
In [41]: # ECON 289 Problem set 1
Instructor: Ben Brooks
Spring 2023

This problem set has a series of cells with different programming tasks.
It will teach you how to solve linear programs using Gurobi. You will be asked to
run code that I have written, and also add and run your own code. Add your code between
that look like this:

To complete the problem set, add your own code, run all the cells, and then submit a copy of the
notebook on canvas. The easiest way to do so is to select "print preview" from the
file menu, and then save the new page that opens as a pdf document.

Please work together to complete the problem set. Also, remember, Google
is your friend. Only ask me for help after you have looked for the
answer on stack overflow.

First, install Gurobi and set up an academic license using grbgetkey.
Then install the gurobipy module by entering
python -m pip install gurobipy in the terminal.

Code in Jupyter notebook is broken up into cells. You can run each cell individually.
Once you have correctly installed Gurobi and gurobi-py, you should be able to load
gurobi using the following commends. Run this cell now.
import gurobipy as gp
from gurobipy import GRB

Notice that each line in Python is a separate command.

One of the most useful commands in Python is "print", which simply displays a message.
print("Success! You have installed Gurobi and gurobipy.")

Now you add a line that prints "Hello world!" Brian Kernighan will be proud of you.

print("Hello world!")

Success! You have installed Gurobi and gurobipy.
Hello world!

Set parameter Method to value 2
Set parameter Crossover to value 0

In [42]: # Now we can create a model using the following code.

model = gp.Model()

The Gurobi model has various parameters. The Method parameter controls
which algorithms are used to solve the LP. Here I will set the method to the
barrier (interior point) algorithm. You can find a list of parameters and possible
values on Gurobi's website.

model.Params.Method = 2 # Barrier algorithm

There is another parameter called "Crossover" which controls
whether the barrier algorithm switches over to simplex when it gets close to
an optimum. Add code below to disable crossover and run the cell.

model.Params.Crossover = 0 # turn off crossover

In [43]: # Now let's start adding variables to our model. My code will add a variable x:

x = model.addVar()

Now you add code below to create another variable called "y" and run this cell.

y = model.addVar()

In [44]: # Mathematical expressions involving variables can be built in the natural way.
Following the example in class, I will add the constraint that x+2y<=1 to our model:
c1 = model.addConstr(x+2*y<=1)
I have assigned the constraint to the variable c1, so we can later look at properties
of the constraint.

Now you add the constraint that 2x+y <= 1, and run the cell.

c2 = model.addConstr(2*x+y<=1)

In [45]: # Now that we have our two variables and two constraints, we can set
the objective.
model.setObjective(2*x+7*y, GRB.MINIMIZE)

Actually, I made a mistake; I meant to set the objective to maximize x+y.
Please correct the mistake by adding another line below with the right
objective and direction, and run the cell.

model.setObjective(x+y, GRB.MAXIMIZE)

The current objective sense is 1, where 1 indicates minimize and -1 indicates maximize.
The number of constraints is 0.

The number of constraints is 2.

In [46]: # Each type of object in Gurobi, e.g., a model, a variable, a constraint,
has attributes, which you can query. For example, whether we maximize or minimize
is described by the ModelSense attribute. My code below reports the current value of
ModelSense. Incidentally, this code shows how the print comand can be used to format
combinations of text and numbers.

print(f'The current objective sense is {model.ModelSense}, where 1 indicates minimize and -1 indicates maximize.'

Now you write a line that prints the number of constraints in the model. (Hint:
Look at the Attributes section on the gurobi documentation, https://www.gurobi.com/documentation/9.5/refman/numconstrs.html)

print(f'The number of constraints is {model.NumConstrs}.')

In [47]: # Do you notice something odd about the number of constraints? Gurobi doesn't update the number of constraints
variable until you "update" the model. With the python API, this is done automatically when it is needed
and you usually don't need to worry about it. But try running the model.update() method and then query again
the number of constraints:

model.update()
print(f'The number of constraints is {model.NumConstrs}.')

Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 2 rows, 2 columns and 4 nonzeros
Model fingerprint: 0xa95902f3
Coefficient statistics:
 Matrix range [1e+00, 2e+00]
 Objective range [1e+00, 1e+00]
 Bounds range [0e+00, 0e+00]
 RHS range [1e+00, 1e+00]

I solved the model and found the optimal solution (x,y)=(0.333,0.333).

The Lagrange multiplier on the constraint x+2y<=1 is 0.333.

The Lagrange multiplier on the constraint 2x+y<=1 is 0.333.

In [49]: # Now we are ready to solve the model! This line will run the optimization routine:
model.optimize()

After it finishes, I have written code to print the value of the solution.
Notice how I am querying the attribute "X" from each of the variables,
and printing the value to 3 decimal places.
print(f'\nI solved the model and found the optimal solution (x,y)=({x.X:.3f},{y.X:.3f}).')

You add a line below that prints the attribute "Pi" from each of the constraints,
which is the optimal Lagrange multiplier. Then run this cell.

print(f'\nThe Lagrange multiplier on the constraint x+2y<=1 is {c1.Pi:.3f}.')
print(f'\nThe Lagrange multiplier on the constraint 2x+y<=1 is {c2.Pi:.3f}.')

Set parameter Method to value 2
Set parameter Crossover to value 0
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 4 rows, 2 columns and 6 nonzeros
Model fingerprint: 0xcb3b9091
Coefficient statistics:
 Matrix range [3e-03, 7e-03]
 Objective range [2e+02, 3e+02]
 Bounds range [0e+00, 0e+00]
 RHS range [1e+02, 1e+02]
Presolve time: 0.00s
Presolved: 2 rows, 4 columns, 6 nonzeros
Ordering time: 0.00s

In [52]: # Now that you have learned the basics, please set up and solve the production example
from Dorfman, Samuleson, and Solow (1958) that we discussed in class. Please print out
the optimal numbers of cars and trucks, and also the Lagrange multipliers on the capacity
constraints for each of the production lines. Set it all up in this cell and run it at one go.

model=gp.Model()
model.Params.Method=2
model.Params.Crossover=0
x1=model.addVar()
x2=model.addVar()
c1=model.addConstr(100>=0.004*x1+0.00286*x2)
c2=model.addConstr(100>=0.003*x1+0.006*x2)
c3=model.addConstr(100>=0.00444*x1)
c4=model.addConstr(100>=0.00667*x2)
model.setObjective(300*x1+250*x2,GRB.MAXIMIZE)
model.optimize()

print(f'\nThe optimal number of cars is {x1.X:.3f} and the optimal number of trucks is {x2.X:.3f}).')
print(f'\nThe optimal Lagrange multiplier on 100>=0.004*x1+0.00286*x2 is {c1.Pi:.3f}.')
print(f'\nThe optimal Lagrange multiplier on 100>=0.003*x1+0.006*x2 is {c2.Pi:.3f}.')
print(f'\nThe optimal Lagrange multiplier on 100>=0.004444*x1 is {c3.Pi:.3f}.')
print(f'\nThe optimal Lagrange multiplier on 100>=0.00667*x2 is {c4.Pi:.3f}.')

Barrier statistics:
 AA' NZ : 1.000e+00
 Factor NZ : 3.000e+00
 Factor Ops : 5.000e+00 (less than 1 second per iteration)
 Threads : 1

 Objective Residual
Iter Primal Dual Primal Dual Compl Time
 0 2.23419283e+07 4.69781364e+06 0.00e+00 0.00e+00 4.06e+06 0s
 1 9.95762932e+06 6.01250036e+06 0.00e+00 0.00e+00 5.74e+05 0s
 2 7.94787202e+06 7.69756646e+06 0.00e+00 0.00e+00 4.18e+04 0s
 3 7.73072610e+06 7.71684456e+06 0.00e+00 2.27e-13 2.31e+03 0s
 4 7.73022185e+06 7.73020711e+06 0.00e+00 0.00e+00 2.46e+00 0s
 5 7.73022049e+06 7.73022049e+06 0.00e+00 0.00e+00 2.46e-06 0s
 6 7.73022049e+06 7.73022049e+06 1.36e-12 1.14e-13 2.46e-12 0s

Barrier solved model in 6 iterations and 0.02 seconds (0.00 work units)
Optimal objective 7.73022049e+06

The optimal number of cars is 20363.165 and the optimal number of trucks is 6485.084).

The optimal Lagrange multiplier on 100>=0.004*x1+0.00286*x2 is 68093.385.

The optimal Lagrange multiplier on 100>=0.003*x1+0.006*x2 is 9208.820.

The optimal Lagrange multiplier on 100>=0.004444*x1 is 0.000.

The optimal Lagrange multiplier on 100>=0.00667*x2 is 0.000.

The slack in 100>=0.004*x1+0.00286*x2 is 0.000.

The slack in 100>=0.003*x1+0.006*x2 is 0.000.

The slack in 100>=0.004444*x1 is 9.588.

The slack in 100>=0.00667*x2 is 56.744.

Yes, complementary slackness is satisfied: The multiplier is non-zero only when there is no slack in the
constraint.

In [54]: # Also print out the slack in each of the constraints. Does the solution you found satisfy
complementary slackness for the primal constraints and the dual variables (i.e., Lagrange
multipliers on the primal constraints)?

print(f'\nThe slack in 100>=0.004*x1+0.00286*x2 is {c1.Slack:.3f}.')
print(f'\nThe slack in 100>=0.003*x1+0.006*x2 is {c2.Slack:.3f}.')
print(f'\nThe slack in 100>=0.004444*x1 is {c3.Slack:.3f}.')
print(f'\nThe slack in 100>=0.00667*x2 is {c4.Slack:.3f}.')

print('\nYes, complementary slackness is satisfied: The multiplier is non-zero only when there is no slack in the constraint.'

In [55]: # Now that we've covered the basics, let's get into a somewhat meatier problem.
We'll solve a version of the optimal transport problem. There are n warehouses and m stores.
They are ordered in terms of ease of access. Since I want to solve this model for a general
n and m, the first thing we will do is set those parameters:
n = 10
m = 5

Next, we will set up an index set that we will use in setting up the rest of the model:
model = gp.Model()

W = range(0,n)

You set up a range called "S" for the stores on the next line

S = range(0,m)

Now, we want to add a variables that indicates how much inventory flows from
warehouse w to store s. We can do this with the following line:
f = model.addVars(W,S)

f is a data structure called a "dictionary" that maps each pair w in W and s in S to
a variable f[w,s]. Pretty neat! Notice how I told Gurobi to make the lower bound zero.
It actually does this anyway by default.

Each warehouse has a supply, which is w/(n-1). I am going to store this information
in a new dictionary:
supply = {w:w/(n-1) for w in W}
print(f'The supply of the second warehouse is {supply[1]}')
Notice how I used the "for" keyword to assign values for each warehouse.

Now you create a dictionary for the store demands, where each store s demands (m-s)/m.

demand = {s:(m-s)/m for s in S}

Now we need some constraints in the model. I will add constraints that the
flow out of each warehouse not exceed its supply. Notice how I use the "sum"
command to rapidly build linear expressions. I also put a semicolon at the
end of the line to suppress the output.
supplyConstrs=model.addConstrs(sum(f[w,s] for s in S)<= supply[w] for w in W);

Next, add a constraint that the net flow into each store is at least its
demand, which is s/(m-1). Call these constraints "demandConstrs".
Leave off the semicolon at the end so we see all the garbage
that Gurobi sends back as we add constraints.

demandConstrs = model.addConstrs(sum(f[w,s] for w in W)>=demand[s] for s in S)

The next task is to create the objective. It turns out that moving flow
from w to s has a kind of complicated form. If w > s, then it costs 2*w, and if
s >= w, then it costs s*s. Let's encode this using a function:
def bensCost(w,s):
 if (w>s):
 return 2*w

 else:
 return s*s
 return 0

Notice how I defined this function using conditional statements. Now I can use it to set
the objective, which is to minimize cost:
model.setObjective(sum(bensCost(w,s)*f[w,s] for w in W for s in S),GRB.MINIMIZE)

But wait! I actually made a mistake. I wanted the cost to be w*w-s if w>s and s+2*w if w<=s.
Please create a new function called "yourCost" that implements the right cost function, and
set the objective. Then optimize the model.

def yourCost(w,s):
 if (w>s):
 return w*w-s
 else:
 return s+2*w
 return 0

model.setObjective(sum(yourCost(w,s)*f[w,s] for w in W for s in S),GRB.MINIMIZE)
model.optimize()

The supply of the second warehouse is 0.1111111111111111
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 15 rows, 50 columns and 100 nonzeros
Model fingerprint: 0xc9371f79
Coefficient statistics:
 Matrix range [1e+00, 1e+00]
 Objective range [1e+00, 8e+01]
 Bounds range [0e+00, 0e+00]
 RHS range [1e-01, 1e+00]
Presolve removed 1 rows and 5 columns
Presolve time: 0.00s
Presolved: 14 rows, 45 columns, 90 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
 0 0.0000000e+00 3.000000e+00 0.000000e+00 0s
 19 7.7666667e+01 0.000000e+00 0.000000e+00 0s

Solved in 19 iterations and 0.01 seconds (0.00 work units)
Optimal objective 7.766666667e+01

<Figure size 432x288 with 0 Axes>

In [61]: # We've solved our model. Now what? We want to visualize the solution
and see what it means! To do this, we will load some additional libraries.
matplotlib has plotting tools and numpy has numerical routines. They will
work together to create pretty pictures.

import matplotlib.pyplot as plt

import numpy as np

This line creates a figure.
fig = plt.figure()

I want to create a plot of the optimal multiplier on each warehouse's supply.
To do so, first I store the optimal multipliers in a numpy array, and then plot it.
Q = np.array([supplyConstrs[w].Pi for w in W])
fig, ax = plt.subplots()
plt.plot(W,Q)
ax.set_xlabel('w')
ax.set_ylabel('q')
plt.show()

Now you create your own plot showing the optimal multipliers on each store's demand.

P = np.array([demandConstrs[s].Pi for s in S])
fig, ax = plt.subplots()
plt.plot(S,P)
ax.set_xlabel('s')
ax.set_ylabel('q')
plt.show()

In [38]: # This works well enough for one-dimensional plots. But I'd
also like to visualize the optimal flow, which is two-dimensional.
For this, we will load another library:

This complicated line creates a two-dimensional numpy array,
which is an array of arrays!

fig = plt.figure()
ax = plt.axes(projection='3d')

optFlow = np.array([[f[w,s].X for w in W] for s in S])
X, Y = np.meshgrid(W,S)

ax.plot_surface(X, Y, optFlow, cmap='viridis')

ax.set_xlabel('w')
ax.set_ylabel('s')
ax.set_title('Optimal flow');
ax.view_init(35,210)

In [62]: # But wait! I realized I made a mistake, and in fact I wanted the demand to be
just 1/m at each store. Please repeat the computation of the cost minimizing flow,
and plot the optimal flow below.

n = 10
m = 5

model = gp.Model()

W = range(0,n)
S = range(0,m)

f = model.addVars(W,S)

supply = {w:w/(n-1) for w in W}
demand = {s:1/m for s in S}

supplyConstrs=model.addConstrs(sum(f[w,s] for s in S)<= supply[w] for w in W);
demandConstrs = model.addConstrs(sum(f[w,s] for w in W)>=demand[s] for s in S);

def yourCost(w,s):
 if (w>s):
 return w*w-s
 else:
 return s+2*w
 return 0

model.setObjective(sum(yourCost(w,s)*f[w,s] for w in W for s in S),GRB.MINIMIZE)
model.optimize()

fig = plt.figure()
ax = plt.axes(projection='3d')

optFlow = np.array([[f[w,s].X for w in W] for s in S])
X, Y = np.meshgrid(W,S)

ax.plot_surface(X, Y, optFlow, cmap='viridis')

ax.set_xlabel('w')
ax.set_ylabel('s')
ax.set_title('Optimal flow');
ax.view_init(35,210)

Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 15 rows, 50 columns and 100 nonzeros
Model fingerprint: 0x3c6866d1
Coefficient statistics:
 Matrix range [1e+00, 1e+00]
 Objective range [1e+00, 8e+01]
 Bounds range [0e+00, 0e+00]
 RHS range [1e-01, 1e+00]
Presolve removed 1 rows and 5 columns
Presolve time: 0.01s
Presolved: 14 rows, 45 columns, 90 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
 0 0.0000000e+00 1.000000e+00 0.000000e+00 0s
 12 7.5333333e+00 0.000000e+00 0.000000e+00 0s

Solved in 12 iterations and 0.01 seconds (0.00 work units)
Optimal objective 7.533333333e+00

