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Common knowledge in mechanism design

I In the models of mechanism design discussed thus far, we
have made some strong assumptions about what is common
knowledge:
I The rules of the game
I A common prior over payoff relevant states
I Higher order beliefs that are consistent with a common prior
I Common knowledge of the strategies that are being used

I On top of all of that, we have assumed extremely simple
forms for information, e.g., private values, independence,
symmetry, regularity

I Should we really expect economic agents to agree on all of
these things, in a practical setting?
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The Wilson critique

Game theory has a great advantage in explicitly analyz-
ing the consequences of trading rules that presumably are
really common knowledge; it is deficient to the extent it
assumes other features to be common knowledge, such as
one player’s probability assessment about another’s pref-
erences or information.
I foresee the progress of game theory as depending on suc-
cessive reductions in the base of common knowledge re-
quired to conduct useful analyses of practical problems.
Only by repeated weakening of common knowledge as-
sumptions will the theory approximate reality.
– Bob Wilson (1987)
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Stronger implementation concepts

I In a Bayes Nash equilibrium, optimality of one’s actions
depends on beliefs about payoff relevant states and others’
behavior

I Wilson’s critique beseeches us to focus on mechanisms that
achieves the designer’s objective, regardless of the detailed
structure of beliefs

I If we accept this premise, the next questions are:
I How should we set up a “robust” mechanism design problem?
I What is the set of feasible mechanisms?
I What implementation concept should we use?
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Review of basic setup

I Recall our general mechanism design setup:

I Finitely many agents i = 1, . . . ,N

I Finite set of payoff states Θ

I Finite set of outcomes X

I Expected utility preferences ui : X ×Θ→ R
I A Harsanyi type space (T , π) to represent beliefs

I Designer chooses a mechanism (A, g)

I Agents play a Bayes Nash equilibrium
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Review of the revelation princple

I Under these assumptions, the revelation principle applies:
Any outcome that can be implemented by some
mechanism/equilibrium can also be implemented by a direct
revelation mechanism/truthful equilibrium

I Such a mechanism has to satisfy (interim) incentive
compatibility: ∀ i , ti , t

′
i ,∑

t−i ,θ,x

ui (x , θ)
[
g(x |ti , t−i )− g(x |t ′i , t−i )

]
πi (t−i , θ|ti ) ≥ 0

I Furthermore, we may also require (interim) individual
rationality: ∀ i , ti ,∑

t−i ,θ,x

ui (x , θ)g(x |ti , t−i )πi (t−i , θ|ti ) ≥ 0
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From interim to ex post implementation
I Obviously, these conditions depend on both the sets of types

Ti and the beliefs πi
I Consistent with our desire for robustness, we may follow

Dasgupta, Hammond, and Maskin (1979) and ask:
When does a DRM satisfy IC/IR regardless of beliefs (but
holding fixed the sets of types)?

I Clearly, there is a belief that puts probability one on a single
(t−i , θ) pair, so the only way for g to be an IC/IR DRM for all
beliefs is if for all i , (ti , t−i , θ, t ′i ,∑

x

ui (x , θ)
[
g(x |ti , t−i )− g(x |t ′i , t−i )

]
≥ 0∑

x

ui (x , θ)g(x |ti , t−i ) ≥ 0

I This are referred to as ex post IC/IR

I A DRM that satisfies EPIC/IR is said to be ex post incentive
compatible
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Different versions of ex post implementation

I In the DHM robustness-to-beliefs exercise I proposed above,
we looked for robustness with respect to all beliefs that
agents might have about (θ, t−i )

I We could also have looked at just robustness with respect to
beliefs about t−i , but held beliefs about θ fixed at πi (θ|ti , t−i )
(i.e., just varying beliefs about epistemic types but not varying
beliefs about the state given epistemic types)

I This would have given us an alternative version of EPIC/IR,
which we may call (epistemic) ex post IC/IR:∑

x ,θ

ui (x , θ)
[
g(x |ti , t−i )− g(x |t ′i , t−i )

]
πi (θ|ti , t−i ) ≥ 0

∑
x ,θ

ui (x , θ)g(x |ti , t−i )πi (θ|ti , t−i ) ≥ 0
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Dominant strategies
I Here is another variation; in the last version of ex post

implementation, we allowed beliefs about others’ types to
vary, but we supposed that others would report truthfully

I But we could also look for robustness with respect to beliefs
about others’ types and others’ reports

I In this case, we would get for all i , θ, θ′−i , and θ′i∑
x ,θ

ui (x , θ)
[
g(x |ti , t ′−i )− g(x |t ′i , t ′−i )

]
πi (θ|ti , t−i ) ≥ 0

∑
x ,θ

ui (x , θ)g(x |ti , t ′−i )πi (θ|ti , t−i ) ≥ 0

I This condition is referred to as dominant strategy IC/IR
(also called strategyproof)

I Clearly implies epistemic EPIC/IR, and in general it is stronger
I (Notice that it makes no difference for the first version of

EPIC/IR, since then we are already conditioning on the
realized θ, and others’ types only matter through their reports)



10

Ex post implementation: The right solution?

I Part of my point is that we have to ask: ex post with respect
to what? The “right” answer may depend on context

I Regardless, one way to proceed would be to use one of these
stronger implementation concepts, instead of Bayes Nash

I This would deliver us robustness to beliefs (subject to
knowing the right sets of types, and other features of beliefs)

I Many people seem to just run with this idea, and presume
that ex post implementation resolves the Wilson critique

I The problem is: Why should we restrict ourselves to
implementing the same DRM regardless of beliefs?
Why not let the implemented outcome vary with beliefs, as
long as it achieves our design goals?

I We will address this issue through two different approaches:
implementation-theoretic with Bergemann and Morris (2005),
and maxmin with Chung and Ely (2007)
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Bergemann and Morris (2005)

I To narrow the distinction between interim and ex post, BM
specialize to known-payoff-type (KPT) type spaces T that
can be written in the form
I Θ =

∏
i Θi

I Finite sets of types Ti for each i
I A mapping θ̂i : Ti → Θi for each i
I A belief function π̂i : Ti → ∆(T−i )

I In effect, each player has a payoff type θi , which affects
preferences, and an epistemic type ti , which represents
knowledge

I We impose an assumption on the belief hierarchies, that every
player “knows” their payoff type

I Under this assumption, our two notions of ex post IC/IR
collapse to the same thing, but because types are identified
with the payoff state, there is still a gap between ex post and
dominant strategies
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Special cases of KPT type spaces

I Private values: ui only depends on θi and not θ−i
I In this case, ex post and dominant strategy coincide
I Quasilinear auction model:

I X = X0 × (
∏

i Xi )
I X0 = ∆({0, 1, . . . ,N}), Xi = R
I ui (x , θ) = v(y0, θ)− xi

(x0 is the allocation, xi is the transfer)
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Is it KPT?

I The IPV type space?

I The revenue minimizing information for the FPA?

I Depends on how we define θ! We could always define θ so
that a particular type space is KPT

I But the set of type spaces we allowed in our robust predictions
exercise were not all KPT type spaces for the same choice of θ
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Implementation
I Rather than demanding that the same outcome is always

implemented, the designer has some flexibility, represented by
a social choice correspondence F : Θ→ 2X \ ∅

I Given T = (T , θ̂, π), a (direct) mechanism f : T → X is
interim incentive compatible (IIC) if for all i and ti , t

′
i ∈ Ti ,∑

t−i

ui (f (ti , t−i ), θ̂(ti , t−i ))π(t−i |ti )

≥
∑
t−i

ui (f (t ′i , t−i ), θ̂(ti , t−i ))π(t−i |ti )

I F is interim implementable on T if there exists an IIC
f : T → X such that f (t) ∈ F (θ̂(t)) for all t ∈ T

I f : Θ→ X is ex post incentive compatible (EPIC) if for all
i and θ, and θ′i ,

ui (f (θ), θ) ≥ ui (f (θ′i , θ−i ), θ)

I F is ex post implementable if there is an f : Θ→ X that is
EPIC and f (θ) ∈ F (θ) for all θ ∈ Θ
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Robustness of ex post implementation

Proposition

If F is ex post implementable, then F is implementable on all KPT
type spaces.

I Proof: Suppose F is ex post implementable by, say, f : Θ→ X

I Then F is implementable on T by the function f ′ : T → X
defined by f ′(t) = f (θ̂(t)) �
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BM’s question

I Suppose we want to implement a SCC F , regardless of the
details of higher-order beliefs

I Of course, we can do this if F is ex post implementable

I Are there F ’s that can be implemented on all KPT type
spaces, exploiting flexibility in the outcome, even if they are
not ex post implementable?
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Separable environments

I We say that (Θ,X , u,F ) is separable if

I X = X0 ×
(∏N

i=1 Xi

)
I ui (x , θ) = ũi (x0, xi , θ)
I There exists f0 : Θ→ X0 and Fi : Θ→ 2Xi \ ∅ such that

F (θ) = {f0(θ)} × (
∏

i Fi (θ))

I X0 is the public good component and Xi are private goods

I Substantive assumption: Options for private good for i does
not depend on selection of private goods for other agents

I In the quasilinear auction model, X0 could represent the
allocation, Xi is bidder i ’s transfer,

I If there is a unique social welfare maximizing allocation given
θ, then the problem of implementing a social welfare
maximizing social choice function is separable
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BM’s main result

Proposition

If (Θ,X , u,F ) is separable and F is implementable on all KPT
type spaces, then F is ex post implementable.

I For some i and θ−i , look at the type space where Ti = Θi

and Tj = {θj}

I Separability and the fact that F is interim implementable
=⇒ there exist gi ,θ−i

: Θ→ Xi such that

ũi (f0(θ), gi ,θ−i
(θ), θ) ≥ ũi (f0(θi , θ−i ), gi ,θ−i

(θ′i , θ−i ), θ)

I From separability, the function f ′ : Θ→ Y where
f ′0(θ) = f0(θ) and f ′i (θ) = gi ,θ−i

(θ) is feasible, and it is EPIC,
so F is ex post implementable �
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Example without separability

I BM show by example that separability cannot be dropped:

I N = {1, 2}, Θi = {θi , θ′i}, X = {a, b, c}
I Payoffs:

a θ2 θ′2 b θ2 θ′2 c θ2 θ′2
θ1 (1, 0) (−1, 2) θ1 (−1, 2) (1, 0) θ1 (0, 0) (0, 0)
θ′1 (0, 0) (0, 0) θ′1 (0, 0) (0, 0) θ′1 (1, 1) (1, 1)

I Social choice correspondence

F (θ1, θ2) = F (θ1, θ
′
2) = {a, b}

F (θ′1, θ2) = F (θ′1, θ
′
2) = {c}

I This SCC is always interim implementable (let player 1 choose
the outcome), but it is not implementable ex post
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What goes wrong with separability?

I We can’t take X0 = {a, b, c}, since then we wouldn’t be
allowed flexibility in what to implement at, e.g., (θ1, θ2)

I But if X1 or X2 is {a, b, c}, then we have flexibility, but we
violate the assumption that players’ preferences only depend
on the common outcome and their individual outcome

I Bottom line: BM’s separability condition is pretty restrictive,
and may even be viewed as a negative result
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Auctions with ex post implementation
I Let’s now take a different tack, and study the implications of

ex post implementation in the context of auctions
I Suppose there are n bidders
I Values vi ∈ V , where values are evenly spaced in increments

of ∆
I We continue to assume private values, so each bidder’s vi is

their known payoff type
I The environment is separable, so an outcome is interim

implementable in all KPT type spaces if and only if is ex post
implementable

I EPIC takes the following form:

viqi (v)− ti (v) ≥ viqi (v
′
i , v−i )− ti (v

′
i , v−i ) ∀i , v

I It is standard to also ask that bidders be willing to participate
for all KPT type spaces, so we get an ex post participation
constraint, i.e.,

viqi (v)− ti (v) ≥ 0 ∀i , v
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Profit maximization with ex post implementation

I What are the ex post mechanisms that maximize expected
profit?

I Let f ∈ ∆(V n) be the seller’s prior

I The revenue maximization program is:

max
(q,t)

∑
v∈V n

N∑
i=1

ti (v)f (v)

s.t. qi (v) ≥ 0 ∀i , v ,
N∑
i=1

qi (v) ≤ 1 ∀v ;

viqi (v)− ti (v) ≥ 0 ∀i , v ;

viqi (v)− ti (v) ≥ viqi (v
′
i , v−i )− ti (v

′
i , v−i ) ∀i , v ;

(P)

I NB: Very different if we use interim participation!
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Applying what we learned from the single agent solution
I We have basically already characterized the solution, with our

analysis of the single agent case

I If we fix v−i , then we have a (sub-)distribution f (vi , v−i ) of
bidder i ’s value

I We have multipliers αi (v , v
′
i ) and βi (v)

I Transfer neutrality:

f (v) = βi (v) +
∑
v ′i

[
αi (v , v

′
i )− αi (v

′
i , v−i , vi )

]
I Generalized virtual value:

φαi (v) = vi −
∑

v ′i
α(v ′i , v−i , vi )(v ′i − vi )f (v ′i , v−i )

f (v)

I Lagrangian:

max
q:V→[0,1]N

∑
v ,i

qi (v)φαi (v)f (v)
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The optimal multipliers

I A mechanism is IC for bidder i given v−i iff the allocation
qi (vi , v−i ) is non-decreasing in vi , and the transfers are those
that we would implement with the randomized posted price
whose CDF is qi (·, v−i )

I Moreover, treating this as bidder i ’s value distribution, we
have Lagrange multipliers (αi (vi , v−i ), βi (vi , v−i )) that induce
a conditional ironed virtual value φi (vi |v−i ), which is
non-decreasing

I Local downward IC binds everywhere, local upward IC binds
on ironed intervals, and IR binds only for the lowest type

I This is the “level free” solution to the dual LP
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Analyzing the Lagrangian
I By construction, these multipliers satisfy transfer neutrality

and they result in the non-decreasing ironed virtual value
I With this choice of multipliers, the Lagrangian is∑

v ,i

qi (v)φi (v)f (v)

I An optimal allocation is just to allocate the good to the
bidder with the highest virtual value, as long as it is positive:

W (v) = {i |φi (v) = max
j
φj(v), φi (v) ≥ 0}

qi (v) =

{
1

|W (v)| if i ∈W (v)

0 otherwise

I How does this differ from the solution with independence?

φi depends on the whole value profile v !
I Nonetheless, this allocation is non-decreasing, and can be

implemented with personalized randomized posted prices pi ,
whose distribution depends on v−i
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Regular case

I Recall the local virtual value, αi (v , vi −∆) =
∑

v ′i ≥vi
f (v ′i , v−i ),

and is zero otherwise, and associated local virtual value

φ̃i (v)−∆

∑
v ′i >vi

f (v ′i , v−i )

f (v)
(1)

I f is regular if φ̃i (v) is non-decreasing in vi for all i , v−i
I If f is regular, then φ̃i = φi , and the local multipliers are optimal
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Maxmin foundations

I As discussed in the first lecture, when there is correlation, the
seller can generally do strictly better with interim
implementation than with ex post, e.g., Crémer and McLean

I One foundation for ex post mechanisms is we want the
outcome to be implemented on all KPT type spaces

I Of course, if the real goal is revenue maximization, we might
ask: why care whether the same outcome is always
implemented, as long as the mechanism performs well in
terms of revenue?

I Regardless of the type space, the seller has the option of
running the optimal ex post mechanism, and obtain a payoff
of Π∗ (as long as they can select the equilibrium)

I Natural question: Would any mechanism generate uniformly
higher revenue, regardless of the type space?
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Chung and Ely (2007)

Theorem (Chung and Ely (2007))

If f is the seller’s prior and it is regular, then for any mechanism,
there is a KPT type space such that revenue is no greater than Π∗

I In fact, there is a “worst case” type space T ∗ such that
maximum revenue across all Bayesian mechanisms is Π∗

I Thus, an optimal ex post mechanism M∗ and T ∗ are a
“saddle point”, in the sense that M∗ maximizes revenue on
T ∗, and T ∗ minimizes revenue on M∗

I We will subsequently return to this notion of a saddle point
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A worst-case belief structure

I In T ∗, each bidder’s signal is just their valuation, so it is described
by beliefs πi (v−i |vi )

I The corresponding revenue maximization problem is:

max
(q,t)

∑
v∈V n

N∑
i=1

ti (v)f (v)

s.t. qi (v) ≥ 0 ∀i , v ,
N∑
i=1

qi (v) ≤ 1 ∀v ;∑
v−i

πi (v−i |vi )(viqi (vi , v−i )− ti (vi , v−i ) ≥ 0 ∀i , vi ;∑
v−i

πi (v−i |vi )(viqi (v)− ti (v))

≥
∑
v−i

πi (v−i |vi )(viqi (v
′
i , v−i )− ti (v

′
i , v−i )) ∀i , v ;

(P′)
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Deriving π∗

I Chung and Ely construct π∗ so (P) and (P′) have the same value
I In fact, π∗ can be derived from the optimal multipliers for (P)
I Recall that under the regularity hypothesis, only local downward IC

and IR for the lowest type are binding
I The optimal multiplier for (i , v) is αi (v) =

∑
v ′i ≥vi

f (v ′i , v−i )

I Basic fact about linear programs: The value remains the same if a
subset of the binding constraints are replaced by a weighted sum of
those constraints, with weights that are proportional to the optimal
multipliers

I As a result, the value of (P) remains the same if we replace

viqi (vi , v−i )− ti (vi , v−i ) ≥ viqi (vi −∆, v−i )− ti (vi −∆, v−i ) ∀v−i

with the weighted sum, for any constant Ci (vi ):∑
v−i

Ci (vi )αi (vi , v−i ) [viqi (vi , v−i )− ti (vi , v−i )]

≥
∑
v−i

Ci (vi )αi (vi , v−i ) [viqi (vi −∆, v−i )− ti (vi −∆, v−i )]
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Reinterpretation as beliefs

I If we take Ci (vi ) = 1/
∑

v−i
α(vi , v−i ), then

π∗i (v−i |vi ) := Ci (vi )α(vi , v−i ) is a belief!

I Hence, the aggregated constraint is just a Bayesian
local-downward IC constraint for the beliefs π∗

I We can do the same thing with the EPIR constraints for the
lowest type, and aggregate them into a Bayesian IR constraint
with the beliefs π∗, all without changing the value of (P)

I Finally, since the other ex post constraints are slack at the
optimal solution to (P), we can aggregate them however we
want without changing the value

I Thus, (P′) with the beliefs π∗ has the same value as (P) �
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Where does this depend on regularity?

I With regularity, for each (vi , v−i ), there is only one binding
constraint
(local down IC or IR at the bottom)

I We can take the multiplier on this single binding constraint to
be proportional to πi (v−i |vi )

I But in the irregular case, there will be non-local downward
constraints that bind, in particular local-downward and local
upward
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A minor paradox

I Chung and Ely show that these minmax beliefs violate the
common prior assumption

I At the same time, Morris’s theorem, which we discussed in
lecture 2, shows that beliefs satisfy the CPA if and only if
there is no trade

I So, there should be a feasible and admissible trade for this
type space, i.e., transfers such that every agent has an interim
expected non-negative net payoff, and some agent has a
strictly positive net payoff

I But then, why can’t the seller charge a small fee to the agent
with strictly positive payoff, and scale up the transfers
arbitrarily to use them as a money pump? How could optimal
revenue be finite???

I The answer is IC: In our previous no trade result, we didn’t
allow agents to misreport

I With such truthtelling constraints, there may still be no trade
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No trade without CPA but with IC

I To see how this can happen, consider the following example:
There are two states Θ = {0, 1}, equally likely, player 1 has
one type, and T2 = {0, 1}

I Player 1 thinks their signal is correct with probability p > 1/2,
and player 2 thinks it’s correct with probability q 6= p, q > 1/2

I Without IC, there would be a feasible and acceptable trade,
where player 2 pays player 1
I when t2 = θ if p > q
I when t2 6= θ if p < q

I But if we add IC, then when q < p, player 2 makes money
when they are wrong, so they would be better off misreporting
and maximize the probability of being incorrect!
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Aside on no-trade with IC

I Indeed, we can enrich our analysis of no-trade and the
common prior to include IC

I Given a Harsanyi type space (T , π), recall that a trade
γ : T → Rn is feasible if

∑
i γi (t) ≤ 0

I It is acceptable if∑
t−i ,θ

πi (t−i , θ|ti )γi (ti , t−i , θ) ≥ 0,

for all i , ti , and with some strict inequality

I Now we introduce: A trade is incentive compatible if∑
t−i ,θ

πi (t−i , θ|ti )
[
γi (ti , t−i , θ)− γi (t ′i , t−i , θ)

]
≥ 0,

for all i , ti , t
′
i
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Farkas Variant II

Lemma (Morris’ theorem)

Given A ∈ Rm×n and a set S of columns, exactly one of the
following is true:

(i) There exists an x ∈ Rn such that x ≥ 0 and Ax = 0 and
xj > 0 for all j ∈ S

(ii) There exists j ∈ S and y ∈ Rm such that yA ≥ 0 for all j ,
with strict inequality for column j
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Farkas dual of trade with IC

Theorem (Morris, 1994)

Exactly one of the following is true:

I There exists a feasible, acceptable, and IC trade

I Beliefs are noisy concordant: There exist multipliers π(θ, t),
λi (ti ), and µi (ti , t

′
i ) such that

π(θ, t) = λi (ti )πi (t−i , θ|ti )

+
∑
t′i

[
µi (ti , t

′
i )πi (t−i , θ|ti )− µi (t ′i , ti )πi (t−i , θ|t ′i )

]
with λi (ti ) not all zero

I π ≥ 0 is the multiplier on feasibility, λi ≥ 0 is on acceptability,
and µi ≥ 0 is on IC

I NB We could rescale the multipliers so that π integrates to 1
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Noisy concordant beliefs
I Interpretation: π is a “baseline” common prior π(θ, t)
I Moreover, summing this equation across (t−i , θ), we would get∑

θ,t−i

π(θ, ti , t−i ) = λi (ti ) +
∑
t′i

[
µi (ti , t

′
i )− µi (t ′i , ti )

]
I So, it is as if the distribution of ti is jumbled: Some types t ′i

have the belief of ti and some types ti have the belief of t ′i
I We can view this as a big Markov matrix, describing the

transition from some types to others, and µi describes the net
flow in and out of ti , and λi describes the net number of
types staying the same

I Indeed, we can rearrange the system to

πi (t−i , θ|ti ) =
π(θ, t) + µi (t

′
i , ti )πi (t−i , θ|t ′i )

λi (ti ) +
∑

t′i
µi (ti , t ′i )

so player i ’s beliefs are a weighted average of their beliefs
obtained via Bayes rule under the prior and others’ beliefs
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Noisy concordance in the maxmin beliefs
I Clearly, it must be that the beliefs derived by Chung and Ely are

noisy concordant
I How can we see this? Recall that the belief is

π∗(v−i |vi ) =

∑
v ′i ≥vi

f (v ′i , v−i )∑
v ′i ≥vi ,v

′
−i
f (v ′i , v−i )

I The obvious solution is all multipliers zero except:

λi (0) =
∑

v ′i ≥0,v
′
−i

f (v ′i , v−i ), µi (vi , vi −∆) =
∑

v ′i ≥vi ,v
′
−i

f (v ′i , v−i ),

i.e., local downward IC and IR at the bottom!
I In fact, concordance is exactly the same as transfer neutrality:

f (v) = λi (vi )︸ ︷︷ ︸
=βi (vi )

πi (v−i |vi ) +
∑
v ′i

µi (vi , v
′
i )︸ ︷︷ ︸

=αi (vi ,v ′i )

πi (v−i |vi )− µi (v
′
i , vi )πi (v−i |v ′i )

 ,
except that we have solved for beliefs as a function of multipliers,
rather than multipliers as a function of beliefs!
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Retrospective on maxmin ex post mechanisms
I Chung and Ely have an incredibly beautiful result
I Further justifies ex post implementation in auctions
I But, still relies on the rather strong regularity assumption, as

well as private values

I Recently, some papers have been extending the theory beyond
Chung and Ely (Yamashita and Zhu 2020, Chen and Li 2018)

I Loosely speaking, the result goes through when only local
downward IC binds at the optimum

I All of these results rely on non-common prior beliefs on the
part of the bidders

I Chung and Ely show by examples that relaxing regularity and
imposing the CPA both break the result

I It remains an open question what are maxmin mechanisms
without regularity and/or with the CPA

I Moreover, even if the optimal ex post mechanism solves the
maxmin problem, there are other mechanisms that do just as
well on the worst case, and improve elsewhere (Borgers, 2013)
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Problems with ex post implementation

I Bergemann and Morris (2005) show that ex post is equivalent to
robustness to beliefs only in the special case of “separable”
environments, which is quite strong

I Similarly, Chung and Ely (2007) give a maxmin foundation for ex
post mechanisms in the specific context of auction design only when
the distribution is regular

I Another problem with ex post implementation:
In general, not many SCFs are ex post implementable

I Jehiel, Meyer-ter-Vehn, Moldovanu, and Zame (2006) show in an
interdependent value and quasilinear environment with
multidimensional signals, that generically (on preferences), the only
ex post implementable SCFs are constant, i.e., they choose the
same alternative independent of the type profile



41

Problems with ex post implementation

I Bergemann and Morris (2005) show that ex post is equivalent to
robustness to beliefs only in the special case of “separable”
environments, which is quite strong

I Similarly, Chung and Ely (2007) give a maxmin foundation for ex
post mechanisms in the specific context of auction design only when
the distribution is regular

I Another problem with ex post implementation:
In general, not many SCFs are ex post implementable

I Jehiel, Meyer-ter-Vehn, Moldovanu, and Zame (2006) show in an
interdependent value and quasilinear environment with
multidimensional signals, that generically (on preferences), the only
ex post implementable SCFs are constant, i.e., they choose the
same alternative independent of the type profile



42

The setting of JMMZ

I Suppose there are just two agents and two alternatives

I Each agent has a two-dimensional signal si ∈ [0, 1]L

I Preferences vi ,k(s1, s2), assumed to be continuous

I The mechanism specifies an outcome q(s) and transfers ti (s)

I If (q, t) is ex post IC, then the transfer cannot depend on si ,
except through the outcome that gets implemented (otherwise
i would misreport whichever signal minimizes

I So really, we can write ti ,k(s−i ) (allowed arbitrary dependence
on s−i
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Using indifference

I If q is non-constant, then there is some set X ⊂ [0, 1]2L where
q = 1 and otherwise q = 2

I Suppose the boundary is nice and transfers are differentiable

I At the boundary, both agents must be indifferent between the
two alternatives, so we get

vi ,1(s)− vi ,2(s)︸ ︷︷ ︸
≡µ1(s)

− ti ,1(s−i )− ti ,2(s−i )︸ ︷︷ ︸
≡τi (s−i )

= 0

⇐⇒ νi (s)− τi (s−i ) = 0

I But since this equation holds everywhere on the boundary, it
must be that the normal vector to the boundary is the
gradient

(∇siµi (s),∇s−iµi (s)− τi (s−i ))
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The differential equation

I But we could repeat the same analysis for agent −i , and find
that the gradient is also

(∇siµ−i (s)− τ−i (si ),∇s−iµ−i (s))

I These two gradients must be proportional: for some α > 0(
∇siµi (s)

∇s−iµi (s)− τi (s−i )

)
= α

(
∇siµ−i (s)− τ−i (si )
∇s−iµ−i (s)

)
I In particular, we have that given si , we must have for
α(s) > 0,

∇siµi (si , s−i ) = α(s)(∇si (µ−i (si , s−i )−∇si τ−i (si ))

I This is a PDE in s−i that has to be satisfied by preferences,
and is quite restrictive...
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A parametric example
I Suppose L = 2 and

vi ,k(s) = si ,k(ai ,k + bi ,ks−i ,k)

I Then

µi (s) = ai ,ksi ,k − ai ,lsi ,l + bi ,ksi ,ks−i ,k − bi ,lsi ,ls−i ,l

and hence

∇siµi (s) = α(s)(∇si (µ−i (si , s−i )−∇si τ−i (si ))

⇐⇒
(

ai ,k + bi ,ks−i ,k
−ai ,l − bi ,ls−i ,l

)
= α(s)

(
b−i ,ks−i ,k − τ−i ,k(si )
b−i ,ls−i ,l − τ−i ,l(si )

)
I But this can only hold if bi ,k = α(s)b−i ,k and bi ,l = α(s)b−i ,l

for α(s) > 0, i.e.,

bi ,kb−i ,l = bi ,lb−i ,k

and this condition is “non-generic” on R4
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Final thoughts on ex post implementation

I JMMZ generalize this idea beyond the parametric example,
and relaxing the assumptions of differentiability/smoothness
of the boundary

I They show that the PDE must be satisfied more generally,
and give give genericity conditions on v so that it cannot be
satisfied

I Thus, for most valuations, only constant SCFs can be
implemented

I Together with the strong sufficient conditions of BM and CE
for ex post to be without loss, this further dampens our hope
of building a general theory based on ex post implementation

I Of course, the maxmin criterion can still be applied, even
when not many SCFs are ex post implementable

I This suggests that in more general environments (e.g., those
without KPT), we may want to push beyond ex post
implementation, and consider more general mechanisms
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