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The mechanism design problem

I Thus far, our models have assumed as a primitive a particular
game form, i.e.,

(i) sets of actions;
(ii) private information of agents;
(iii) preferences over outcomes (realized action profiles) that

depend on private information

I Our question has been: what is “reasonable” (i.e.,
equilibrium) behavior in these environments

I Mechanism design flips the question around

I We start an outcome we want to obtain, and try to engineer a
game form such that this is the outcome

I Underlying premise is that the designer can control outcomes,
but does not know agents’ private information
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The basic mechanism design problem

I Designer i = 0 can choose an outcome x ∈ X

I Payoff relevant state θ ∈ Θ

I Agents i = 1, . . . ,N have private information about Θ
represented by a Harsanyi type space T = ({Ti}, π)

I Agent i ’s preferences are represented by ui : Θ× X → R
I Designer can commit to a mechanism, which is just a game

form consisting of
I Actions Ai for each agent, A =

∏
i>0 Ai

I An outcome function g : A→ ∆(X )

I Agents play an equilibrium of the game where strategies are
σi : Ti → ∆(Ai ) and utility is

Ui (σ, ti ) =
∑

θi ,t−i ,a,x

ui (x , θ)g(x |a)σ(a|t)πi (θ, t−i |ti )
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Implementation theoretic approach

I Designer wants to implement a social choice function
f : T → ∆(X )

I The game (A, g) and equilibrium σ implements f if for all t,

f (t) =
∑
a

σ(a|t)g(a)

I Does there exist a game and equilibrium that implement f ?
(Partial/weak implementation)

I Does there exist a game for which all equilibria implement f ?
(Full/strong implementation)

I Notice that we don’t take a stand on designer’s preferences
over (x , θ), but we are focusing on the implementation of a
particular outcome

I Can also generalize to social choice correspondences
f : T ⇒ ∆(X )
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Bayesian mechanism design

I In Bayesian mechanism design, all of the agents have
subjective expected utility preferences over outcomes

I Rather than specifying the social choice function, the designer
too has preferences over outcomes, given by u0 : X ×Θ→ R

I In addition, we typically assume that T satisfies the common
prior assumption and that the designer is a “properly informed
observer” in the sense of Harsanyi, i.e., the designer evaluates
welfare according to the common prior π ∈ ∆(Θ× T ), i.e.,

U0(σ, ti ) =
∑
θ,t,a,x

u0(x , θ)g(x |a)σ(a|t)π(θ, t)

I The objective is to identify mechanisms whose equilibrium
outcomes are preferred by the designer

I NB we are adopting a “partial implementation” approach:
The designer can pick both the mechanism and the
equilibrium!
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Participation constraints

I In many settings, it is natural to add further constraints on
the mechanism designer, reflecting the option of agents to not
participate in the mechanism

I In particular, we can model each agent as having an outside
option ui (θ)

I In that case, we may further want to restrict attention to
mechanisms and equilibria that satisfy interim participation
constraints (also called interim individual rationality)

Ui (σ, ti ) ≥
∑
θ,t−i

ui (θ)πi (θ, t−i |ti )

I This is the form of participation constraint that we will most
often consider

I Depending on context, we may also want to consider other
participation constraints, e.g., ex post: ui (x , θ) ≥ ui (θ) for all
outcomes that arise with positive probability
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The revelation principle

I Finding a single equilibrium for a given type space and
mechanism can be a monumental task

I How do we search through the vast space of all mechanisms
and equilibria to find the best one for the designer?

I Fortunately, we can simplify the problem with using the
celebrated revelation principle, which says that it is without
loss to restrict attention to a relatively small class of
mechanisms and equilibria

I In fact, the Bayesian implementation problem can be reduced
to a linear program

I NB analogy with BCE/information design
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Direct (revelation) mechanisms

I A direct (revelation) mechanism is one in which Ai = Ti ,
i.e., actions are identified with “reports” of a type

I The truthful strategies are such that σi (ti |ti ) = 1, i.e., each
agent reports their true signal to the mechanism

I The direct mechanism is (interim) incentive compatible
(IC) if the truthful strategies are an equilibrium

I The direct mechanism is (interim) individually rational (IR)
if the truthful strategies satisfy the (interim) participation
constraints

Theorem
For any mechanism (A, g) and equilibrium σ, there is an IC direct
mechanism for which the truthful equilibrium induces the same
interim utilities for the agents and the same payoff for the designer.
If (A, g) and σ satisfy the participation constraints, then the direct
mechanism can also be taken to satisfy IR.
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Proof of the revelation principle
I Just take g ′(t) =

∑
a g(a)σ(a|t), i.e., agents report their types and

then the mechanism “plays” σ in (A, g) on the agents’ behalf
I Clearly,∑

θ,t,a,x

u0(x , θ)g(x |a)σ(a|t)π(θ, t) =
∑
θ,t,x

u0(x , θ)g ′(x |t)π(θ, t)

∑
θ,t−i ,a,x

ui (x , θ)g(x |a)σ(a|t)πi (θ, t−i |ti ) =
∑
θ,t−i ,x

u0(x , θ)g ′(x |t)πi (θ, t−i |ti )

so IR will be satisfied if σ satisfies participation

I If IC is violated, then there is some i , ti , t
′
i such that∑

θ,t−i ,x

ui (x , θ)(g ′(x |t ′i , t−i )− g ′(x |ti , t−i ))πi (θ, t−i |ti ) > 0

I But then∑
θ,t−i ,a,x

ui (x , θ)g(x |a)(σ(a|t ′i , t−i )− σ(a|ti , t−i ))πi (θ, t−i |ti ) > 0,

i.e., agent i would strictly benefit when type ti from playing σi (t
′
i )

rather σi (ti ) in (A, g), which contradicts that σ is an equilibrium
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Revelation principles
I There is a strong parallel between information design and

mechanism design:
I MD: Fix a type space (T , π). For any mechanism (A, g) and

equilibrium σ, there is a direct “revelation” mechanism (T , g ′)
and truthful equilibrium that induces the same outcome.

I ID: Fix a game form (A, g). For any type space (T , π) and
equilibrium σ, there is a “direct recommendation” type space
(A, π′) and obedient equilibrium that induce the same
outcome.

I (For either problem, we can throw in participation constraints
without conceptual difficulty, and we have done so for MD)

I So, we can either normalize actions to be types or types to be
actions, depending on which one we treat as a primitive, and take
strategies to be truthful/obedient

I Indeed, Myerson (1986) “Multistage games with communication”
combines both RPs, in the context of a designer who can alternately
elicit private information and privately recommend actions

I We will return to the parallels between information and mechanism
design later in the course...
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“The revelation principle holds!”

I People often say this casually, and then restrict attention to direct
mechanisms/type spaces

I What are they actually assuming for the RP to hold? Two things:

1. The designer has available a rich space of mechanisms/type
spaces that includes the direct ones

2. The designer can choose which equilibrium will be played

I Importantly, switching to the direct mechanism/information will
generally change the set of equilibrium outcomes

I Simple example...

I So, the RP does not apply when the designer is restricted in their
choices or we care about the set of equilibrium outcomes
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Are we interested in direct mechanisms?
I All of this puts the type space and mechanism on equal footing

I But their conceptual basis is very different:
I The mechanism often has a clear physical counterpart:

When bidding in an auction, you actually do submit a bid, and
there are clear rules about winning and payments

I In some cases, like poker, there is a physical type, but more
often the type is a highly abstract as-if description of how
higher order uncertainty affects behavior, and to the extent
that it exists, it is only in the mind of the agent
Moreover, we often rely on untestable hypotheses about types,
e.g., the CPA

I So, an inherent fragility of direct mechanisms is their dependence on
a particular artificial language for describing players’ knowledge

(NB: This isn’t resolved by eliciting belief hierarchies in the UTS!)

I In many (most?) cases, direct mechanisms should be viewed as an
analytical shortcut for identifying optimal outcomes

I After solving the MD problem, we should immediately pivot to the
question of whether there are more natural “indirect” solutions
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The mechanism design LP

I So, when maximizing the designer’s payoff, we can WLOG restrict
attention to IC/IR direct mechanisms

I But then the design problem (with participation) becomes

max
g(x|t)≥0

∑
θ,t,x

u0(x , θ)g(x |t)π(θ, t)

s.t.
∑

t−i ,θ,x

ui (x , θ)(g(x |ti , t−i )− g(x |t ′i , t−i ))π(θ, ti , t−i )︸ ︷︷ ︸
∝πi (θ,t−i |ti )

≥ 0 ∀i , ti , t ′i

∑
t−i ,θ,x

(ui (x , θ)− ui (θ))g(x |ti , t−i )π(θ, ti , t−i )︸ ︷︷ ︸
∝πi (θ,t−i |ti )

≥ 0 ∀i , ti

∑
x

g(x |t) = 1 ∀t

I This is linear in g ! So a finite dimensional LP problem
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The dual problem

I As good analysts, and having just written down an LP, we will
follow our instincts immediately write down its dual!

min
αi (ti ,t

′
i )≥0,βi (ti )≥0,γ(t)

∑
t

γ(t)

s.t. γ(t) ≥
∑
θ

[
u0(x , θ)π(θ, t)

+
∑
i ,t′i

ui (x , θ)
[
π(θ, t)αi (ti , t

′
i )− π(θ, t ′i , t−i )αi (t

′
i , ti )

]
+
∑
i

(ui (x , θ)− ui (θ))π(θ, t)βi (ti )

]
∀t, x

I As with BCE, we can interpret the αi as a deviation in the
normal form, and βi is a deviation to the outside option
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Optimal auctions
I Follows Myerson (1981), Bulow and Roberts (1989), Börgers

(2015), Cai, Devanur, Weinberg (2019)
I N buyers, indexed by i ∈ {1, . . . ,N}
I Player i = 0 is the seller
I A single unit of a good for sale
I The buyers have independent and private values (IPV)
I vi ∈ V = {0,∆, 2∆, . . . ,K∆}
I fi (vi ) is the PMF of vi

f (v) is the joint PMF of (v1, . . . , vN)

I The outcome consists of a lottery q ∈ ∆({0, 1, . . . ,N}) and
a profile of transfers t ∈ Rn

I Agent’s have quasilinear preferences over probabilities of
receiving the good and transfers (to the seller): for i ≥ 1,

ui (vi , q, t) = viqi − ti

I u0(q, t) =
∑

i ti , i.e., seller wants to maximize revenue (and
the good is worth nothing to the seller)
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The optimal auctions LP

I NB we now have an unbounded variable (transfers)

I This wasn’t allowed in our baseline model, so we should
rewrite the LP:

max
qi (v)≥0,ti (v)

∑
v ,i≥1

ti (v)f (v)

s.t.
∑
v−i

[
(viqi (vi , v−i )− ti (vi , v−i ))

− (viqi (v
′
i , v−i )− ti (v

′
i , v−i ))

]
f (vi , v−i ) ≥ 0 ∀i ≥ 1, vi , v

′
i∑

v−i

[viqi (vi , v−i )− ti (vi , v−i )] f (vi , v−i ) ≥ 0 ∀i ≥ 1, vi∑
i

qi (v) ≤ 1
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Lagrangian
I Rather than writing down the dual, let’s consider the Lagrangian,

with multipliers αi (vi , v
′
i ) ≥ 0, βi (vi ) ≥ 0 on IC and IR

I If we add the constraints to the objective, what is the resulting term
involving transfers? It will just be

∑
v ,i≥1

ti (v)

[
f (v)− βi (vi )f (v)

+
∑
v ′i

(αi (v
′
i , vi )f (v ′i , v−i )− αi (vi , v

′
i )f (v))

]

I Now, the transfers are a free variable, so unless the coefficient on
ti (v) ends up being zero, the value of the Lagrangian will be infinite

I So, canceling f−i (v−i ), (αi , βi ) must satisfy transfer neutrality:

fi (vi ) = βi (vi )fi (vi ) +
∑
v ′i

[αi (vi , v
′
i )fi (vi )− αi (v

′
i , vi )fi (v

′
i )]

I (NB This is a general result: If a saddle point exists, then the
optimal multipliers are such that the free variable drops out)



18

Virtual values
I Provided that we choose transfer-neutral (α, β), the resulting

Lagrangian is

max
q

∑
i≥1

∑
v−i

viβi (vi )fi (vi ) +∑
v′i

(
viαi (vi , v

′
i )fi (vi )− v ′i αi (v

′
i , vi )fi (v

′
i )
) qi (v)f−i (v−i )

I But transfer neutrality can be rewritten

vi fi (vi ) +
∑
v ′i

viαi (v
′
i , vi )fi (v

′
i ) = viβi (vi )fi (vi ) + vi

∑
v ′i

αi (vi , v
′
i )fi (vi )

I Substituting this in, we obtain for the Lagrangian:

max
q

∑
i≥1

∑
v−i

vi − 1

fi (vi )

∑
v ′i

(v ′i − vi )αi (v
′
i , vi )fi (v

′
i )


︸ ︷︷ ︸

≡φα
i (vi )

qi (v)f (v)

I The object φαi (vi ) is referred to as the virtual value, and the
Lagrangian is just choosing the allocation to maximize the virtual
value of the winner
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Maximizing the Lagrangian

I Now, it is easy to maximize this Lagrangian subject to the
constraint

∑
i qi (v) ≤ 1:

I For each v , allocate to whichever bidder has the highest
virtual value, as long as the highest virtual value is positive!

I The challenge is, we have to pick transfer-neutral α so that
the resulting optimal allocation can actually be implemented

I Put slightly differently, we have to pick α so that there is an
optimal (q, t) that satisfies complementary slackness, so that
αi (vi , v

′
i ) is positive only if vi is indifferent reporting v ′i , etc
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Leveraging simulations

I In general, there are lots of dual solutions that make the free
transfers drop out of the Lagrangian

I Which is the right one? Here is where simulations can give us
some insight

I On your pset, you’ll solve numerically for the optimal auction
when there are two bidders and values are iid uniform on an
evenly spaced grid {0,∆, 2∆, . . . , 1}, where 1/∆ is integral

I The simulations have several notable features:

1. Optimal revenue is ≈ 5/12
2. The good is allocated to the bidder with the highest value, iff

that value is at least 1/2
3. There is a lot of indeterminacy in the optimal transfers
4. IR binds iff vi = 0 and IC binds iff v ′i = vi −∆ (local

downward IC)
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Local downward IC
I Let us use this last hint to simplify the Lagrangian
I Write α̃i (vi ) ≡ αi (vi , vi −∆) for vi > 0 and α̃i (0) = 0
I Then transfer neutrality reduces to

0 = fi (vi )− α̃i (vi )fi (vi ) + α̃i (vi + ∆)fi (vi + ∆)

⇐⇒ α̃i (vi ) =
1

fi (vi )

∑
v ′i ≥vi

fi (v
′
i )

I This is an inverse hazard rate
I If we substitute these multipliers into the virtual value, we get

φαi (vi ) = φ̃i (vi ) ≡ vi −∆

∑
v ′i >vi

fi (v
′
i )

fi (vi )

I NB: Even if these are not the optimal multipliers, they still
give us an upper bound on the optimal value!

I NB: φαi for this particular choice of α is what’s been
traditionally called the “virtual value”, following Myerson
(1981)
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Back to the uniform example
I Passing to the continuum limit with a CDF Gi and density gi , we

have that

vi −
∑

v ′i >vi
fi (v
′
i )

fi (vi )/∆
≈ vi −

1− Gi (vi )

gi (vi )

I In the uniform case, this reduces to

vi −
1− vi

1
= 2vi − 1,

I So, the virtual value is the highest for bidders with the highest
value, and the Lagrangian is maximized by allocating to the high
value bidder as long as 2vi − 1 ≥ 0 ⇐⇒ vi ≥ 1/2, exactly as in the
simulation!

I Moreover, the optimal value with two bidders will be simply∫
v∈[0,1]2

max{0, 2v1 − 1, 2v2 − 1}dv

=

∫ 1

x=1/2

(2x − 1)d(x2) = 5/12



22

Back to the uniform example
I Passing to the continuum limit with a CDF Gi and density gi , we

have that

vi −
∑

v ′i >vi
fi (v
′
i )

fi (vi )/∆
≈ vi −

1− Gi (vi )

gi (vi )

I In the uniform case, this reduces to

vi −
1− vi

1
= 2vi − 1,

I So, the virtual value is the highest for bidders with the highest
value, and the Lagrangian is maximized by allocating to the high
value bidder as long as 2vi − 1 ≥ 0 ⇐⇒ vi ≥ 1/2, exactly as in the
simulation!

I Moreover, the optimal value with two bidders will be simply∫
v∈[0,1]2

max{0, 2v1 − 1, 2v2 − 1}dv

=

∫ 1

x=1/2

(2x − 1)d(x2) = 5/12



22

Back to the uniform example
I Passing to the continuum limit with a CDF Gi and density gi , we

have that

vi −
∑

v ′i >vi
fi (v
′
i )

fi (vi )/∆
≈ vi −

1− Gi (vi )

gi (vi )

I In the uniform case, this reduces to

vi −
1− vi

1
= 2vi − 1,

I So, the virtual value is the highest for bidders with the highest
value, and the Lagrangian is maximized by allocating to the high
value bidder as long as 2vi − 1 ≥ 0 ⇐⇒ vi ≥ 1/2, exactly as in the
simulation!

I Moreover, the optimal value with two bidders will be simply∫
v∈[0,1]2

max{0, 2v1 − 1, 2v2 − 1}dv

=

∫ 1

x=1/2

(2x − 1)d(x2) = 5/12



23

But can the bound be attained?

I Yes! Just run a second price auction with reserve price of 1/2

I In fact, this is the solution in the symmetric case as long as
the virtual value is non-decreasing in vi , as it is in the uniform
example
This is referred to as the regular case

I But if the virtual value is not non-decreasing, these may not
be the optimal multipliers, we may have to be more clever

I Indeed, on your pset, you will also solve an example with
where the optimal multipliers are more complicated, and we
can have both up and down constraints binding

I That’s what we turn to next...
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Single agent problem and monotonicity

I Let’s make things simpler for a bit and look at the single
bidder problem

I For now we drop the i subscript, and write v , v ′, α(v , v ′), etc.

I In this context, there is a well-known characterization of
optimal mechanisms, that goes like this:

I For two values v > v ′, IC implies that

vq(v)− t(v) ≥ vq(v ′)− t(v ′)

v ′q(v ′)− t(v ′) ≥ v ′q(v)− t(v)

=⇒ (v − v ′)(q(v)− q(v ′)) ≥ 0

=⇒ q(v) ≥ q(v ′)

I So, any incentive compatible allocation must be monotonic
(i.e., non-decreasing)
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Monotonicity and posted prices

I In fact, monotonicity is not only necessary for an allocation to
be implementable, but it is sufficient as well:

I A posted price mechanism is to simply offer the good at a
price p, so that type v buys iff v ≥ p
I This induces an allocation qp(v) = Iv≥p and transfer

tp(v) = qp(v)p, which is obviously IC
I NB qp(v) is a step function that is zero below p and one

above p

I Next, offer the buyer a random posted price, where p is
drawn independently of the value with probability h(p)
I This induces an allocation

qh(v) =
∑
p

h(p)Ip≤v =
∑
p≤v

h(p)

and the associated transfer is th(v) =
∑

p≤v ph(p)
I But picking h(p) = q(v)− q(v −∆) (non-negative as long as

q is monotonic), we get precisely the allocation q(v)!



26

Revenue from posted prices
I But more than that, any non-decreasing allocation can be

implemented in a way that attains our upper bound on revenue

I Let R(p) be the revenue from posted price p

I Then for v ∈ V

R(v)− R(v + ∆) = v
∑
v ′≥v

f (v ′)− (v + ∆)
∑

v ′≥v+∆

f (v ′)

= vf (v)−∆
∑

v ′≥v+∆

f (v ′)

= φ̃(v)f (v)

I So, φ̃(v) is the marginal revenue from selling to buyers of value v ,
per “probability unit” of buyer

I This implies that

R(v) =
∑
v ′≥v

φ̃(v ′)f (v ′),

which is exactly our upper bound from the local relaxation!
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Revenue from random posted prices

I And by exactly the same logic, revenue from the lottery over
posted prices h that implements the allocation q will be

R(q) =
∑
p

h(p)
∑
v ′≥p

φ̃(v ′)

=
∑
v ′

φ̃(v ′)f (v ′)
∑
p≤v ′

h(p)

=
∑
v ′

φ̃(v ′)q(v ′)f (v ′)

I The bottom line is that any monotonic allocation can be
implemented in a way that attains the upper bound from local
multipliers
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Optimal allocations

I So, one way to proceed would be to just optimize the bound
R(q) over monotonic allocations

I In fact, since the objective R(q) is linear in q, we know it is
WLOG to look at extreme points of the set of non-decreasing
allocation rules, which are...

the step functions qp(v)!

I Indeed, we already proved this, when we showed that any
non-decreasing q can be implemented by an allocation where
q(v) is the probability that p ≤ v

I So, extreme allocations are all induced by posted prices, and
there is an optimal mechanism that is a posted price
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Optimal multipliers

I You can approach the many-bidder problem using
monotonicity, but we will take a slightly different tack,
deriving the optimal multipliers

I Recall that the dual LP is

min
α

∑
v

max{0, φα(v)}f (v)

s.t. f (v) = β(v)f (v) +
∑
v ′

[
α(v , v ′)f (v)− α(v ′, v)f (v ′)

]
φα(v) = v − 1

f (v)

∑
v ′

(v ′ − v)α(v ′, v)f (v ′)
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Local virtual values and monotonicity

I In general, the local downward solution to transfer neutrality
need not induce a monotonic allocation

I For example, suppose the values are V = {1, 2, 3}, with
likelihoods 3/4, ε, and 1/4− ε

I The local virtual values are

φ̃(1) = 1− 1/4

3/4
= 2/3

φ̃(2) = 2− 1/4− ε
ε

φ̃(3) = 3

I Clearly, when ε is small, we have φ̃(1) and φ̃(3) both positive
and φ̃(2) negative, so the Lagrangian will be maximized by
selling just to low and high, which is not IC
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Modifying the local solution

I In a sense, the problem with the local virtual value is that it
understates the cost of not selling to some types

I In particular, not selling to a type v means that you can’t sell
to types higher than v

I So what we have to do is price in the forgone revenue from
selling to those higher types

I What is that forgone revenue?
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Revenue as a function of price
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Switch to quantity units

I It will help to change the domain from prices to quantities

I In particular, we could think of a posted price p as being the
mechanism that sells to the q =

∑
v≥p f (v) buyers with the

highest values

I Moreover, random posted prices can be viewed as simply
random quantities

I With this change of units, the picture becomes...
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Revenue as a function of quantity
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Randomized posted prices

I As we know, any mechanism can be implemented with a
randomized posted price

I So, suppose you wanted to sell a fixed quantity q in
expectation?

I What is the best randomized posted price to sell that
quantity, and what is the associated expected revenue?

I The answer to this question will then tell us what is the
“right” marginal revenue from selling to additional buyers
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Revenue from randomized posted prices
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Towards the right virtual values

I We can see that the maximum revenue from a randomized
posted price is just the concave hull of the revenue function

I That is, the smallest concave function that is everywhere
above the revenue

I This is attained by randomizing over two posted prices

I The “correct” virtual value should be the probability weighted
average of the local virtual values between the two prices that
we are randomizing between

I This is a heuristic, but it will be vindicated by our derivation
of the optimal multipliers for the mechanism design LP

I But first, we have to more precisely define the virtual value
that we are shooting for
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The “ironed” solution

I We will define a new ironed virtual value φ that correctly
prices the marginal revenue of selling to a given type

I For each v , v ′, v ′ < v , define the “average virtual revenue”
between v and v ′ as

A(v ′, v) =
R(v ′ −∆)− R(v)∑

v ′≤v ′′≤v f (v ′′)
=

∑
v ′≤v ′′≤v φ̃(v ′′)f (v ′′)∑

v ′≤v ′′≤v f (v ′′)

I Define φ recursively as follows

1. Start with the highest unironed type being v = max{V }
2. If the highest unironed type is v , let v ′ ∈ arg max{A(v ′, v)},

then we define φ̄(v ′′) = A(v ′, v) for v ′ ≤ v ′′ ≤ v , and we
redefine the highest unironed type to be v ′ and go back to 1

I In each iteration of step 2, we refer to [v ′, v ] as an ironed
interval (may be degenerate if v ′ = v)
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Properties of φ

I NB that φ must be non-decreasing:
I If not, say φ̄(v) < φ̄(v + ∆)
I Let v ′ and v ′′ be the types such that A(v ′, v) = φ̄(v) and

A(v + ∆, v ′′) = φ̄(v + ∆)
I Then we could have made average marginal revenue higher by

“merging” the two intervals, to make a big ironed interval
[v ′, v ′′]

I As a result, if φ̄ can be implemented, then the Lagrangian will
be maximized by simply setting a posted price at
min{v |φ̄(v) ≥ 0}, which can obviously implemented
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Shifting virtual value up

I So, the big question is whether there exist multipliers that
induce φ̄...

Yes, there are!

I Recall the transfer-neutrality constraint:

f (v) = β(v)f (v) +
∑
v ′

[
α(v , v ′)f (v)− α(v ′, v)f (v ′)

]
I How can we modify α to preserve transfer neutrality? For

v < v ′, if we increase α(v , v ′) ε/f (v), then we have to
increase α(v ′, v) by ε/f (v ′)

I Note the change in the virtual value:

∆φα(v) = −(v ′ − v)
ε

f (v)

∆φα(v ′) = −(v − v ′)
ε

f (v ′)
= (v ′ − v)

ε

f (v ′)

so we shift virtual value from v up to v ′
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Law of conservation of virtual value

I Note that the change in the expected virtual value is

∆φα(v)f (v) + ∆φα(v ′)f (v ′)

= −(v ′ − v)
ε

f (v)
f (v) + (v ′ − v)

ε

f (v ′)
f (v ′) = 0!

I In other words, expected virtual value is conserved:

I We can shift virtual value up but we cannot change the total
amount of virtual value

I Thus, what we are trying to do is redistribute the virtual value
so as to smooth out on ironed intervals
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Construct the multipliers to implement φ
I Suppose an ironed interval consists of v1 < . . . < vK
I Note that for any k, we must have A(v1, vk) ≥ A(v1, vK )

(otherwise, we would have A(vk+1, vK ) > A(v1, vK ), and we
contradict v1 maximizing A(v1, vK ))

I Take as an inductive hypothesis that we have modified the values so
that A(v1, vK ) = φα(v1) = · · · = φα(vk−1) ≤ A(v1, vk)

I Base step: k = 0 with the local multipliers and φα ≡ φ̃
I Inductive step:

I It must be that φα(vk) ≥ A(v1, vK )
(if not then A(v1, vk) ≤ A(v1, vK ))

I Then we can increase α(vk , vk+1) and α(vk+1, vk) to shift
virtual value up from vk to vk+1 so that φα

′
(vk) = A(v1, vK )

I But virtual value is conserved, so A(v1, vk+1) is unchanged,
and we still have A(v1, vk+1) ≥ A(v1, vK ), and the inductive
hypothesis is now satisfied for k + 1

I After K steps, we will have shifted virtual value up so as to attain
φα = φ̄ on [v , v ′]

I Denote the associated multipliers by (α, β)
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The “level free” solution

I This completes the characterization of a solution to the
single-bidder problem

I We have binding local downward constraints, and within
ironed interval, local upward constraints bind as well

I NB The solution is not unique! Why?

1. There’s more than one choice of multipliers that induce φ̄
2. Moreover, we don’t have to induce φ̄... Any φα that is

single-crossing at the optimal posted price would do

I But what is nice about the ironed solution is that it is “level
free,” in the following sense:

I Suppose the seller has a cost c , positive or negative

I This just shifts values down by c , but doesn’t change
differences in values, so the induced virtual value is just
φ̄(v)− c , which is still non-decreasing

I Clearly, the maximizer of the Lagrangian will be to set a
posted price at min{v |φ̄(v)− c ≥ 0}, which is implementable
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Random posted prices and complementary slackness

I Does this solution satisfy complementary slackness?

Yes!

I NB random posted prices make all local downward IC
constraints hold as equality:

1. If your value is strictly above or strictly below the price, then
changing your report doesn’t change whether or not you get
the good or what you pay

2. If your value is equal to the price, then you get zero surplus
from reporting truthfully, and also zero surplus from a local
downward deviation!

I The posted price p = min{v |φ̄(v)− c ≥ 0} also makes local
upward constraints bind on ironed intervals
In particular, p must be at the bottom of an ironed interval,
so local upward deviations within ironed intervals don’t
change the allocation or the payment

I So, this solution does in fact satisfy complementary slackness
with the “ironed” IC multipliers
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I NB random posted prices make all local downward IC
constraints hold as equality:

1. If your value is strictly above or strictly below the price, then
changing your report doesn’t change whether or not you get
the good or what you pay

2. If your value is equal to the price, then you get zero surplus
from reporting truthfully, and also zero surplus from a local
downward deviation!

I The posted price p = min{v |φ̄(v)− c ≥ 0} also makes local
upward constraints bind on ironed intervals
In particular, p must be at the bottom of an ironed interval,
so local upward deviations within ironed intervals don’t
change the allocation or the payment
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with the “ironed” IC multipliers
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Back to auctions

I Let’s apply what we’ve learned to solve the N bidder problem

I Note that because values are private, we can rewrite IC more
compactly as follows: Define

Qi (vi ) =
∑
v−i

qi (vi , v−i )f−i (v−i )

Ti (vi ) =
∑
v−i

ti (vi , v−i )f−i (v−i )

I These are the interim expected allocation and transfer,
respectively

I Then type vi ’s payoff from reporting v ′i is just

viQi (v
′
i )− Ti (v

′
i )

and IC just says that this expression is maximized at v ′i = vi
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Monotonicity and random posted prices

I By exactly the same argument as in the single bidder case,
monotonicity of Qi (vi ) is equivalent to its implementability by
incentive compatible transfers

I Moreover, if Qi is non-decreasing, then q be implemented
with transfers that attain the upper bound from local
downward virtual values

I How?

Well, draw a price pi independent of v−i , distributed
according to the CDF Qi

I Given a report of vi , bidder i wins with probability qi (vi , v−i ),
and pays pi if vi ≥ pi ... This implements exactly the same
interim allocation and payment as the random posted price!
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The complete solution

I Let’s use complementary slackness to verify a saddle point

I Let φi be bidder i ’s ironed virtual value

I Define

W (v) = arg max
i
φi (vi )

qi (v) =

{
1

|W (v)| if i ∈W (v)

0 otherwise

Theorem
The aforementioned allocation is implementable with transfers that
achieve the local upper bound on revenue. Therefore, this is an
optimal allocation.
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Proof of the optimal auction

I Clearly, for the choice of multipliers (α, β), we will induce the
ironed virtual values

I Moreover, the allocation we have proposed maximizes the
resulting Lagrangian: ∑

v ,i≥1

φi (v)qi (v)f (v)

I So, it just remains to check that this allocation is
implementable, which it is because φi (vi ) is non-decreasing,
so that qi (vi , v−i ) is non-decreasing in vi , and therefore Qi (vi )
is non-decreasing as well

I Moreover, we have already verified that Qi can be
implemented with posted prices that attain the local upper
bound �
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Finite vs convex domain

I Throughout our analysis, we have focused on the model with
discrete values, so that we could apply techniques from linear
programming

I In the classic treatment of Myerson (1981), the domain of
values is an interval [v , v ], and the probability distribution has
a density

I The solution more or less corresponds to what I have shown
you, but there is an important difference

I In the discrete model, there may be more than one transfer
rule that implements a given allocation

I For example, any price in [v −∆, v ] would implement the
allocation qv (but the price of p = v is the one that maximizes
revenue and makes local downward constraints bind, and
therefore attains the local IC upper bound on revenue)

I But when we go to a convex domain, transfers are uniquely
pinned down, as I now explain
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The envelope formula

I Note that type vi ’s surplus in equilibrium is

Ui (vi ) = viQi (vi )− Ti (vi ) = max
w

viQi (w)− Ti (w)

I Can use monotonicity of Qi to show that Ui is continuous and
a.e. differentiable, and the envelope formula holds, i.e.,

d

dvi
Ui (vi ) = Qi (vi )

I Thus,

Ui (vi ) = Ui (0) +

∫ vi

x=0
Qi (x)dx
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Solving out transfers
I The envelope formula pins down transfers:

Ti (vi ) = viQi (vi )− Ui (vi ) = viQi (vi )−
∫ vi

x=0

Qi (x)dx − Ui (0)

I Since Ui is increasing, IR is equivalent to Ui (0) ≥ 0, and obviously
R is maximized by setting Ui (0) = 0

I The seller’s revenue is therefore

R =
n∑

i=1

∫
vi∈[0,v ]

(
viQi (vi )−

∫ vi

x=0

Qi (x)dx

)
fi (vi )dvi

I Using Fubini, this can be rewritten as

R =
n∑

i=1

∫ v

vi=0

(
vi −

1− Fi (vi )

fi (vi )

)
Qi (vi )fi (vi )dvi

=
n∑

i=1

∫
v∈[0,v ]n

(
vi −

1− Fi (vi )

fi (vi )

)
︸ ︷︷ ︸

=φ̃i (vi )

qi (v)f (v)dv
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Further observations about convex domain

I The uniqueness of the transfers is the main advantage of
working in the continuum model

I Indeed, the multiplicity of tranfer rules in the discrete example
from two slides ago is because we didn’t specify the allocation
for types in [v − δ, v ]

I In fact, convex domain is in a sense without loss; even if the
value v has zero probability, we could always specify an
allocation and transfer for type v that satisfies IC:
Just set (q(v), t(v)) ∈ arg maxv ′∈V vq(v ′)− t(v ′), i.e., what
v would choose if they could mimic any type in V !
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Revenue equivalence

Theorem
With a convex domain, revenue generated by an auction is
completely determined by the induced allocation and the utilities of
the players’ lowest types.

I Thus, if two mechanisms induce the same allocation and give
the lowest types the same payoff, then they generate the same
revenue

I This resolved a long-standing mystery in auction theory going
back to the 60’s, that first- and second-price auctions
generate the same revenue in symmetric IPV environments
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Optimal auctions versus competition

I We might ask, how much does the seller benefit from running
the optimal auction vs something simpler, e.g., a second-price
auction

I A famous paper of Bulow and Klemperer (1996) shows that in
the regular and symmetric case, the revenue from running the
exact optimal auction is no greater than the revenue from a
second-price auction with one additional buyer, assuming that
buyer’s value is drawn from the same distribution

I Thus, there is a bound on how much revenue can be gained
from fine-tuning the reserve prices
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Proof

I Note that the second-price auction maximizes revenue subject
to the constraint that the good is always allocated, since it
maximizes the virtual value of the buyer who receives the
good (although this virtual value may be negative)

I Consider the following mechanism when there are n + 1
buyers: pick a subset of n and run the Myerson optimal
auction, and if the good would be unallocated, give it to the
n + 1th buyer for free

I This mechanism obviously generates the same revenue as the
optimal auction with n buyers

I It also always allocates the good, so it generates less revenue
than the SPA with n + 1 buyers �

I (This result fascinating, though it is a rather artificial
comparison... when is this the tradeoff made by a designer?
And why should the marginal buyer have a value drawn from
the same distribution as other participants?)
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The importance of independence

I Myerson’s result firmly relies on independent values... where?

I The incentive constraint! It was essential that the interim
probability of receiving the good Qi (w) and transfer Ti (w)
only depend on buyer i ’s report w , not on his type

I If types were correlated, then different buyers might have
different beliefs about v−i , and thereby face different interim
expected allocations and transfers

I Such correlation might allow the seller to extract more
revenue than with Myersonian auctions...
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A model with correlated types

I Follows Crémer and McLean (1988)

I Each bidder has finite set of types Si , S =
∏n

i=1 Si
I There is a valuation function vi : Si → R
I Common prior π ∈ ∆(S), which induces conditional

distributions π(s−i |si )
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Mechanisms
I The revelation principle continues to hold (and only relies on the

fact that the designer can choose any mechanism and can pick the
equilibrium), so it is WLOG to restrict attention to direct
mechanisms, i.e.,

q : S → [0, 1]n,
∑
i

qi (s) ≤ 1, t : S → Rn

I qi (s) is the probability that buyer i receives the good and ti (s) is
buyer i ’s net transfer to the seller

I The mechanism is incentive compatible (IC) if for all i , si , and s−i ,∑
s−i

π(s−i |si ) (vi (si )qi (si , s−i )− ti (si , s−i ))

≥
∑
s−i

π(s−i |si ) (vi (si )qi (s
′
i , s−i )− ti (s

′
i , s−i ))

I The mechanism is individually rational (IR) if for all i and si ,∑
s−i

π(s−i |si ) (vi (si )qi (si , s−i )− ti (si , s−i )) ≥ 0
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Towards full surplus extraction

I Let TS denote the efficient surplus

TS =
∑
s∈S

π(s) max
i=1,...,n

vi (si )

I We will show that, given enough linear independence in
interim beliefs/correlation in values, there exist IC and IR
mechanisms such that revenue is equal to TS

I The basic strategy is as follows:
I Allocate the good efficiently to maximize welfare
I Extract agents’ rents by exploiting differences in beliefs
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The main result

Theorem (Crémer and McLean)

Suppose that for all i and si , there do not exist ρ(s ′i ) ≥ 0 for
s ′i ∈ Si \ {si} such that ( π(s−i |si ) =

∑
s′i ∈Si\{si}

ρ(s ′i )π(s−i |s ′i ) for

all s−i ∈ S−i ). Then, there exists an IC and IR mechanism such
that R = TS .

I Proof: The allocation is defined by

W (s) = {i |vi (s) = max
j=1,...,n

vj(sj)}

qi (s) =
1

|W (s)|
Ii∈W (s)

i.e., qi (s) randomizes the allocation among the bidders with
high values

I Now, we will construct transfers such that the IC constraints
are satisfied and IR is satisfied as an equality for all i
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Proof, continued
I The hypothesis of the theorem implies that π(s−i |si ) (viewed

as an element of RS−i is not in the closed convex cone
generated by

{π(s−i |s ′i )|s ′i ∈ Si \ {si}}

I By Farkas, there exists a separating hyperplane gi (si ) ∈ RS−i

such that ∑
s−i∈S−i

gi (s−i |si )π(s−i |si ) = 0

∑
s−i∈S−i

gi (s−i |si )π(s−i |s ′i ) > 0 ∀s ′i 6= si

I We then set the transfers to be

ti (s) = qi (s)vi (si )− γgi (s−i |si )

for some large γ TBD
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Proof, continued continued

I Now, observe that the transfer is∑
s−i∈S−i

π(s−i |si )qi (si , s−i )vi (si )

if the player tells the truth, so that equilibrium surplus is zero

I The transfer from misreporting s ′i is∑
s−i∈S−i

π(s−i |si )qi (s ′i , s−i )vi (si )− γ
∑

s−i∈S−i

π(s−i |si )gi (s−i |s ′i )

I Thus, if we pick γ so that

γ ≥ max
si ,s
′
i

vi (si )∑
s−i∈S−i

π(s−i |si )gi (s−i |s ′i )
,

then the utility from every misreport will be non-positive �
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Genericity of full surplus extraction

I We could view π as being a vector in R|S|

I It is topologically generic that the convex independence assumption
will be satisfied (indeed, generically the vectors π(·|si ) are linearly
independent)

I In that sense, full surplus extraction is “almost always” possible

I Also, there are other results demonstrating that full surplus
extraction is “generically” possible in common value settings, e.g.,
McAfee, McMillan, and Reny (1989) and McAfee and Reny (1992)

I These results are a bit disturbing and paradoxical: They sugest that
we should see full surplus extraction everywhere, but in fact it is
nowhere!

I There is a significant literature debating whether or not this is the
right notion of genericity, and whether or not full surplus extraction
is truly generic, e.g., Neeman (2004), Heifetz and Neeman (2006),
Barelli (2009), Chen and Xiong (2011), Chen and Xiong (2013)

I This debate is a tad esoteric, but the real point is to highlight a
deficiency in the standard model...
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Critiques of full surplus extraction

I In my view, there are (at least) two problems with the model
that resolve the full-surplus extraction paradox

I First, if the matrices {π(s−i |si )}si∈Si are close to singular,
then the γ’s may have to be enormous to deter deviations

I In other words, very large transfers would be required after
certain signal realizations

I This is problematic if there is limited liability or risk aversion

I Still, as long as there is correlation, we would expect to see
sellers exploit some correlation of this form...
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I First, if the matrices {π(s−i |si )}si∈Si are close to singular,
then the γ’s may have to be enormous to deter deviations

I In other words, very large transfers would be required after
certain signal realizations

I This is problematic if there is limited liability or risk aversion

I Still, as long as there is correlation, we would expect to see
sellers exploit some correlation of this form...
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Towards robust mechanism design

I But perhaps more importantly, calibrating these “side bets”
requires the seller to have very precise knowledge of beliefs

I If the probability law is misspecified, the seller may go from
breaking even to losing millions on average

I (The same comment applies the buyers)

I Addressing this issue, either from the perspective of the
designer or the agents, has been the focus of a large part of
the literature on robust mechanism design, which we turn to
next


