equilibrium as if types were private values!
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Minimum expected revenue

I In the uniform case, we would have

β(si ) =
1

s
N−1
N

i

∫ si

x=0
xd(x (N−1)/N) =

N − 1

2N − 1
si

I Since the high signal is uniform (and is equal to the value!)
we get that expected revenue is

R =
1

2

N − 1

2N − 1

I When N = 2, R = 1/6 ≈ 0.167, not far from the numerical
simulation



Interpretation

I Why would this structure minimize expected revenue?

I Well, it exhibits an extreme form of the winner’s curse

I Conditional on one’s own signal being si , all you learn is that
the value is in [si , v ]

I But winning when the signal is si means that the value is
exactly si !

I So, winning is very bad news about the value, so much so
that bidder’s behave as if their signal is the true value, even
though it is only a lower bound

I Still, we have yet to establish that this is in fact minimum
revenue...



A formal result

Theorem
Minimum revenue in the FPA across all BCE is

∫
v β(v)F (dv).

I To proof the theorem, we need to use what we learned about
the optimal Lagrange multipliers, which are positive only for
upward deviations, and depend only on the deviation, not the
recommendation!

I In our unit on linear programming, I observed that if we
aggregate constraints with weights proportional to the
multipliers, the optimal value will not change

I In this case, the simulation is telling us that we can add
together all the constraints that deviate to bi from
recommendations b′i < bi without changing the value

I This corresponds to a uniform upward deviation to bi :
Bid the maximum of your recommendation and bi

I The simulation is telling us to ignore all other deviations!
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Symmetry

I It will be easier to apply these deviations if we first observe
that when minimizing revenue, it is without loss to look at
symmetric BCE

I Why? The obedience constraints are linear, so if µ is the
revenue minimizing BCE, then so is the distribution µ′

obtained by “permuting” the bidders identities, i.e., giving
bidder i ’s recommendation to bidder ξ(i) for some
permutation ξ

I Obviously, the permutation does not change expected
revenue, and by randomizing over all permutations, we obtain
a symmetric revenue-minimizing BCE



Winning bid distributions
I Now, write H(b|v) for the distribution of the winning bid

conditional on the common value v
I We wish to show that the H that minimizes expected revenue

subject to obedience must place probability one on b = β(v)
I Notice that by symmetry, each bidder’s equilibrium surplus

must be

1

N

∫
v

∫
b′

(v − b′)H(db′|v)F (dv)

I Now, what would a bidder’s surplus be from a uniform
deviation up to b? Assuming that there is zero probability of
a tie, it must be∫

v

(
(v − b)H(b|v) +

1

N

∫
b′≥b

(v − b′)H(db′|v)

)
F (dv)

I So, the uniform upward constraint is just that

1

N

∫
v

∫
b′≤b

(v − b′)H(db′|v)F (dv) ≥
∫
v

(v − b)H(b|v)F (dv)



Comonotonicity

1

N

∫
v

∫
b′≤b

(v − b′)H(db′|v)F (dv) ≥
∫
v

(v − b)H(b|v)F (dv)

I We can IBP to get

I So the only piece that depends on the correlation between v and b
is
∫
v
vH(b|v)F (dv)

I Holding H(b) fixed, this term is minimized by making H(b|v) as
large as possible for small v and small for large v , i.e.,

H(b|v) =

{
1 if F (v) ≤ H(b)

0 if F (v) > H(b)

I In other words, v and b should be comonotonic! And put
probability one on β(v) = min{b|H(b) ≥ F (v)}
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The optimal winning bid distribution

I We can rewrite the constraint for a uniform deviation up to
β(v):∫

w≤v
(w − β(v))F (dw) ≤ 1

N

∫
w≤v

(w − β(w))F (dw)

which rearranges to

β(v) ≥ Λ(β)(v) ≡ 1

F (v)

∫
w≤v

(
N − 1

N
w +

1

N
β(w)

)
F (dw)

I Facts:

1. Λ is monotonic
2. Λ is a contraction (in the sup norm) of modulus 1/N
3. β satisfies the uniform upward constraints iff β ≥ Λ(β)



Final step

I So, if β ≥ Λ(β), then by induction, the sequence Λk(β) is
decreasing in k , and therefore also satisfies obedience

I Moreover, by the Banach fixed point theorem, Λk(β) is
converging to the unique fixed point of Λ

I It is straightforward to verify that this fixed point is β

I Thus, β is lower than any other winning bid distribution that
satisfies uniform upward constraints, and hence must be the
revenue minimizing winning bid function �



Robust surplus extraction in the large
I Recall that minimum revenue in the uniform example is

(N − 1)/(4N − 4)

I NB This asymptotes to 1/4, which is less than the total
surplus of 1/2, so bidders still get rents in the limit

I This is also true in the EMW model of proprietary info

I Very different from older positive results of Wilson (1977) and
Milgrom (1979) that show asymptotic full surplus extraction
of the FPA in the mineral rights model

I Begs the question, are there other mechanisms that
asymptotically extract more revenue?

I Du (2018) constructs a sequence of mechanisms that
asymptotically have revenue equal to v̂ , regardless of F

I He similarly uses BCE to construct lower bounds on revenue
for these mechanisms that converges to v̂

I We will return to this topic in our units on robust auction
design



Generalizations

I BBM ’17 generalize to interdependent values, where the
bidders have possible different values (v1, . . . , vn)

I Much of the analysis goes through with the role of the
common value being played by the average of the n− 1 lowest
value, as long as values are exchangeable

I BBM ’17 also look at other objectives:
I Max revenue: Just the expected highest value
I Min welfare: When N = 2 and values are iid, there is a BCE in

which the bidder with the lower value always wins!



Known values

I Thus far, we have consider the case of unknown values,
where each bidder may not know their own value for the good

I What happens with known values, i.e., each bidder knows
(at least) their own value?

I Binary values: vi ∈ {v , v},
I BBM 2021 show that the same techniques can be used to pin

down minimum revenue/maximum bidder surplus
I Dual interpretation: Bertrand competition, unknown number

of firms, as in consumer search a la Varian (1980) and Burdett
and Judd (1983)

I Maximum revenue is now non-trivial (subject to bidders using
weakly undominated strategies)
I Can use techniques of BBM ’15 “The limits of price

discrimination” to characterize maximum revenue



Open questions

I The literature has progressed slowly, mostly under the
Bertrand interpretation

I Minimum revenue/max bidder surplus for asymmetric value
distributions

I Minimum total surplus in general

I Asymmetric objectives (maximizing one bidder’s objective)

I Minimum revenue/max bidder surplus beyond binary values,
and for asymmetric known values



Broader applications

I In your final project for the course, I will ask you to apply
some of the techniques we have explored to a novel problem

I One way to go would be to analyze BCE and robust
predictions in a new game that has not been previously studied

I Game theory is littered with settings involving incomplete
information which may benefit from the informationally robust
perspective

I Beyond FPA/Bertrand competition, there is a host of other
natural problems, including other auction formats, other forms
of competition, investment games, electoral competition,
bargaining, public goods, etc, almost all of which remain
unexplored!

I Part of the challenge is identifying the right set of
assumptions so that the extremal BCE are tractable

I A good rule of thumb is: If the solution is too complicated,
make the model simpler!


