In

In

ECON 289 Problem set 2
Instructor: Ben Brooks
Spring 2023

R YA NN

This problem set has a series of cells with different programming tasks. You will be asked to
run code that I have written, and also add and run your own code. Add your code between
that look like this:

R NN

To complete the problem set, add your own code, run all the cells, and then submit
a copy of the notebook on canvas. The easiest way to do so is to select "print
preview"”" from the file menu, and then save the new page that opens as a pdf document.

R NN

Please work together to complete the problem set. Also, remember, Google
is your friend. Only ask me for help after you have looked for the
answer on stack overflow.

YR NN

Insert code to load gurobi, numpy, and matplotlib pyplot.

import gurobipy as gp
from gurobipy import GRB

import matplotlib.pyplot as plt

import numpy as np

We are going to add the following code which will help us create
fancy 3d graphs:

from mpl toolkits import mplot3d
$matplotlib notebook

In class we studied correlated equilibria of BoS.
Now I'd like you to compute the set of all correlated equilibrium payoffs.

Start by creating a gurobi model, setting parameter values,

and adding variables to represent the probability of each of
the four outcomes (B,B), (S,S), (B,S), (S,B), and add

a constraint so that these are in fact probabilities.

model = gp.Model()
model.Params.Method = 2 # Barrier algorithm
model.Params.Crossover = 0 # Disable crossover

muBB = model.addVar()

muBS = model.addVar()

muSB = model.addVar ()

muSS = model.addVar()

probConstr = model.addConstr (muBB + muBS + muSB + muSS == 1)
H

Set parameter Username

Academic license - for non-commercial use only - expires 2024-03-14
Set parameter Method to value 2

Set parameter Crossover to value 0

Now add the obedience constraints for the model.
action "recommended" by the mediator and for every
there is a constraint that the player not

for every

possible deviation,

gain from

Obedience
obedBtoS1 =
Obedience
obedStoBl =
Obedience
obedBtoS2 =
Obedience
obedStoB2 =

the deviation, in expectation.

for B for player 1
model.addConstr (muBB* (3-0)+muBS*(0-1)>=0)
for S for player 1
model.addConstr (muSB* (0-3)+muSS*(1-0)>=0)
for B for player 2
model.addConstr (muBB* (1-0)+muSB* (0-3)>=0)
for S for player 2
model.addConstr (muSS* (3-0)+muBS*(0-1)>=0)

In particular,

Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 5 rows, 4 columns and 12 nonzeros

Model fingerprint: 0x87470bad

Coefficient statistics:

Matrix range [le+00, 3e+00]
Objective range [le+00, 1le+00]
Bounds range [0e+00, 0e+00]
RHS range [le+00, 1le+00]

Presolve removed 1 rows and 1 columns
Presolve time: 0.01s

Presolved: 4 rows, 3 columns, 10 nonzeros

Ordering time: 0.00s
Barrier statistics:
AA' NZ : 6.000e+00
Factor NZ : 1.000e+01
Factor Ops : 3.000e+01 (less than 1 second per iteration)
Threads 1
Objective Residual
Iter Primal Dual Primal Dual Compl Time
0 1.17744397e+00 4.09028728e-01 7.07e-01 4.19e-01 4.6le-01 0s
1 4.49820687e-01 7.62345849e-01 0.00e+00 0.00e+00 4.46e-02 0s
2 6.05706196e-01 6.45075381e-01 0.00e+00 0.00e+00 5.62e-03 0s
3 6.24619889e-01 6.25810713e-01 0.00e+00 2.22e-16 1.70e-04 0s
4 6.24999633e-01 6.25000824e-01 0.00e+00 8.49e-17 1.70e-07 0s
5 6.25000000e-01 6.25000001e-01 0.00e+00 0.00e+00 1.70e-10 0s

Barrier solved model in 5 iterations and
Optimal objective 6.25000000e-01

0.03 seconds (0.00

work units)

Now print out the probabilities of each
action. Also print out the multipliers on the obedience
constraints.

print(f'The CE that maximizes the probability of miscoordination is (mu(B,B),mu(B,S),mu(S,B),mu(S,S))=({n
print (f'The optimal multipliers on the obedience constraints are: (probConstr,B to S for 1,S to B for 1,E

Are these numbers the same as what we computed in lecture? Why or why not?

The CE that maximizes the probability of miscoordination is (mu(B,B),mu(B,S),mu(S,B),mu(S,S))=(0.1875000
002442437,0.5625000003144034,0.062499999318764266,0.18750000012258863).

The optimal multipliers on the obedience constraints are: (probConstr,B to S for 1,S to B for 1,B to S £
or 2, S to B for 2)=(0.6250000008240698,-0.19478750888521262,-0.0843625291512647,-0.04063747416843202,-0
.18021249044025534).

Now I want you to do something a bit more complicated. I want you to compute
the whole set of correlated equilibrium payoffs. First, create expressions Ul and U2
for the utilities of players 1 and 2.

Ul = 3*muBB + muSS
U2 = muBB + 3*muSS

Now we will create a large grid of directions
numDirs = 200

D=range(0,numDirs)

Theta = {d: d#*2#%3.14/numDirs for d in D}

I will also create an empty numpy array to store the calculated values of Ul in each direction.
I create one extra space at the end, for a reason that you'll see in a minute.

ul=np.zeros (numDirs+1)

Now you create a similar array for U2 called u2:

u2=np.zeros (numDirs+1)

Before proceeding, it's prudent to turn off Gurobi's output. Do this by setting the "output" parameter
to the appropriate value.

Now we will use a loop to compute, for each direction, the optimal payoffs
for d in D:
theta=Theta[d]
model.setObjective(np.cos(theta)*Ul+np.sin(theta)*U2,GRB.MAXIMIZE)
model.optimize()
ul[d]=Ul.getValue()
u2[d]=U2.getValue()

ul[numDirs]=ul[0]
u2[numDirs]=u2[0]

Finally, plot the data you have collected, using similar code as we used in problem set 1.

fig, ax = plt.subplots()
plt.plot(ul,u2)

ax.set xlabel('Ul")
ax.set ylabel('U2")
plt.axis('equal')
plt.show()

What do you notice about the set of correlated equilibrium payoffs? What are its extreme points?

3.0

2.5 1

2.0 A

U2

1.5 1

1.0 -

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Ul

Now we will do something a bit more involved. You will compute the revenue

minimizing BCE of a discretized first price auction. There is a pure common value

that is uniformly distributed on a uniform grid between 0 and 1. We will parametrize
the model by the number of values and bids.

Create a new model. Set the method to barrier, disable crossover, and turn on output.

model = gp.Model()

model .Params.Method = 2 # Barrier algorithm
model.Params.Crossover = 0 # Disable crossover
model.Params.OutputFlag = 1 # Enable output

Next, create a variable called "numVals" and set it equal to 51. Then create a new range
array, called "K", with entries from 0 to numVals.

numVals = 51
K=range(0,numVals)

The next task 1is to create two dictionaries, one called "V" and the other called "B".

The dictionary V should map k in K into k/(numVals-1). This will be our uniformly spaced grid of commor
values on the interval [0,1]. Then make B map k in K into a uniform grid on the interval [0,0.4].

This will be large enough for our purposes.

V={k:k/(numvals-1) for k in K};
B={k:0.4*k/(numvals-1) for k in K};

Now we will need a function called "payoff" that maps the arguments (v,bi,bj), which will be
elements of K, respectively, into the payoff of a bidder who bids B[bi], when the other bidder
bids B[bj], and the value is V[v]. The payoff should be V[v]-B[bi] if B[bi]>B[bj], and 0 if

B[bi] < B[bj], and there should be a 1/2 chance of winning if the bidders tie.

def payoff(v,bi,bj):
if (bi>bj):
return V[v]-B[bi]
elif (bi==bj):
return 0.5*(V[v]-B[bi])
return 0

Now we are ready to populate the model. Add variables indexed (v,bi,bj) for v in K,
bi in K, and bj in K.

mu = model.addVars (K, K,K)

Next, for each v, add a constraint that the marginal probability of v is 1/numvVals.
Hint: For each v, sum mu across bl and b2, and set the sum equal to 1/numVals.

probConstr = model.addConstrs(sum(mu[v,bl,b2] for bl in K for b2 in K)==1/numvVals for v in K)

Next we need to add the obedience constraints. This is a little tricky, so I'm going to show you how tc
it with the obedience constraints for bidder 1:

obedl = model.addConstrs(sum(mu[v,bl,b2]*(payoff(v,bl,b2)-payoff(v,b,b2)) for v in K for b2 in K) >= 0 fc
Notice that I added a constraint for every recmomended bl and deviation b. For each (bl,b),

I summed across (v,b2) the difference in bidder 1's payoff if they bid bl versus b.
Now you add the obedience constraints for bidder 2.

obed2 = model.addConstrs(sum(mu[v,bl,b2]*(payoff(v,b2,bl)-payoff(v,b,bl)) for v in K for bl in K) >= 0 fc

Now create expressions for each bidder's payoff and for revenue, and name them Ul, U2, and Rev.

Ul = sum(mu[v,bl,b2]*payoff(v,bl,b2) for v in K for bl in K for b2 in K)
U2 sum(mu[v,bl,b2]*payoff(v,b2,bl) for v in K for bl in K for b2 in K)
Rev = sum(mu[v,bl,b2]*max(B[bl],B[b2]) for v in K for bl in K for b2 in K)

model.setObjective (Rev,GRB.MINIMIZE)

model.optimize()

What do you get for the approximate value of minimum expected revenue?

Set parameter Method to value 2

Set parameter Crossover to value 0

Warning for adding constraints: zero or small (< le-13) coefficients, ignored
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[x86])

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 5253 rows, 132651 columns and 9128631 nonzeros

Model fingerprint: 0x3d3dlfbc

Coefficient statistics:

Matrix range [2e-03, 1let00]
Objective range [8e-03, 4e-01]
Bounds range [0e+00, 0e+00]
RHS range [2e-02, 2e-02]

Presolve removed 102 rows and 121 columns

Presolve time: 2.88s

Presolved: 5151 rows, 132530 columns, 9123960 nonzeros
Ordering time: 0.00s

Barrier statistics:

AA' NZ : 1.297e+06

Factor NZ : 2.263e+06 (roughly 50 MB of memory)

Factor Ops : 2.895e+09 (less than 1 second per iteration)

Threads 4

Objective Residual

Iter Primal Dual Primal Dual Compl Time
0 3.54466184e+02 0.00000000e+00 6.56e+01 0.00e+00 7.17e-02 6s
1 1.02039241e+02 -3.42235319e-01 1.90e+01 3.44e-01 2.19e-02 6s

2 3.54558943e+01 -6.35811902e-01 6.69e+00 1.82e-01 8.01e-03 s

0 o U W

9
10
11
12
13
14
15
16
17
18
19
20
21
22

PR PR RRPRRRPRPRRERRRBERERRRERNDNDOORRE

.31181307e+01
.42065027e+00
.99466613e-01
.54040415e-01
.22956879e-01
.96108384e-01
.80886935e-01
.74039339e-01
.70809078e-01
.64874907e-01
.63154080e-01
.61656025e-01
.60986153e-01
.60828462e-01
.60741498e-01
.60687175e-01
.60667677e-01
.60659490e-01
.60654811e-01
.60654741e-01

PR R R R RRRRRBRRRRBRBR

.50759492e-01
.10026174e+00
.33072759e-01
.09472803e-01
.19737096e-01
.42764923e-01
.51119022e-01
.57129919e-01
.59051574e-01
.59898983e-01
.60384235e-01
.60532695e-01
.60610717e-01
.60637957e-01
.60645968e-01
.60650040e-01
.60653826e-01
.60654304e-01
.60654669e-01
.60654737e-01

GO NDNEFE ODNWOUOULOOULVUEFE EFEPEFEFONDDBINNDN

.53e+00
.43e-01
.22e-02
.07e-05
.28e-15
.59e-15
.29e-14
.07e-14
.09e-14
.81le-14
.56e-14
.29e-14
.53e-13
.30e-13
.53e-13
.28e-14
.48e-13
.38e-12
.40e-11
.42e-13

Barrier solved model in 22 iterations and 10.96
Optimal objective 1.60654741e-01

.08e-02
.15e-03
.76e-03
.0le-04
.18e-06
.04e-06
.47e-06
.25e-07
.65e-07
.44e-16
.27e-08
.44e-16
.17e-09
.44e-16
.01le-09
.22e-10
.88e-16
.88e-16
.88e-16
.88e-16

W 00 00 OO KR & VW NI, J00NRF &
NODNSNIDNOUOUORFREDNMNORFEDNMNMODOOURE WULWERE WW

seconds (13.

.15e-03
.76e-04
.38e-04
.23e-05
.90e-06
.05e-06
.70e-06
.66e-07
.72e-07
.84e-07
.58e-07
.41e-08
.14e-08
.09e-08
.45e-09
.12e-09
.91e-10
.96e-10
.13e-12
.32e-13

7s
7s
7s
7s
8s
8s
8s
9s
9s
9s
9s
10s
10s
10s
10s
10s
10s
11ls
11s
1l1s

37 work units)

In [9]: # we'll now start exploring the solution. The first task is to plot the joint
distribution of bids. Create a two-dimensional numpy array whose entries are the
marginal probabilities of (bl,b2), according to mu.

Hint: This is similar to how you created the array for the optimal
flow on problem set 1. But now each entry should be a sum of mu[v,bl,b2] across v in K.

K=range(0,numVals)
L=range(3,numVals)
bidDistr = np.array([[sum(mu[v,bl,b2].X for v in K) for bl in L] for b2 in L])

fig = plt.figure()
ax = plt.axes(projection='3d")

X, Y = np.meshgrid(L,L)
ax.plot surface(X, Y, bidDistr, cmap='viridis')

ax.set xlabel('bl')
ax.set ylabel('b2")
ax.set title('Bid distribution');
ax.view init(35,210)

What do you notice about the distribution? What does the support look like? Which bids are

played with positive probability? Redo the plotting, but at the beginning of the cell,

redefine K=range(3,numVals), to drop the lowest bids from the plot that have the highest probability,
in order to gain a clearer view of the support.

0.004
0.003
0.002
0.001

Bid distribution

I want to better understand the correlation structure between the bids.

To that end, let us compute the marginal distribution of each bid. Then

use these computed marginals to calculate and plot the product of the marginals.
How does this compare to the actual joint distribution? What does it suggest

about the correlation structure between the bids?

bidlDistr = np.array([sum(mu[v,bl,b2].X for v in K for b2 in K) for bl in K])
bid2Distr = np.array([sum(mu[v,bl,b2].X for v in K for bl in K) for b2 in K])
prodDistr = np.array([[bidlDistr[bl]*bid2Distr[b2] for bl in L] for b2 in L])

fig = plt.figure()
ax = plt.axes(projection='3d")

X, Y = np.meshgrid(L,L)

ax.plot surface(X, Y, prodDistr, cmap='viridis')
ax.set xlabel('bl')

ax.set ylabel('b2")

ax.set _title('Product of the marginals of b2 given bl');
ax.view init(35,210)

Product of the marginals of b2 given bl

0.0025
0.0020
0.0015
0.0010
0.0005
0.0000

Let's continue exploring the solution. The next task is to see

how the expected value is related to the bids. Create a new numpy array,

called "expVal", that stores the interim expected valuation, conditional on the

bids (bl,b2). Hint: now each entry of the ray is a ratio of two sums,

sum(mu[v,bl,b2] * V[v] for v in K)/sum(mu[v,bl,b2] for v in K). Once you have created
the array, plot it as a surface.

B R T N N NI N

K

Hint: Don't forget to restore K to its original definition, if you changed it.

K=range(0,numVals)
expvVal = np.array([[sum(V[v]*mu[v,bl,b2].X for v in K)/sum(mu[v,bl,b2].X for v in K) for bl in K] for b2

fig = plt.figure()
ax = plt.axes(projection='3d")

K=range(0,numVals)
X, Y = np.meshgrid(K,K)

ax.plot surface(X, Y, expVal, cmap='viridis')

ax.set xlabel('bl")
ax.set ylabel('b2')
ax.set title('Interim expected value');
ax.view init(35,210)

What do you notice about the expected value? What does it depend on? How do you interpret
the expected value for the highest bids?

Interim expected value

The previous picture should suggest a particular correlation structure between
the value and the bids. To gain further insight into this relation, plot the joint
distribution of the value and the high bid.

What do you conclude about the correlation structure?

valHighBidDistr = np.array([[sum(mu[v,bl,b2].X for b2 in K if b2<=bl) + sum(mu[v,b2,bl].X for b2 in K if

fig = plt.figqure()
ax = plt.axes(projection='3d")

X, Y = np.meshgrid(K,K)

ax.plot surface(X, Y, valHighBidDistr, cmap='viridis')
ax.set xlabel('bl')

ax.set _ylabel('b")

ax.set title('Joint distribution of high bid and value');
ax.view init(35,210)

Joint distribution of high bid and value

0.0175
0.0150
0.0125
0.0100
0.0075
0.0050
0.0025
0.0000

Finally, plot the multipliers on bidder 1's obedience constraints.

K=range(4,numVals)
obedMultl = np.array([[obedl[bl,b].Pi for bl in K] for b in K])

fig = plt.figqure()
ax = plt.axes(projection='3d")

X, Y = np.meshgrid(K,K)
ax.plot surface(X, Y, obedMultl, cmap='viridis')

ax.set xlabel('bl')

ax.set _ylabel('b")

ax.set title('Bidder 1''s obedience multipliers');
ax.view init(35,210)

What structure do you notice on the multipliers? Which obedience constraints
bind? How does the multiplier depend on the recommendation and deviation? You may
again want to redefine the range to, say, K=range(3,numVals), in order to get a clearer picture.

Bidder 1s obedience multipliers

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Now repeat the exercise for a first-price auction with a
reserve price r.

Try to determine the value of r that maximizes
minimum expected revenue.

numVals = 31

K=range(0,numVals)

V={k:k/(numvVals-1) for k in K};
B={k:0.4*k/(numvVals-1) for k in K};

reserves = np.linspace(1l/16,3/16,31)
minrevs= np.zeros(len(reserves))

def payoff(v,bi,bj,r):
if (bi>bj and B[bi]>=r):
return V[v]-B[bi]
elif (bi==bj and B[bi]>=r):
return 0.5*(V[v]-B[bi])
return 0

def profit(bl,b2,r):
if (max(B[bl],B[b2])>=r):
return (max(B[bl],B[b2]))
return 0

for 1 in range(0,len(reserves)):
r=reserves[l]
print(f'Calculating for r={r}')
model = gp.Model()
model.Params.OutputFlag = 0; # Disable output
model.Params.Method = 2; # Barrier algorithm
model.Params.Crossover = 0; # Disable crossover
mu = model.addvVars (K,K,K)
probConstr = model.addConstrs(sum(mu[v,bl,b2] for bl in K for b2 in K)==1/numVals for v in K)

obedl
obed2

model.addConstrs(sum(mu[v,bl,b2]* (payoff(v,bl,b2,r)-payoff(v,b,b2,r)) for v in K for b2 in K)
model.addConstrs(sum(mu[v,bl, b2]*(payoff(v,b2,bl,r)-payoff(v,b,bl,r)) for v in K for bl in K)

Ul = sum(mu[v,bl,b2]*payoff(v,bl,b2,r) for v in K for bl in K for b2 in K)
U2 sum(mu[v,bl,b2]*payoff(v,b2,bl,r) for v in K for bl in K for b2 in K)
Rev = sum(mu[v,bl, b2]*profit(bl,b2,r) for v in K for bl in K for b2 in K)

model.setObjective (Rev,GRB.MINIMIZE)
model.optimize()

minrevs[l]=Rev.getValue()

fig, ax = plt.subplots()
plt.plot(reserves,minrevs)
ax.set xlabel('reserve')

ax.set ylabel('minimum revenue')
plt.show()

Optimum is around 1/8

Calculating for r=0.0625

Calculating for r=0.06666666666666667
Calculating for r=0.07083333333333333
Calculating for r=0.075

Calculating for r=0.07916666666666666
Calculating for r=0.08333333333333333
Calculating for r=0.0875

Calculating for r=0.09166666666666667
Calculating for r=0.09583333333333333
Calculating for r=0.1

Calculating for r=0.10416666666666666
Calculating for r=0.10833333333333334
Calculating for r=0.1125

Calculating for r=0.11666666666666667
Calculating for r=0.12083333333333333
Calculating for r=0.125

Calculating for r=0.12916666666666665
Calculating for r=0.13333333333333333
Calculating for r=0.1375

Calculating for r=0.14166666666666666
Calculating for r=0.14583333333333331
Calculating for r=0.15

Calculating for r=0.15416666666666667
Calculating for r=0.15833333333333333
Calculating for r=0.1625

Calculating for r=0.16666666666666669
Calculating for r=0.17083333333333334
Calculating for r=0.175

Calculating for r=0.17916666666666667
Calculating for r=0.18333333333333335
Calculating for r=0.1875

minimum revenue

0.171 A

0.170 A

0.169 A

0.168 A

0.167 A

0.166 A

0.06

0.08

0.10

0.12
reserve

0.14

0.16

0.18

