```
In [2]: # ECON 289 Problem set 2
       # Instructor: Ben Brooks
       # Spring 2023
       # This problem set has a series of cells with different programming tasks. You will be asked to
       # run code that I have written, and also add and run your own code. Add your code between
       # that look like this:
        # -----
       # To complete the problem set, add your own code, run all the cells, and then submit
        # a copy of the notebook on canvas. The easiest way to do so is to select "print
       # preview" from the file menu, and then save the new page that opens as a pdf document.
       # Please work together to complete the problem set. Also, remember, Google
       # is your friend. Only ask me for help after you have looked for the
        # answer on stack overflow.
In [3]: # Insert code to load gurobi, numpy, and matplotlib pyplot.
        # -----
       import gurobipy as gp
        from qurobipy import GRB
       import matplotlib.pyplot as plt
        import numpy as np
        # -----
       # We are going to add the following code which will help us create
       # fancy 3d graphs:
       from mpl toolkits import mplot3d
```

%matplotlib notebook

```
In [4]: # In class we studied correlated equilibria of BoS.
       # Now I'd like you to compute the set of all correlated equilibrium payoffs.
       # Start by creating a gurobi model, setting parameter values,
       # and adding variables to represent the probability of each of
       # the four outcomes (B,B), (S,S), (B,S), (S,B), and add
       # a constraint so that these are in fact probabilities.
        # -----
       model = gp.Model()
       model.Params.Method = 2 # Barrier algorithm
       model.Params.Crossover = 0 # Disable crossover
       muBB = model.addVar()
       muBS = model.addVar()
       muSB = model.addVar()
       muss = model.addVar()
       probConstr = model.addConstr(muBB + muBS + muSB + muSS == 1)
        # -----
```

Set parameter Username

Academic license - for non-commercial use only - expires 2024-03-14

Set parameter Method to value 2

Set parameter Crossover to value 0

```
In [5]: # Now add the obedience constraints for the model. In particular,
       # for every action "recommended" by the mediator and for every
       # possible deviation, there is a constraint that the player not
       # gain from the deviation, in expectation.
       # -----
      # Obedience for B for player 1
      obedBtoS1 = model.addConstr(muBB*(3-0)+muBS*(0-1)>=0)
       # Obedience for S for player 1
      obedStoB1 = model.addConstr(muSB*(0-3)+muSS*(1-0)>=0)
      # Obedience for B for player 2
       obedBtoS2 = model.addConstr(muBB*(1-0)+muSB*(0-3)>=0)
       # Obedience for S for player 2
       obedStoB2 = model.addConstr(muSS*(3-0)+muBS*(0-1)>=0)
       # -----
      # Now set the objective to maximize the probability of miscoordination.
       # -----
      model.setObjective(muSB+muBS,GRB.MAXIMIZE)
       # -----
       # And finally, optimize
       # -----
      model.optimize()
```

Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

Optimize a model with 5 rows, 4 columns and 12 nonzeros

Model fingerprint: 0x87470bad

Coefficient statistics:

Matrix range [1e+00, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [1e+00, 1e+00]

Presolve removed 1 rows and 1 columns

Presolve time: 0.01s

Presolved: 4 rows, 3 columns, 10 nonzeros

Ordering time: 0.00s

Barrier statistics:

AA' NZ : 6.000e+00 Factor NZ : 1.000e+01

Factor Ops: 3.000e+01 (less than 1 second per iteration)

Threads : 1

	Objective		Residual			
Iter	Primal	Dual	Primal	Dual	Compl	Time
0	1.17744397e+00	4.09028728e-01	7.07e-01	4.19e-01	4.61e-01	0s
1	4.49820687e-01	7.62345849e-01	0.00e+00	0.00e+00	4.46e-02	0s
2	6.05706196e-01	6.45075381e-01	0.00e+00	0.00e+00	5.62e-03	0s
3	6.24619889e-01	6.25810713e-01	0.00e+00	2.22e-16	1.70e-04	0s
4	6.24999633e-01	6.25000824e-01	0.00e+00	8.49e-17	1.70e-07	0s
5	6.25000000e-01	6.25000001e-01	0.00e+00	0.00e+00	1.70e-10	0s

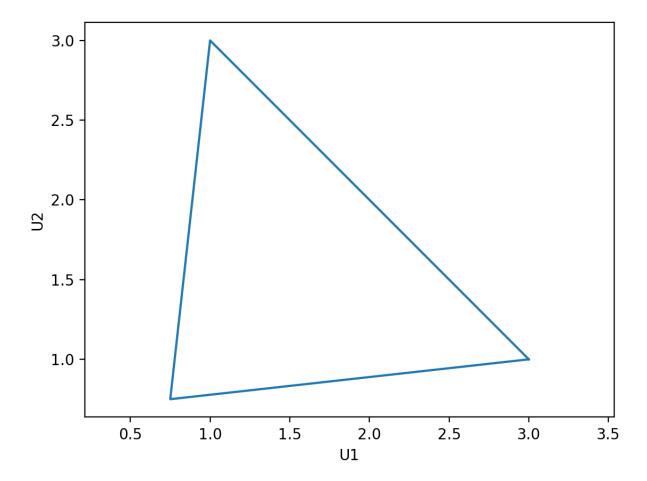
Barrier solved model in 5 iterations and 0.03 seconds (0.00 work units) Optimal objective 6.25000000e-01

The CE that maximizes the probability of miscoordination is (mu(B,B), mu(B,S), mu(S,B), mu(S,S)) = (0.1875000 002442437, 0.5625000003144034, 0.062499999318764266, 0.18750000012258863).

The optimal multipliers on the obedience constraints are: (probConstr,B to S for 1,S to B for 1,B to S for 2, S to B for 2)=(0.6250000008240698,-0.19478750888521262,-0.0843625291512647,-0.04063747416843202,-0.18021249044025534).

```
In [7]: # Now I want you to do something a bit more complicated. I want you to compute
       # the whole set of correlated equilibrium payoffs. First, create expressions U1 and U2
       # for the utilities of players 1 and 2.
       # -----
       U1 = 3*muBB + muSS
       U2 = muBB + 3*muSS
        # -----
       # Now we will create a large grid of directions
       numDirs = 200
       D=range(0, numDirs)
       Theta = \{d: d*2*3.14/numDirs for d in D\}
       # I will also create an empty numpy array to store the calculated values of U1 in each direction.
       # I create one extra space at the end, for a reason that you'll see in a minute.
       u1=np.zeros(numDirs+1)
       # Now you create a similar array for U2 called u2:
```

```
u2=np.zeros(numDirs+1)
# Before proceeding, it's prudent to turn off Gurobi's output. Do this by setting the "output" parameter
# to the appropriate value.
# -----
model.Params.OutputFlag = 0
# -----
# Now we will use a loop to compute, for each direction, the optimal payoffs
for d in D:
   theta=Theta[d]
   model.setObjective(np.cos(theta)*U1+np.sin(theta)*U2,GRB.MAXIMIZE)
   model.optimize()
   u1[d]=U1.getValue()
   u2[d]=U2.getValue()
u1[numDirs]=u1[0]
u2[numDirs]=u2[0]
# Finally, plot the data you have collected, using similar code as we used in problem set 1.
# -----
fig, ax = plt.subplots()
plt.plot(u1,u2)
ax.set xlabel('U1')
ax.set ylabel('U2')
plt.axis('equal')
plt.show()
# -----
# What do you notice about the set of correlated equilibrium payoffs? What are its extreme points?
```



```
model = qp.Model()
model.Params.Method = 2 # Barrier algorithm
model.Params.Crossover = 0 # Disable crossover
model.Params.OutputFlag = 1 # Enable output
# ______
# Next, create a variable called "numVals" and set it equal to 51. Then create a new range
# array, called "K", with entries from 0 to numVals.
# -----
numVals = 51
K=range(0,numVals)
# -----
# The next task is to create two dictionaries, one called "V" and the other called "B".
# The dictionary V should map k in K into k/(numVals-1). This will be our uniformly spaced grid of common
# values on the interval [0,1]. Then make B map k in K into a uniform grid on the interval [0,0.4].
# This will be large enough for our purposes.
# -----
V={k:k/(numVals-1) for k in K};
B=\{k:0.4*k/(numVals-1) \text{ for } k \text{ in } K\};
# ______
# Now we will need a function called "payoff" that maps the arguments (v,bi,bj), which will be
# elements of K, respectively, into the payoff of a bidder who bids B[bi], when the other bidder
# bids B[bj], and the value is V[v]. The payoff should be V[v]-B[bi] if B[bi]>B[bj], and 0 if
# B[bi] < B[bj], and there should be a 1/2 chance of winning if the bidders tie.
# ______
def payoff(v,bi,bj):
   if (bi>bj):
      return V[v]-B[bi]
   elif (bi==bj):
       return 0.5*(V[v]-B[bi])
   return 0
```

```
# Now we are ready to populate the model. Add variables indexed (v,bi,bj) for v in K,
# bi in K, and bj in K.
# ______
mu = model.addVars(K,K,K)
# Next, for each v, add a constraint that the marginal probability of v is 1/numVals.
# Hint: For each v, sum mu across b1 and b2, and set the sum equal to 1/numVals.
# ______
probConstr = model.addConstrs(sum(mu[v,b1,b2] for b1 in K for b2 in K)==1/numVals for v in K)
# -----
# Next we need to add the obedience constraints. This is a little tricky, so I'm going to show you how to
# it with the obedience constraints for bidder 1:
obed1 = model.addConstrs(sum(mu[v,b1,b2]*(payoff(v,b1,b2)-payoff(v,b,b2)) for v in K for b2 in K) >= 0 fc
# Notice that I added a constraint for every recmomended b1 and deviation b. For each (b1,b),
# I summed across (v,b2) the difference in bidder 1's payoff if they bid b1 versus b.
# Now you add the obedience constraints for bidder 2.
# ______
obed2 = model.addConstrs(sum(mu[v,b1,b2]*(payoff(v,b2,b1)-payoff(v,b,b1)) for v in K for b1 in K) >= 0 fc
# ______
# Now create expressions for each bidder's payoff and for revenue, and name them U1, U2, and Rev.
# ______
U1 = sum(mu[v,b1,b2]*payoff(v,b1,b2) for v in K for b1 in K for b2 in K)
U2 = sum(mu[v,b1,b2]*payoff(v,b2,b1) for v in K for b1 in K for b2 in K)
Rev = sum(mu[v,b1,b2]*max(B[b1],B[b2]) for v in K for b1 in K for b2 in K)
```

```
# Finally, minimize Rev.
model.setObjective(Rev,GRB.MINIMIZE)
model.optimize()
# What do you get for the approximate value of minimum expected revenue?
Set parameter Method to value 2
Set parameter Crossover to value 0
Warning for adding constraints: zero or small (< 1e-13) coefficients, ignored
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])
Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 5253 rows, 132651 columns and 9128631 nonzeros
Model fingerprint: 0x3d3d1fbc
Coefficient statistics:
  Matrix range [2e-03, 1e+00]
 Objective range [8e-03, 4e-01]
  Bounds range [0e+00, 0e+00]
            [2e-02, 2e-02]
  RHS range
Presolve removed 102 rows and 121 columns
Presolve time: 2.88s
Presolved: 5151 rows, 132530 columns, 9123960 nonzeros
Ordering time: 0.00s
Barrier statistics:
AA' NZ : 1.297e+06
Factor NZ : 2.263e+06 (roughly 50 MB of memory)
Factor Ops: 2.895e+09 (less than 1 second per iteration)
 Threads : 4
                 Objective
                                          Residual
```

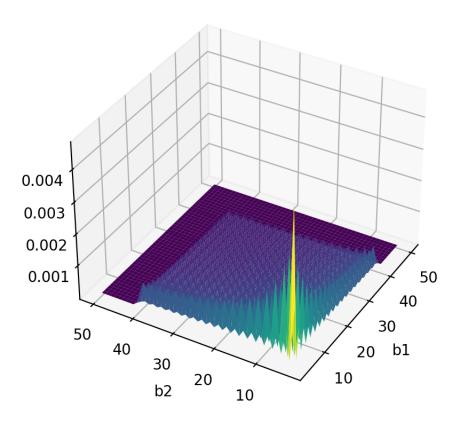
Iter	Primal	Dual	Primal	Dual	Compl	Time
0	3.54466184e+02	0.00000000e+00	6.56e+01	0.00e+00	7.17e-02	6s
1	1.02039241e+02	-3.42235319e-01	1.90e+01	3.44e-01	2.19e-02	6s
2	3.54558943e+01	-6.35811902e-01	6.69e+00	1.82e-01	8.01e-03	7s

```
3
    1.31181307e+01 -8.50759492e-01 2.53e+00 8.08e-02 3.15e-03
                                                                   7s
 4
    1.42065027e+00 -1.10026174e+00 2.43e-01 4.15e-03 3.76e-04
                                                                   7s
5
    5.99466613e-01 -8.33072759e-01 7.22e-02 1.76e-03 1.38e-04
                                                                   7s
 6
    2.54040415e-01 -3.09472803e-01 4.07e-05 2.01e-04
                                                      3.23e-05
                                                                   7s
    2.22956879e-01 1.19737096e-01 2.28e-15 8.18e-06
                                                      5.90e-06
                                                                   8s
8
    1.96108384e-01 1.42764923e-01 6.59e-15 7.04e-06
                                                      3.05e-06
                                                                   8s
9
    1.80886935e-01 1.51119022e-01 1.29e-14 1.47e-06 1.70e-06
                                                                   8s
10
    1.74039339e-01 1.57129919e-01 1.07e-14 7.25e-07
                                                      9.66e-07
                                                                   9s
11
    1.70809078e-01 1.59051574e-01 1.09e-14 5.65e-07
                                                      6.72e-07
                                                                   9s
12
    1.64874907e-01 1.59898983e-01 5.81e-14 4.44e-16
                                                      2.84e-07
                                                                   9s
13
    1.63154080e-01 1.60384235e-01 5.56e-14 2.27e-08 1.58e-07
                                                                   9s
14
    1.61656025e-01 1.60532695e-01 8.29e-14 4.44e-16 6.41e-08
                                                                  10s
15
    1.60986153e-01 1.60610717e-01 5.53e-13 9.17e-09
                                                      2.14e-08
                                                                  10s
16
    1.60828462e-01 1.60637957e-01 3.30e-13 4.44e-16 1.09e-08
                                                                  10s
17
    1.60741498e-01 1.60645968e-01 2.53e-13 4.01e-09 5.45e-09
                                                                  10s
18
    1.60687175e-01 1.60650040e-01 9.28e-14 1.22e-10 2.12e-09
                                                                  10s
19
                                                                  10s
    1.60667677e-01 1.60653826e-01 1.48e-13 8.88e-16 7.91e-10
20
    1.60659490e-01 1.60654304e-01 2.38e-12 8.88e-16 2.96e-10
                                                                  11s
21
    1.60654811e-01 1.60654669e-01 2.40e-11 8.88e-16 8.13e-12
                                                                  11s
22
    1.60654741e-01 1.60654737e-01 5.42e-13 8.88e-16 2.32e-13
                                                                  11s
```

Barrier solved model in 22 iterations and 10.96 seconds (13.37 work units) Optimal objective 1.60654741e-01

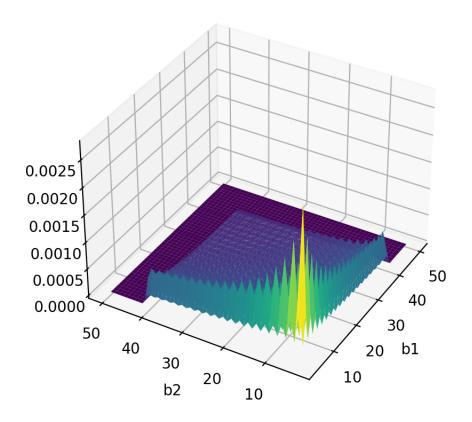
```
In [9]: # We'll now start exploring the solution. The first task is to plot the joint
       # distribution of bids. Create a two-dimensional numpy array whose entries are the
       # marginal probabilities of (b1,b2), according to mu.
       # Hint: This is similar to how you created the array for the optimal
       # flow on problem set 1. But now each entry should be a sum of mu[v,b1,b2] across v in K.
       # -----
       K=range(0,numVals)
       L=range(3, numVals)
       bidDistr = np.array([[sum(mu[v,b1,b2].X for v in K) for b1 in L] for b2 in L])
        # ______
       # Now plot the distribution as a surface, as we did with the optimal flow.
        # -----
       fig = plt.figure()
       ax = plt.axes(projection='3d')
       X, Y = np.meshgrid(L,L)
       ax.plot surface(X, Y, bidDistr, cmap='viridis')
       ax.set xlabel('b1')
       ax.set_ylabel('b2')
       ax.set_title('Bid distribution');
       ax.view init(35,210)
       # What do you notice about the distribution? What does the support look like? Which bids are
       # played with positive probability? Redo the plotting, but at the beginning of the cell,
       # redefine K=range(3,numVals), to drop the lowest bids from the plot that have the highest probability,
       # in order to gain a clearer view of the support.
```

Bid distribution



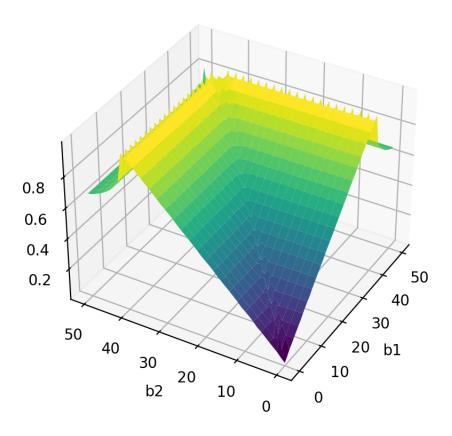
```
In [10]: # I want to better understand the correlation structure between the bids.
         # To that end, let us compute the marginal distribution of each bid. Then
         # use these computed marginals to calculate and plot the product of the marginals.
         # How does this compare to the actual joint distribution? What does it suggest
         # about the correlation structure between the bids?
         # -----
         bidlDistr = np.array([sum(mu[v,b1,b2].X for v in K for b2 in K) for b1 in K])
         bid2Distr = np.array([sum(mu[v,b1,b2].X for v in K for b1 in K) for b2 in K])
         prodDistr = np.array([[bid1Distr[b1]*bid2Distr[b2] for b1 in L] for b2 in L])
         fig = plt.figure()
         ax = plt.axes(projection='3d')
         X, Y = np.meshgrid(L,L)
         ax.plot surface(X, Y, prodDistr, cmap='viridis')
         ax.set xlabel('b1')
         ax.set ylabel('b2')
         ax.set title('Product of the marginals of b2 given b1');
         ax.view init(35,210)
```

Product of the marginals of b2 given b1

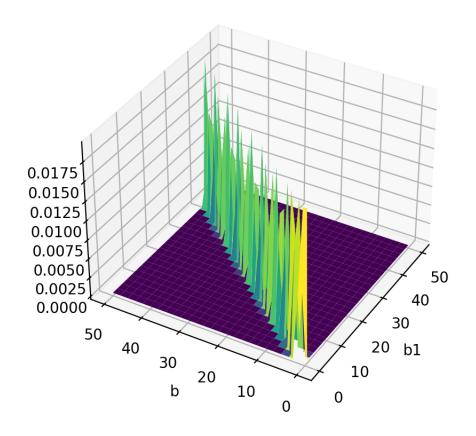


```
In [11]: # Let's continue exploring the solution. The next task is to see
         # how the expected value is related to the bids. Create a new numpy array,
         # called "expVal", that stores the interim expected valuation, conditional on the
         # bids (b1,b2). Hint: now each entry of the ray is a ratio of two sums,
         # sum( mu[v,b1,b2] * V[v] for v in K)/sum( mu[v,b1,b2] for v in K). Once you have created
         # the array, plot it as a surface.
         # Hint: Don't forget to restore K to its original definition, if you changed it.
         K=range(0,numVals)
         expVal = np.array([[sum(V[v]*mu[v,b1,b2].X for v in K)/sum(mu[v,b1,b2].X for v in K) for b1 in K] for b2
         fig = plt.figure()
         ax = plt.axes(projection='3d')
         K=range(0,numVals)
         X, Y = np.meshgrid(K,K)
         ax.plot surface(X, Y, expVal, cmap='viridis')
         ax.set xlabel('b1')
         ax.set ylabel('b2')
         ax.set title('Interim expected value');
         ax.view init(35,210)
         # -----
         # What do you notice about the expected value? What does it depend on? How do you interpret
         # the expected value for the highest bids?
```

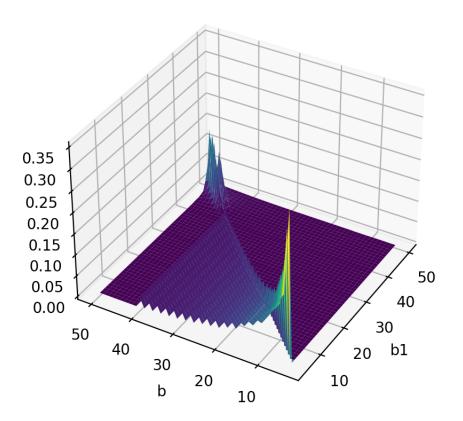
Interim expected value



Joint distribution of high bid and value



Bidder 1s obedience multipliers



```
V={k:k/(numVals-1) for k in K};
B=\{k:0.4*k/(numVals-1) \text{ for } k \text{ in } K\};
reserves = np.linspace(1/16,3/16,31)
minrevs= np.zeros(len(reserves))
def payoff(v,bi,bj,r):
    if (bi>bj and B[bi]>=r):
        return V[v]-B[bi]
    elif (bi==bj and B[bi]>=r):
        return 0.5*(V[v]-B[bi])
    return 0
def profit(b1,b2,r):
    if (max(B[b1], B[b2]) >= r):
        return (max(B[b1],B[b2]))
    return 0
for 1 in range(0,len(reserves)):
    r=reserves[1]
    print(f'Calculating for r={r}')
    model = qp.Model()
    model.Params.OutputFlag = 0; # Disable output
    model.Params.Method = 2; # Barrier algorithm
    model.Params.Crossover = 0; # Disable crossover
    mu = model.addVars(K,K,K)
    probConstr = model.addConstrs(sum(mu[v,b1,b2] for b1 in K for b2 in K)==1/numVals for v in K)
    obed1 = model.addConstrs(sum(mu[v,b1,b2]*(payoff(v,b1,b2,r)-payoff(v,b,b2,r)) for v in K for b2 in K)
    obed2 = model.addConstrs(sum(mu[v,b1,b2]*(payoff(v,b2,b1,r)-payoff(v,b,b1,r)) for v in K for b1 in K)
    U1 = sum(mu[v,b1,b2]*payoff(v,b1,b2,r) for v in K for b1 in K for b2 in K)
    U2 = sum(mu[v,b1,b2]*payoff(v,b2,b1,r) for v in K for b1 in K for b2 in K)
    Rev = sum(mu[v,b1,b2]*profit(b1,b2,r) for v in K for b1 in K for b2 in K)
```

```
Calculating for r=0.0625
Calculating for r=0.06666666666666666667
Calculating for r=0.075
Calculating for r=0.0875
Calculating for r=0.091666666666666666667
Calculating for r=0.1
Calculating for r=0.1125
Calculating for r=0.11666666666666667
Calculating for r=0.125
Calculating for r=0.1291666666666665
Calculating for r=0.1375
Calculating for r=0.15
Calculating for r=0.1541666666666666667
Calculating for r=0.1625
Calculating for r=0.1666666666666669
Calculating for r=0.175
Calculating for r=0.17916666666666667
Calculating for r=0.1875
```

