In [41]: # ECON 289 Problem set 1 *#* Instructor: Ben Brooks # Spring 2023 # This problem set has a series of cells with different programming tasks. # It will teach you how to solve linear programs using Gurobi. You will be asked to # run code that I have written, and also add and run your own code. Add your code between # that look like this: # _____ # To complete the problem set, add your own code, run all the cells, and then submit a copy of the # notebook on canvas. The easiest way to do so is to select "print preview" from the # file menu, and then save the new page that opens as a pdf document. # Please work together to complete the problem set. Also, remember, Google # is your friend. Only ask me for help after you have looked for the # answer on stack overflow. # First, install Gurobi and set up an academic license using grbgetkey. # Then install the gurobipy module by entering # python -m pip install gurobipy in the terminal. # Code in Jupyter notebook is broken up into cells. You can run each cell individually. # Once you have correctly installed Gurobi and gurobi-py, you should be able to load # gurobi using the following commends. Run this cell now. import gurobipy as gp from gurobipy import GRB # Notice that each line in Python is a separate command. # One of the most useful commands in Python is "print", which simply displays a message. print("Success! You have installed Gurobi and gurobipy.") # Now you add a line that prints "Hello world!" Brian Kernighan will be proud of you. # _____ print("Hello world!") # _____

```
Success! You have installed Gurobi and gurobipy.
        Hello world!
In [42]: # Now we can create a model using the following code.
        model = gp.Model()
        # The Gurobi model has various parameters. The Method parameter controls
        # which algorithms are used to solve the LP. Here I will set the method to the
        # barrier (interior point) algorithm. You can find a list of parameters and possible
        # values on Gurobi's website.
        model.Params.Method = 2 # Barrier algorithm
        # There is another parameter called "Crossover" which controls
        # whether the barrier algorithm switches over to simplex when it gets close to
        # an optimum. Add code below to disable crossover and run the cell.
        # _____
        model.Params.Crossover = 0 # turn off crossover
        # _____
        Set parameter Method to value 2
        Set parameter Crossover to value 0
In [43]: # Now let's start adding variables to our model. My code will add a variable x:
        x = model.addVar()
        # Now you add code below to create another variable called "y" and run this cell.
        # _____
        y = model.addVar()
        # _____
```

```
In [44]: # Mathematical expressions involving variables can be built in the natural way.
        # Following the example in class, I will add the constraint that x+2y \le 1 to our model:
        c1 = model.addConstr(x+2*y<=1)
        # I have assigned the constraint to the variable c1, so we can later look at properties
        # of the constraint.
        # Now you add the constraint that 2x+y \leq 1, and run the cell.
        # _____
        c2 = model.addConstr(2*x+y<=1)</pre>
        # _____
In [45]: # Now that we have our two variables and two constraints, we can set
        # the objective.
        model.setObjective(2*x+7*y, GRB.MINIMIZE)
        # Actually, I made a mistake; I meant to set the objective to maximize x+y.
        # Please correct the mistake by adding another line below with the right
        # objective and direction, and run the cell.
        # _____
        model.setObjective(x+y, GRB.MAXIMIZE)
        # _____
```

In [46]:	# Each type of object in Gurobi, e.g., a model, a variable, a constraint, # has attributes, which you can query. For example, whether we maximize or minimize # is described by the ModelSense attribute. My code below reports the current value of # ModelSense. Incidentally, this code shows how the print comand can be used to format # combinations of text and numbers.			
	<pre>print(f'The current objective sense is {model.ModelSense}, where 1 indicates minimize and -1 indicates ma</pre>			
	<pre># Now you write a line that prints the number of constraints in the model. (Hint: # Look at the Attributes section on the gurobi documentation, https://www.gurobi.com/documentation/9.5/re</pre>			
	#			
	<pre>print(f'The number of constraints is {model.NumConstrs}.')</pre>			
	#			
	The current objective sense is 1, where 1 indicates minimize and -1 indicates maximize. The number of constraints is 0.			
In [47]:	<pre># Do you notice something odd about the number of constraints? Gurobi doesn't update the number of constr # variable until you "update" the model. With the python API, this is done automatically when it is neede # and you usually don't need to worry about it. But try running the model.update() method and then query # the number of constraints:</pre>			

```
# _____
```

model.update()
print(f'The number of constraints is {model.NumConstrs}.')

The number of constraints is 2.

In [49]: # Now we are ready to solve the model! This line will run the optimization routine:
 model.optimize()

After it finishes, I have written code to print the value of the solution. # Notice how I am querying the attribute "X" from each of the variables, # and printing the value to 3 decimal places. print(f'\nI solved the model and found the optimal solution (x,y)=({x.X:.3f},{y.X:.3f}).')

You add a line below that prints the attribute "Pi" from each of the constraints, # which is the optimal Lagrange multiplier. Then run this cell.

print(f'\nThe Lagrange multiplier on the constraint x+2y<=1 is {c1.Pi:.3f}.')
print(f'\nThe Lagrange multiplier on the constraint 2x+y<=1 is {c2.Pi:.3f}.')</pre>

Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 2 rows, 2 columns and 4 nonzeros
Model fingerprint: 0xa95902f3
Coefficient statistics:
 Matrix range [1e+00, 2e+00]
 Objective range [1e+00, 1e+00]

	[==,]
Bounds range	[0e+00,	0e+00]
RHS range	[1e+00,	1e+00]

I solved the model and found the optimal solution (x,y)=(0.333,0.333).

The Lagrange multiplier on the constraint $x+2y \le 1$ is 0.333.

The Lagrange multiplier on the constraint 2x+y<=1 is 0.333.

```
In [52]: # Now that you have learned the basics, please set up and solve the production example
         # from Dorfman, Samuleson, and Solow (1958) that we discussed in class. Please print out
         # the optimal numbers of cars and trucks, and also the Lagrange multipliers on the capacity
         # constraints for each of the production lines. Set it all up in this cell and run it at one go.
         # _____
         model=qp.Model()
         model.Params.Method=2
         model.Params.Crossover=0
         x1=model.addVar()
         x2=model.addVar()
         c1=model.addConstr(100>=0.004*x1+0.00286*x2)
         c2=model.addConstr(100>=0.003*x1+0.006*x2)
         c3=model.addConstr(100>=0.00444*x1)
         c4=model.addConstr(100>=0.00667*x2)
         model.setObjective(300*x1+250*x2,GRB.MAXIMIZE)
         model.optimize()
         print(f'\nThe optimal number of cars is \{x1.X:.3f\} and the optimal number of trucks is \{x2.X:.3f\}.')
         print(f'\nThe optimal Lagrange multiplier on 100>=0.004*x1+0.00286*x2 is {c1.Pi:.3f}.')
         print(f'\nThe optimal Lagrange multiplier on 100>=0.003*x1+0.006*x2 is {c2.Pi:.3f}.')
         print(f'\nThe optimal Lagrange multiplier on 100>=0.004444*x1 is {c3.Pi:.3f}.')
         print(f'\nThe optimal Lagrange multiplier on 100>=0.00667*x2 is {c4.Pi:.3f}.')
         Set parameter Method to value 2
         Set parameter Crossover to value 0
         Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])
         Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
```

Optimize a model with 4 rows, 2 columns and 6 nonzeros

Model fingerprint: 0xcb3b9091

Coefficient statistics:

 Matrix range
 [3e-03, 7e-03]

 Objective range
 [2e+02, 3e+02]

Bounds range [0e+00, 0e+00] RHS range [1e+02, 1e+02]

Presolve time: 0.00s

Presorve trille: 0.005

```
Presolved: 2 rows, 4 columns, 6 nonzeros
```

```
Ordering time: 0.00s
```

Barrier statistics: AA' NZ : 1.000e+00 Factor NZ : 3.000e+00 Factor Ops : 5.000e+00 (less than 1 second per iteration) Threads : 1

	Objective		Residual			
Iter	Primal	Dual	Primal	Dual	Compl	Time
0	2.23419283e+07	4.69781364e+06	0.00e+00	0.00e+00	4.06e+06	0s
1	9.95762932e+06	6.01250036e+06	0.00e+00	0.00e+00	5.74e+05	0s
2	7.94787202e+06	7.69756646e+06	0.00e+00	0.00e+00	4.18e+04	0s
3	7.73072610e+06	7.71684456e+06	0.00e+00	2.27e-13	2.31e+03	0s
4	7.73022185e+06	7.73020711e+06	0.00e+00	0.00e+00	2.46e+00	0s
5	7.73022049e+06	7.73022049e+06	0.00e+00	0.00e+00	2.46e-06	0s
6	7.73022049e+06	7.73022049e+06	1.36e-12	1.14e-13	2.46e-12	0s

Barrier solved model in 6 iterations and 0.02 seconds (0.00 work units) Optimal objective 7.73022049e+06

The optimal number of cars is 20363.165 and the optimal number of trucks is 6485.084).

The optimal Lagrange multiplier on 100>=0.004*x1+0.00286*x2 is 68093.385.

The optimal Lagrange multiplier on 100>=0.003*x1+0.006*x2 is 9208.820.

The optimal Lagrange multiplier on 100>=0.004444*x1 is 0.000.

The optimal Lagrange multiplier on 100>=0.00667*x2 is 0.000.

In [54]: # Also print out the slack in each of the constraints. Does the solution you found satisfy
complementary slackness for the primal constraints and the dual variables (i.e., Lagrange
multipliers on the primal constraints)?

```
print(f'\nThe slack in 100>=0.004*x1+0.00286*x2 is {c1.Slack:.3f}.')
print(f'\nThe slack in 100>=0.003*x1+0.006*x2 is {c2.Slack:.3f}.')
print(f'\nThe slack in 100>=0.004444*x1 is {c3.Slack:.3f}.')
print(f'\nThe slack in 100>=0.00667*x2 is {c4.Slack:.3f}.')
```

print('\nYes, complementary slackness is satisfied: The multiplier is non-zero only when there is no slac

The slack in 100>=0.004*x1+0.00286*x2 is 0.000.

The slack in 100>=0.003*x1+0.006*x2 is 0.000.

The slack in 100>=0.004444*x1 is 9.588.

The slack in 100>=0.00667*x2 is 56.744.

Yes, complementary slackness is satisfied: The multiplier is non-zero only when there is no slack in the constraint.

```
# Now, we want to add a variables that indicates how much inventory flows from
# warehouse w to store s. We can do this with the following line:
f = model.addVars(W,S)
# f is a data structure called a "dictionary" that maps each pair w in W and s in S to
# a variable f[w,s]. Pretty neat! Notice how I told Gurobi to make the lower bound zero.
# It actually does this anyway by default.
# Each warehouse has a supply, which is w/(n-1). I am going to store this information
# in a new dictionary:
supply = \{w:w/(n-1) \text{ for } w \text{ in } W\}
print(f'The supply of the second warehouse is {supply[1]}')
# Notice how I used the "for" keyword to assign values for each warehouse.
# Now you create a dictionary for the store demands, where each store s demands (m-s)/m.
# _____
demand = \{s:(m-s)/m \text{ for } s \text{ in } S\}
# _____
# Now we need some constraints in the model. I will add constraints that the
# flow out of each warehouse not exceed its supply. Notice how I use the "sum"
# command to rapidly build linear expressions. I also put a semicolon at the
# end of the line to suppress the output.
supplyConstrs=model.addConstrs(sum(f[w,s] for s in S)<= supply[w] for w in W);</pre>
# Next, add a constraint that the net flow into each store is at least its
# demand, which is s/(m-1). Call these constraints "demandConstrs".
# Leave off the semicolon at the end so we see all the garbage
# that Gurobi sends back as we add constraints.
# _____
demandConstrs = model.addConstrs(sum(f[w,s] for w in W)>=demand[s] for s in S)
# _____
# The next task is to create the objective. It turns out that moving flow
# from w to s has a kind of complicated form. If w > s, then it costs 2*w, and if
# s >= w, then it costs s*s. Let's encode this using a function:
def bensCost(w,s):
   if (w>s):
       return 2*w
```

```
else:
       return s*s
   return 0
# Notice how I defined this function using conditional statements. Now I can use it to set
# the objective, which is to minimize cost:
model.setObjective(sum(bensCost(w,s)*f[w,s] for w in W for s in S),GRB.MINIMIZE)
# But wait! I actually made a mistake. I wanted the cost to be w*w-s if w>s and s+2*w if w<=s.
# Please create a new function called "yourCost" that implements the right cost function, and
# set the objective. Then optimize the model.
# _____
def yourCost(w,s):
   if (w>s):
       return w*w-s
   else:
       return s+2*w
   return 0
model.setObjective(sum(yourCost(w,s)*f[w,s] for w in W for s in S),GRB.MINIMIZE)
model.optimize()
# _____
```

The supply of the second warehouse is 0.11111111111111111 Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86]) Thread count: 4 physical cores, 8 logical processors, using up to 8 threads Optimize a model with 15 rows, 50 columns and 100 nonzeros Model fingerprint: 0xc9371f79 Coefficient statistics: Matrix range [1e+00, 1e+00] Objective range [1e+00, 8e+01] Bounds range [0e+00, 0e+00] RHS range [1e-01, 1e+00] Presolve removed 1 rows and 5 columns Presolve time: 0.00s Presolved: 14 rows, 45 columns, 90 nonzeros Iteration Objective Primal Inf. Dual Inf. Time 0 0.0000000e+00 3.000000e+00 0.000000e+00 0s 19 7.7666667e+01 0.000000e+00 0.000000e+00 0s Solved in 19 iterations and 0.01 seconds (0.00 work units)

Optimal objective 7.7666666667e+01

```
In [61]: # We've solved our model. Now what? We want to visualize the solution
         # and see what it means! To do this, we will load some additional libraries.
         # matplotlib has plotting tools and numpy has numerical routines. They will
         # work together to create pretty pictures.
         import matplotlib.pyplot as plt
         import numpy as np
         # This line creates a figure.
         fig = plt.figure()
         # I want to create a plot of the optimal multiplier on each warehouse's supply.
         # To do so, first I store the optimal multipliers in a numpy array, and then plot it.
         Q = np.array([supplyConstrs[w].Pi for w in W])
         fig, ax = plt.subplots()
         plt.plot(W,Q)
         ax.set xlabel('w')
         ax.set ylabel('q')
         plt.show()
         # Now you create your own plot showing the optimal multipliers on each store's demand.
         # _____
         P = np.array([demandConstrs[s].Pi for s in S])
         fig, ax = plt.subplots()
         plt.plot(S,P)
         ax.set xlabel('s')
         ax.set_ylabel('q')
         plt.show()
```

<Figure size 432x288 with 0 Axes>


```
In [38]: # This works well enough for one-dimensional plots. But I'd
# also like to visualize the optimal flow, which is two-dimensional.
# For this, we will load another library:
# This complicated line creates a two-dimensional numpy array,
# which is an array of arrays!
fig = plt.figure()
ax = plt.axes(projection='3d')
optFlow = np.array([[f[w,s].X for w in W] for s in S])
X, Y = np.meshgrid(W,S)
ax.plot_surface(X, Y, optFlow, cmap='viridis')
ax.set_xlabel('w')
ax.set_ylabel('s')
ax.set_title('Optimal flow');
ax.view_init(35,210)
```

Optimal flow

In [62]: # But wait! I realized I made a mistake, and in fact I wanted the demand to be
just 1/m at each store. Please repeat the computation of the cost minimizing flow,
and plot the optimal flow below.

```
n = 10
m = 5
model = gp.Model()
W = range(0, n)
S = range(0, m)
f = model.addVars(W,S)
supply = \{w:w/(n-1) \text{ for } w \text{ in } W\}
demand = {s:1/m for s in S}
supplyConstrs=model.addConstrs(sum(f[w,s] for s in S)<= supply[w] for w in W);</pre>
demandConstrs = model.addConstrs(sum(f[w,s] for w in W)>=demand[s] for s in S);
def yourCost(w,s):
    if (w>s):
        return w*w-s
    else:
        return s+2*w
    return 0
model.setObjective(sum(yourCost(w,s)*f[w,s] for w in W for s in S),GRB.MINIMIZE)
model.optimize()
fig = plt.figure()
ax = plt.axes(projection='3d')
optFlow = np.array([[f[w,s].X for w in W] for s in S])
X, Y = np.meshgrid(W,S)
ax.plot surface(X, Y, optFlow, cmap='viridis')
ax.set xlabel('w')
ax.set ylabel('s')
ax.set title('Optimal flow');
ax.view init(35,210)
```

```
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 15 rows, 50 columns and 100 nonzeros
Model fingerprint: 0x3c6866d1
Coefficient statistics:
  Matrix range
                   [le+00, le+00]
 Objective range [1e+00, 8e+01]
 Bounds range
                   [0e+00, 0e+00]
 RHS range
                   [1e-01, 1e+00]
Presolve removed 1 rows and 5 columns
Presolve time: 0.01s
Presolved: 14 rows, 45 columns, 90 nonzeros
Iteration
             Objective
                             Primal Inf.
                                            Dual Inf.
                                                           Time
       0
            0.0000000e+00
                            1.000000e+00
                                           0.000000e+00
                                                             0s
```

12 7.5333333e+00 0.000000e+00 0.000000e+00 0s

Solved in 12 iterations and 0.01 seconds (0.00 work units) Optimal objective 7.533333338+00

