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1 Introduction

Consider a market in which a large number goods are sold to a large number of buyers. The
buyers have a common value for the good, and private and differential information. Each
buyer first decides whether or not to place an order to purchase the good. A market price is
then determined as a function of the aggregate order (i.e., the number of buyers who wish
to purchase). Finally, buyers who placed orders receive the good at the market price, with
the good being rationed if orders exceed the number of units available.

In this paper, we characterize the set of possible welfare outcomes that could obtain under
such “market order” mechanisms, as we range across all models of the buyers’ information
and Bayes Nash equilibria. We are especially interested in the limit when the number of
buyers goes to infinity, as a description of welfare in large markets. A standard intuition is
that in this limit, buyers will compete away all their rents, and expected revenue-per-unit
will converge to the expected value. A key question is whether or not the limit welfare
outcome is “competitive” in this sense, that the goods sell out and expected buyer surplus
converges to zero.

In general, the welfare outcome in the large-market limit will depend on the sequence
of pricing functions, and as we illustrate with examples, the limit outcome need not be
competitive. There are two key frictions that could be at work: First, if the price were to
jump up at a particular number of orders, then the economy could end up in an equilibrium
where the number of orders and the market price are at the lower side of the jump, the
expected value is strictly above the market price. However, no more buyers want to purchase,
as that would push the price up above the value. In such a situation, buyers would still obtain
rents, even when there are infinitely many of them, and sales may be inefficiently low.

Second, even if the price varies smoothly with the amount demanded, then there is still
scope for the aggregate order to be correlated with the value in such a manner as to depress
prices and revenue. The key issue is that when the aggregate order can vary with the value,
then average expected value among buyers who place orders can be very different from the
average expected value among buyers who do not place orders. This could in turn support
non-competitive outcomes where the market price is lower than the values of buyers who
place orders but above the values of those who do not place orders.

Our first main result formalizes the role played by these anticompetitive phenomena, and
provides a lower bound on revenue that depends on three terms: (i) the pricing rule’s price
impact, which is the maximum amount by which a single order can change the price; (ii)
the window of price discovery, which is the range of fractions of the population shares of
buyers who place orders over which the market price takes on intermediate values; and (iii)
the number of buyers. The lower is the price impact, the smaller is the window of price
discovery, and the larger is the number of buyers, the closer is the price per unit sold to the
expected value.

We say that a sequence of pricing rules (indexed by the number of buyers) has vanishing
price impact if the price impact goes to zero. The sequence is asymptotically inelastic if the
window of price discovery converges to a point, meaning that the range of aggregate orders
for which the price is intermediate grows strictly slower than the number of buyers. An
immediate corollary of our main result is that if a sequence of pricing rules has vanishing
price impact and is asymptotically inelastic, then in the limit, the expected price per unit
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sold converges to the expected value. Moreover, as long as the window of price discovery is
sufficiently high, then the good will sell out. Moreover, buyer surplus converges to zero. It
is in this sense that market order mechanisms are “competitive” in the limit. Moreover, this
converges result holds regardless of the sequence of information structures and equilibria.

There are two interpretations of these results: In one interpretation, there is a monop-
olistic seller who can produce multiple units at zero cost. The seller chooses the pricing
function and commits to sell via a market order mechanism. In that setting, our results
imply that in the limit of a large market, the seller can extract all of the surplus, no matter
the buyers’ information and equilibrium strategies. This generalizes a finding of Brooks and
Du (2021) when there was a single unit for sale to the case where there are many units for
sale, and the number of available units can grow with the size of the market. We also show
that full surplus extraction can be achieved within the relatively simple class of market order
mechanisms.

In the second interpretation, the buyers interact in a decentralized market. After making
their purchase decisions, a pool of (at least two) sellers compete via Bertrand competition to
attract buyers and fill orders. The pricing rule is the market supply curve. In this setting,
our theorem shows that if the supply curve is asymptotically inelastic and has vanishing price
impact, then the market outcome is efficient, and buyers compete away all rents. Moreover,
the efficient and competitive outcome is obtained regardless of the buyers’ information or
which equilibrium is played.

The assumption that price impact vanishes seems relatively innocuous, but the assump-
tion that the market supply curve is approximately inelastic is quite strong. And as our
examples show, if the market supply curve is elastic, then the outcome may be socially
efficient, and buyers need not compete away their rents. It is important to note that in
our model, if the supply curve is not inelastic, then it may be infeasible to implement the
ex post efficient outcome, simply because the buyers may not collectively know the value
(which must be known in order to determine how much of the good should be produced).
A natural benchmark for welfare is the surplus that would be realized if the buyers had no
information at all, except for knowing the prior distribution of the value. Our second main
result shows that even though the market outcome may be ex post or even interim inefficient,
social surplus cannot fall below the no information benchmark. Thus, regardless of the form
of private information and the equilibrium, information is always welfare enhancing relative
to no information.

The way we model behavior in decentralized markets may be contrasted with more stan-
dard approaches, especially the celebrated rational expectations equilibrium (REE). In REE,
it is presumed that each trader observes the market price before deciding whether or not
to trade, and moreover, that traders understand the equilibrium relationship between prices
and fundamentals. In our model, the buyers may not know the price at the time they decide
whether or not to trade. Since our positive results hold across all information structures and
equilibria, they do cover those instances where buyers do know what will be the equilibrium
aggregate order, and hence the market price. But in our negative results, it is certainly the
case that buyers might wish to change their actions if they knew the eventual market price.

The simultaneous determination of prices and trades in REE has long been a source of
discomfort among economists, and a substantial literature has attempted to reconcile this
conceptual quandary by explicitly modeling large but finite markets (Wilson, 1977; Milgrom,
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1979; Pesendorfer and Swinkels, 1997; Kremer, 2002; Bali and Jackson, 2002; Reny and Perry,
2006). This literature on “microfounding” REE has relied on auction-like mechanisms, such
as first-price auctions or double auctions. In such mechanisms, a trader’s action is related to
a price at which they are willing to trade, and in that sense they function more like “limit
orders.” Whether or not behavior in these mechanisms converges to REE depends on the
assumed sequence of information structures and also on the particular sequence of equilibria
being played. It is by now well understood that the limit outcome of these mechanisms
need not be an REE or even competitive (Engelbrecht-Wiggans, Milgrom, and Weber, 1983;
Bergemann, Brooks, and Morris, 2017; Barelli, Govindan, and Wilson, 2023). Unlike much
of this literature, our objective is not to justify or microfound REE. Rather, we take the
market order mechanism seriously as a model of how agents interact through the market.
For the case of nearly inelastic pricing rules, we obtain convergence to competitive outcomes,
although the limit behavior need not be a REE.

Is it reasonable to model market behavior in this manner, wherein individuals decide
whether or not to buy based on expectations of the price, rather than the price itself?
Consider a family that is deciding whether to go on a weekend road trip. Halfway through
the road trip, they will have to refill the car with gas. Do they know exactly the price they
will pay? Once on the road, if the realized price at the pump is higher than expected, will
they simply abandon the car with an empty tank? Surely, in this situation, it is reasonable to
model the decision to buy gas as being made at the beginning of the trip and before the price
is known, but with rational expectations of the price. A separate but related issue is that
there is an abundance of evidence that consumers are rationally inattentive to prices, with
a prominent example being the widely documented “left-digit bias” (see, e.g., List et al.,
2023, and references therein). One could view our model as being appropriate in a setting
where traders have some information about fundamentals and about others information, but
learning more about price may be prohibitively costly.

Pushing beyond our headline results, we also demonstrate that market order mechanisms
can achieve competitive outcomes in two extensions of our baseline model. The first ex-
tension, motivated by Pesendorfer and Swinkels (2000), has buyers with both common and
private components in value; each buyer knows their private value component and may have
arbitrary information about the common value component. We show that as the number
of buyers grows large, the expected price in the market order mechanism converges to the
expected value of the marginal buyer, i.e., the market clearing price at which demand equals
the supply. Moreover, the welfare in the decentralized market must be at least the optimal
welfare when all buyers have no information beyond their private value components. The
second extension allows for uncertainty about the value, the number of potential buyers,
as well as the number of units that are available. We show market order mechanisms also
eliminate any winner’s curse that might arise through correlation between the number of
potential buyers and the value, such as that described in Lauermann and Wolinsky (2017,
2022). Thus, the competitive outcome is still obtained even when the value and the numbers
of buyers and units are both uncertain and correlated.

Methodologically, the present paper is an application of the framework for informationally-
robust mechanism design described in Brooks and Du (2024). In particular, the proof of our
main result proceeds by computing a lower bound on expected revenue, where the lower
bound is an expected (over states) lowest (over action profiles) strategic virtual objective.
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This tool was introduced in Brooks and Du (2024), and represents a kind of dual coun-
terpart of the virtual value that is familiar from auction theory.1 In general, the strategic
virtual objective is defined, for each given action profile and payoff-relevant state, to be the
designer’s objective plus the changes in agents’ utilities from “local” deviations away from
the action that corresponds to opting out. In market order mechanisms, there are only two
actions, buy and not buy. This leads to an especially simple and tractable form for the
strategic virtual objective.

The rest of this paper is organized as follows. Section 2 describes our model. Section
3 presents our results on revenue maximization by a monopolist seller. Section 4 contains
results on decentralized markets. Section 5 presents results with both common and private
components in value. Section 6 is a discussion and conclusion. An appendix contains omitted
proofs as well as additional results when values, the number of buyers, and the number of
goods may be correlated.

2 Market Order Mechanisms

There are N buyers with unit demand and K units of a good.
The buyers have a pure common value for the good denoted v P V “ rv, vs Ď R`. The

distribution of common values is denoted µ P ∆pV q.
The buyers’ private information about the common value is described by an information

structure I “ pS, σq, where Si is a finite set of signals (or types) for buyer i, S “
ś

i Si, and
σ P ∆pV ˆ Sq is the joint distribution of the values and signals. We let Ipµq be the set of
information structures for which margV σ “ µ.

Throughout the paper, we focus on a particular class of market order mechanisms by
which trade occurs: Each buyer takes an action ai P t0, 1u. Given an action profile a, the
probability that buyer i receives a unit is airpΣaq, where

rpnq ” minpK{n, 1q,

and Σa “
ř

i ai. In addition, buyers who receive a unit pay a price pp
ř

i aiq, where p :
t0, 1, . . . , Nu Ñ R` is a pricing rule.

For mechanisms of this form, one can interpret ai “ 1 as a market order to buy one
unit of the good, at whatever is the prevailing market price. The market price, in turn,
is a function of the aggregate order. By contrast, the bid in a first-price or second-price
auction should be interpreted as a limit order to buy a unit at a given price (cf. Jovanovic
and Menkveld, 2022).

Note that if a buyer does not place an order, ai “ 0, then they do not receive a unit and
they do not pay anything. Hence, market order mechanisms satisfy the notion of participation
security of Brooks and Du (2021, 2024).

Buyer i’s expected utility given a strategy profile b and the pricing rule p is

Uipp, I, bq “

ż

v,s,a

airpΣaqpv ´ ppΣaqq
ź

i

bipai|siqσpdv, dsq.

1More precisely, the strategic virtual objective is the dual counterpart to the informational virtual objec-
tive, which is a generalization of the virtual value that was introduced in Myerson (1981).
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A (Bayes-Nash) equilibrium for the game pp, Iq is a strategy profile b such that Uipp, I, bq ě

Uipp, I, pb1
i, b´iqq for all strategy b1

i and all buyer i. Let Epp, Iq be the set of equilibria for
pp, Iq. Because actions and signals are finite, the set of equilibria is always non-empty.

Let Rpp, I, bq be the expected revenue at an equilibrium b:

Rpp, I, bq “

ż

v,s,a

ÿ

i

airpΣaqppΣaq
ź

i

bipai|siqσpdv, dsq.

Define the revenue guarantee of the market order mechanism with pricing rule p under the
prior µ as the infimum expected revenue over all information structures I P Ipµq and all
equilibria b P Epp, Iq:

Rpp, µq “ inf
IPIpµq

inf
bPEpp,Iq

Rpp, I, bq.

The revenue guarantee is also the minimum expected revenue across all Bayes correlated
equilibria (see discussions in, e.g., Bergemann and Morris, 2016; Bergemann et al., 2017;
Brooks and Du, 2021).

For some of our results, we will consider sequences of economies where N goes to infinity,
and K, µ, and p may vary with N , but the range of possible values V will be held fixed.

3 Revenue Guarantees in Large Markets

3.1 Motivating examples

We now adopt the perspective that the pricing rule p is chosen by a monopoly seller, who
can produce the goods at zero cost, and whose objective is to maximize expected revenue.

Before describing our main results, we will illustrate what might happen to revenue under
two natural candidates for the pricing rule. These examples will serve to illustrate forces
that might induce non-competitive outcomes even when N is large and will serve to motivate
the pricing rules that we propose. We assume K “ 1 in this section for simplicity.

3.1.1 Posted Price

The first candidate is a class of “posted price” rules:

ppnq “

#

0 n ď pn,

π n ą pn,

where pn is a participation cutoff and π P r0, 1s is a posted price. This rule is depicted
in Figure 1 in blue. It can be viewed as a generalization of the conventional posted price
mechanism, which is obtained when pn “ 0.

Taking this pricing rule as given, we now exhibit an information structure for which
expected revenue is bounded away from the expected value, no matter how large is the
market. First, consider the case where π ă 1. Suppose v P t0, 1u, both values equally likely.
Furthermore, assume that the buyers have full information, meaning that for all i, si “ 1
when v “ 1 and si “ 0 when v “ 0. An equilibrium is that all buyers place orders if and
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Figure 1: Pricing rules.

only if v “ 1. Therefore, regardless of N , revenue is π{2, which is strictly below the expected
value of 1{2, no matter how large is the market.

Now consider the case where π “ 1. Suppose the information structure is such that
only tpnu buyers have a full information about the value, and the rest of the buyers have no
information beyond the prior distribution. Then it is an equilibrium for the tpnu buyers with
full information to place orders if v “ 1 and no orders otherwise, and the buyers with no
information never place orders. Under such an equilibrium, the aggregate order is always
just below pn, and hence the market price is 0.

The reason for the low revenue in these cases is that the pricing rule has a sudden jump
from 0 to π, and the limited number of prices precludes price discovery. This suggests that for
a market order mechanism to induce a competitive outcome, price jumps must be negligible.

3.1.2 Linear Pricing

Another natural pricing rule is the linear function ppnq “ n{N . For comparison, this rule is
also depicted in Figure 1 in red.

Let us construct an information structure where the linear pricing fails to obtain the
efficient surplus even when N is large. Again, suppose that v P t0, 1u and both are equally
likely. Suppose N is even and let Si “ t0, 1, uu. If v “ 1, then exactly N{2 of the buyers
(uniformly drawn from the set of all buyers) observe the uninformative signal si “ u, and
the other N{2 buyers observe the perfectly informative signal si “ 1. Likewise, if v “ 0, then
exactly N{2 buyers (uniformly drawn from the set of all buyers) observe the uninformative
signal si “ u, and the other N{2 observe the perfectly informative signal si “ 0.

We claim that for this information structure, it is an equilibrium for the buyers to place
orders if si “ 1 and to not place orders otherwise. The equilibrium constraints for si “ 1
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and si “ 0 are trivial, because under the proposed strategies, the price for the si “ 1 types
is just 1{2, so they strictly prefer to place orders, whereas for the si “ 0 types the price is
0, but the value is zero too, so they are happy to not place an order. For the uninformed
si “ u types, the payoff from placing an order is

1

2

ˆ

1 ´

ˆ

1

2
`

1

N

˙˙

1
N
2

` 1
`

1

2

ˆ

0 ´
1

N

˙

ă
1

4

2

N
´

1

2

1

N
“ 0.

As this payoff is non-positive, not placing an order is optimal for the si “ u types in
equilibrium.

In this equilibrium, the price is positive only if v “ 1, but the price is 1{2 ă 1, so the
expected price is bounded away from the expected value regardless of N . In effect, there
is a winner’s curse that keeps the si “ u types from placing orders. Were an uninformed
buyer to place an order, they would win with probability 1 when v “ 0 and obtain a net
payoff of ´1{N , but they would only win with probability 2{pN ` 2q when v “ 1 and obtain
a net payoff of 1{2 ´ 1{N conditional on winning. The net payoff is negative. In contrast,
the rules we propose in the next section force the equilibrium participation rate to be in a
narrow window with high probability. This effectively shuts down any updating about the
value from the fact that one is allocated the good, and thereby precludes a winner’s curse.

3.2 Sufficient Conditions for Competitive Outcomes

We now present our main result, which requires a few definitions.
The price impact of a pricing rule p is γ “ maxn |ppn` 1q ´ ppnq|. Note that γ may vary

with N , as p depends on N .
We say that p P R is an admissible low price if v “ 0 and p “ 0, and otherwise p ă v.
A window of price discovery for a pricing rule p is a triple pp, x, ϵq P R3 with the following

properties: (i) p is an admissible low price and (ii) if n{N ě x ` ϵ then ppnq ě v, and if
n{N ď x ´ ϵ then ppnq ď p. In other words, price discovery must occur in the window
rNpx ´ ϵq, Npx ` ϵqs.

Theorem 1. Fix v, v, p that is an admissible low price, and x P p0, 1q. Then there exist
constants A, B, and C with the following property: For any N , K, µ, and pricing rule p
with price impact γ and window of price discovery pp, x, ϵq with ϵ ă x{2,

Rpp, µq ě mintK,Nxu

ˆ
ż

v

vµpdvq ´ Aϵ ´ Bγ ´ C{N

˙

.

Thus, when ϵ and γ are small and N is large, revenue is approximately what it would be
if mintK,Nxu units were sold at a price close to the ex ante expected value.

We can formalize this limit as follows. Fix a sequence of pricing rules ppNq with associated
price impacts γN . We say that the sequence has vanishing price impact if γN Ñ 0. We say
that the sequence is asymptotically inelastic (at x) if there is a corresponding sequence
pp

N
, xN , ϵNq of windows of price discovery that converge to pp, x, 0q, where p is an admissible

low price.
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Corollary 1. Suppose that there is a sequence of economies with N buyers, KN units for
sale, and priors µN P ∆prv, vsq. Let ppNq be an associated sequence of pricing rules that has
vanishing price impact and is asymptotically inelastic at x P p0, 1q. Then

lim
NÑ8

ˆ

RppN , µNq

mintKN , Nxu
´

ż

v

vµNpdvq

˙

“ 0.

Thus, under the hypotheses of Corollary 1, the market order mechanisms will asymptot-
ically sell approximately mintKN , Nxu units, and at a price that is equal to the value on
average. In particular, if KN ď κN for all N for some κ P p0, 1q, then by setting x ě κ the
market order mechanisms’ revenue guarantees are asymptotically optimal.

The full proof of Theorem 1 is in Appendix A. Here we will prove a special case of the
theorem for a sequence of piece-wise linear pricing rules of the form

ppnq “

$

’

&

’

%

p if n ď Npx ´ ϵq;

p ` pv ´ pq
n´Npx´ϵq

2Nϵ
if Npx ´ ϵq ă n ď Npx ` ϵq;

v if n ą Npx ` ϵq,

(1)

where p is an admissible low price. An example is depicted in Figure 1 in black, with
p “ 0, v “ 1 and x “ 0.5. This pricing rule is of independent interest, as we will explain
shortly. Note that with pricing rules of this form, the price impact is zero, except in the

window n{N P rx ´ ϵ, x ` ϵs, in which case the price impact is exactly γ “
v´p

2Nϵ
. For a

sequence of pricing rules of this form, parameterized by windows pp, x, ϵNq, the sequence
is asymptotically inelastic as long as ϵN converges to zero as N goes to infinity. On the
other hand, the sequence has vanishing price impact if and only if NϵN Ñ 8. Thus, for
the hypotheses of Corollary 1 to hold, it is necessary that ϵN converge to zero but not too
quickly.

Applying Theorem 1 to the piecewise-linear rules, we have the following result.

Corollary 2. Fix v, v, x, and an admissible low price p. Then there exist constants A, B,
and C, such that for all pricing rules of the form (1) and µ,

Rpp, µq ě mintK,Nxu

ˆ
ż

v

vµpdvq ´ Aϵ ´ B{pNϵq ´ C{N

˙

. (2)

Corollary 2 is an immediate consequence of Theorem 1, whose proof is in the Appendix.
In the next section, we will give a direct proof of Corollary 2 for the special case where p “ 0.
The proof for the general case is somewhat more involved. Since our purpose is to expose
the logic underlying Theorem 1, we have decided to focus on this simpler case for the main
text. See the discussion below.

Consistent with our previous discussion, the error bound (2) demonstrates that there are
tradeoffs in choosing ϵ. In particular, making ϵ smaller reduces uncertainty about aggregate
demand. However, the smaller is ϵ, the larger is the price impact when another buyer places
an order. In fact, examining (2), it is clear that the optimal balance between these two forces
is achieved when ϵ is on the order of 1{

?
N , in which case elasticity and price impact vanish

at the same rate.
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Figure 2: Comparison of revenue guarantees.

The convergence rate of 1{
?
N is in general unimprovable, since it is the rate given by

the guarantee-maximizing mechanisms of Brooks and Du (2021) (i.e., proportional auctions)
for a fixed distribution of the common value and a single unit of the good.2 The 1{

?
N

convergence rate to the efficient surplus is significantly better than the 1{ logpNq rate for
the exponential price auction in Du (2018).3 Moreover, market order mechanisms achieve
the same rate even when multiple units are for sale, a case which is not covered in the prior
literature.4

As an illustration, in Figure 2, we have plotted the revenue guarantees of the market
order mechanisms with pricing rules in (1) for a setting in which v „ U r0, 1s, K “ 1,
x “ 1{2, and ϵN “ 1{

?
N . For comparison, we have also plotted the revenue guarantees of

the optimal proportional auction of Brooks and Du (2021), the exponential-price auction of
Du (2018), and the first-price auction. As we can see, even for moderate values of N , the
market order mechanism outperforms the first-price auction, although it is still outperformed
by the exponential-price auction. Around N “ 100, the market order mechanism overtakes
the exponential-price auction. Although it is still dominated by proportional auctions (as it
must be), the gap is reduced to about 20% of the efficient surplus. As Theorem 1 shows,
this gap must go to zero as N goes to infinity, at a rate of 1{

?
N , as the revenue guarantees

of both proportional auctions and market order mechanism converge to the efficient surplus.

2It is interesting to note that the market order mechanism can be viewed as a kind of “restricted”
proportional auction, where bids are only allowed in t0, 1u.

3Du (2018) proves that 1{ logpNq is a lower bound on the rate of convergence for the exponential-price
auction. The true rate could be higher.

4It is an open question whether 1{
?
N is the optimal rate for K ą 1.
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3.3 Proof of Corollary 2 when p “ 0

The proofs of Theorem 1 and Corollary 2 in this special case both rely on methodology
that was previously developed in Du (2018), Brooks and Du (2021), and related work.
In particular, Brooks and Du (2024) present a general theory for informationally robust
mechanism design. For any mechanism, a lower bound on performance can be computed
using an object known as the strategic virtual objective. In the context of market order
mechanisms, the strategic virtual objective depends on a pair of parameters α ě 0 and
β ě 0, and is defined as

λpv, nq “ ppnqmintK,nu ` αpN ´ nqrpn ` 1qpv ´ ppn ` 1qq ´ βnrpnqpv ´ ppnqq. (3)

The strategic virtual objective is essentially the objective in a Lagrangian for minimizing
expected revenue subject to obedience constraints. Importantly, for market order mecha-
nisms, there are only two obedience constraints, which correspond to placing an order when
one would have not done so, and not placing an order when one would have ordered. We
have attached multipliers α and β to these constraints, respectively.5 The following result is
established in the proof of Theorem 1 of Brooks and Du (2024):

Lemma 1. The revenue guarantee of a market order mechanism is at least

ż

v

min
n

λpv, nqµpdvq. (4)

For the sake of completeness, we will sketch the logic behind the lower bound (4). In
any information structure and equilibrium, there is some induced joint distribution σpn, vq

of the number of buyers who place orders and the value, where the marginal of σ on v is µ.
The resulting revenue is

ż

n,v

ppnqmintK,nuσpdv, dnq.

Now, buyers have the option to not place an order instead and secure a payoff of zero. As a
result, the average utility of buyers who place orders must be non-negative:

ż

n,v

nrpnqpv ´ ppnqqσpdv, dnq ě 0. (5)

At the same time, if n buyers are placing orders, there are N ´ n buyers who are not. If
one of these buyers were to instead place an order, they would have received a payoff of
rpn ` 1qpv ´ ppn ` 1qq. Since these buyers prefer to sit out and receive a payoff of zero, it
must be that the expected counterfactual payoff is non-positive:

ż

n,v

pN ´ nqrpn ` 1qpv ´ ppn ` 1qqσpdv, dnq ď 0, (6)

5In Du (2018), Brooks and Du (2021), and Brooks and Du (2024) the strategic virtual objective only has
non-trivial multipliers on the local obedience constraints.
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otherwise, some buyer who does not place an order in equilibrium, for some signal realization,
must have a positive expectation of the payoff from placing an order. As a result, we can
obtain a lower bound on revenue by taking expected revenue, subtracting the left-hand side
of (5), and adding the right-hand side of (6) (where these extra terms are multiplied by
non-negative weights). This is equivalent to the assertion that for any α ě 0 and β ě 0, in
any information structure and equilibrium, expected revenue is at least

ż

n,v

λpv, nqσpdv, dnq.

This expression is in turn weakly larger than what we obtain by, for each v, replacing λpv, nq

with the minimum of λpv, ¨q, which is precisely (4).

Proof of Corollary 2. We use the lower bound from Lemma 1, with β “ 0 and α “ x{p1´xq.
We consider three cases, depending on which of the piecewise linear segments of p the

participation rate lies in:

Case 1: n ď Npx ´ ϵq ´ 1. In this case, ppnq “ ppn ` 1q “ 0, and hence

λpv, nq “
N ´ n

Np1 ´ xq
min

"

K
Nx

n ` 1
, Nx

*

v,

which is clearly decreasing in n. A lower bound is therefore obtained by setting n “ Nx:

λpv, nq ě min

"

K
Nx

Nx ` 1
, Nx

*

v ě min tK,Nxu

„

v ´

ˆ

1 ´
Nx

Nx ` 1

˙

v

ȷ

ě min tK,Nxu

„

v ´
1

Nx
v

ȷ

.

We can therefore let C “ v{x.

Case 2: n ě Npx ` ϵq. In this case, ppnq “ ppn ` 1q “ v, and hence

λpv, nq “ mintK,nuv `
N ´ n

Np1 ´ xq
min

"

K
Nx

n ` 1
, Nx

*

pv ´ vq ,

which is increasing in n. We again obtain a lower bound by setting n “ Nx:

λpv, nq ě mintK,Nxuv ` min

"

K
Nx

Nx ` 1
, Nx

*

pv ´ vq

ě mintK,Nxuv,

since Nx{pNx ` 1q ď 1.
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Case 3: n P rNpx ´ ϵq ´ 1, Npx ` ϵqs. Hence, |ppn ` 1q ´ ppnq| ď 1{pNϵq, and so

λpv, nq ě mintK,nup pnq `
N ´ n

Np1 ´ xq
min

"

K
Nx

n ` 1
, Nx

*ˆ

v ´ p pnq ´
1

Nϵ

˙

.

Now, n{Nx P r1 ´ ϵ{x, 1 ` ϵ{xs, so mintK,nu{mintK,Nxu P r1 ´ ϵ{x, 1 ` ϵ{xs as well.6

Similarly, we have that

N ´ n

Np1 ´ xq
min

"

K
Nx

n ` 1
, Nx

*

ě min

"

K
1 ´ ϵ

1´x

1 ` ϵ
x

` 1
N

, Nx

ˆ

1 ´
ϵ

1 ´ x

˙*

ě mintK,Nxu

ˆ

1 ´
ϵ

1 ´ x

˙

and also

N ´ n

Np1 ´ xq
min

"

K
Nx

n ` 1
, Nx

*

ď mintK,Nxu
1 ` ϵ

1´x

1 ´ ϵ
x

` 1
N

ď mintK,Nxu

ˆ

1 `
ϵ

1 ´ x

˙

.

(The last inequality uses that N is sufficiently large that Nϵ ě x, so the denominator in the
center term is greater than 1.) Putting all of this together, and using p ď v, we have

λpv, nq ě mintK,Nxu

«

ppnq ´
ϵ

x
v ` v ´ ppnq ´ v

ϵ

1 ´ x
´

1

NϵN

ˆ

1 `
ϵ

1 ´ x

˙

ff

“ mintK,Nxu

„

v ´ ϵv

ˆ

1

x
`

1

1 ´ x

˙

´
2

Nϵ

ȷ

.

Hence, we can take

A “ v

ˆ

1

x
`

1

1 ´ x

˙

and B “ 2.
Then clearly, the lower bound (2) is below the lower bounds that we derived in each

case.

This indirect approach to proving Corollary 2 sidesteps the issue of what would actu-
ally happen in equilibrium. This obviously depends on the particular form of information.
However, the proof of Theorem 1 shows that if the participation rate is not in the band
rx ´ ϵ, x ` ϵs, then the lower bound on revenue would be higher than the value. As a result,
in equilibrium with a large market, the probability that the participation rate is outside
rx ´ ϵ, x ` ϵs must be close to zero, and the economy spends most of its time with inter-
mediate prices. Since there is very little uncertainty about the participation rate, on the
order of ϵ, regardless of the underlying value, there must be very little information about the
value contained in the decision to place an order. In particular, difference in expected values
between buyers who place orders and those who don’t must be of order ϵ. And since the price
impact is at most δ “ 1{pNϵq, it must be that the price is within δ of these expectations.
When ϵ and δ are both small, then the equilibrium price must be close to the expected value.

6If the minimum in both expressions is K, then the ratio is 1. If the ratio is n{K, then Npx ´ ϵq ď n ď

K ď Nx, so 1 ´ ϵ{x ď K{pNxq ď 1. The other cases are similar.
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The proof of Theorem 1 in the appendix for the general case is more complicated in two
ways. First, we make fewer assumptions about the shape of p, and in the analogues of Cases
1 and 2, it need not be that λ is monotone in n. However, it is still the case that λ is
minimized when n is close to Nx.

Second, the argument in Case 1 relied on the fact that the price is exactly zero when n is
sufficiently below Nx. But Corollary 2 remains true if p P p0, vq. This generalization is sub-
stantive, because a seller who is convinced that the good is valuable may be uncomfortable
with a rule that in principle could give away the good for free (which might happen with
significant probability if the market is not in equilibrium). But with p “ 0, the given multi-
pliers on obedience constraints are not optimal, and the proof would break; in particular, if
ppnq “ p ą 0 when n ă Npx ´ ϵq, then in Case 1, the strategic virtual objective would be

λpv, nq “ mintK,nup `
N ´ n

Np1 ´ xq
min

"

K
Nx

n ` 1
, Nx

*

pv ´ pq,

which is not necessarily decreasing in n. In fact, when p ą 0, both obedience constraints bind
and the optimal multipliers are both strictly positive. It is this more complicated Lagrangian
that we work with in the proof of Theorem 1.

4 Welfare Guarantee in Decentralized Markets

4.1 Interpreting p as a Supply Curve

We now suppose that p represents a supply curve. In particular, let us enrich the model so
that there are M ě 2 producers of the good. Seller m can supply k units of the good at cost
Cmpkq. Let cmpkq “ Cmpkq ´ Cmpk ´ 1q be the marginal cost function of producer k. We
assume that cm is non-decreasing for all m. In this richer model, we assume the following
sequential structure for how the market clears: First, buyers place their orders, as before.
Then, after seeing which buyers placed orders, each producer posts a price pm. The buyers
who placed orders then choose from which producer to purchase. Finally, orders are fulfilled,
and the buyers pay the producer that they patronize. Note that we assume that producers
can make as many units as ordered, possibly at very high cost, so that we are also implicitly
assuming that K “ N .

The subgame after the buyers have placed orders is a standard model of Bertrand com-
petition. All equilibria of this model have the property that when n orders have been placed,
the producers will compete the price down so that it is between the nth and n ` 1th lowest
marginal costs. In particular, we can define the aggregate cost function:

Cpnq “ mintC1pn1q ` ¨ ¨ ¨ ` CMpnMq|n1 ` ¨ ¨ ¨ ` nm “ nu,

and the aggregate marginal cost cpnq “ Cpnq ´ Cpn ´ 1q. Then the equilibrium price is in
the range rcpnq, cpn ` 1qs, and the lowest marginal cost producers fill the orders. We focus
on the equilibrium in which the price is ppnq “ cpnq, the marginal cost to produce the last
unit.
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Hence, given information I and strategies b, total welfare is

W pp, I, bq “

ż

v,s,a

˜

Σav ´
ÿ

mďΣa

ppmq

¸

ź

i

bipai|siqσpdv, dsq,

i.e., the value of the units sold, less the production cost. We letW ppq be the welfare guarantee
given p:

W pp, µq “ inf
IPIpµq

inf
bPEpp,Iq

W pp, I, bq.

Ex ante social welfare under no information is

W ˚
pµq “ max

n

«

n

ż

v

vµpdvq ´
ÿ

mďn

ppmq

ff

. (7)

4.2 An Example

W ˚ is the highest level that we could hope to guarantee for welfare, since it is always possible
that buyers have no information. However, it is in general possible for welfare to be below
W ˚, as the following example shows.

Suppose that v P t0, 1u, both equally likely, and the pricing rule is ppnq “ p2{3qInąN{2.
(We assume for this example that N is even.) So, the good is costless to produce to cover
half the population, but above that point, the marginal cost jumps up to 2{3. Under no
information, the efficient outcome is for exactly half of the units to be sold, attaining a welfare
of N{4. Now, consider the following information: When the value is 0, with probability 1{3,
exactly half of the buyers (chosen at random) receive a signal that tells them not to buy.
Otherwise, all of the buyers receive a signal telling them to buy. Similarly, when v “ 1, with
probability 2{3, exactly half of the buyers are told to not buy, and otherwise they are all
told to buy. In equilibrium, the buyers follow these recommendations.

Now, conditional on not buying, exactly N{2 buyers are buying, so switching to buying
would cause the price to jump up to 2{3. Moreover, the expected value conditional on
not buying is 2{3 (because not buying is twice as likely when v “ 1) so that the payoff
from switching to buy is zero. Moreover, expected consumer surplus per capita from the
equilibrium strategy is

1

2

2

3

ˆ

0 ´
2

3

˙

`
1

2

„

1

2

2

3
p1 ´ 0q `

1

3

ˆ

1 ´
2

3

˙ȷ

“ ´
2

9
`

1

6
`

1

18
“ 0.

Hence, buyers who place orders do not wish to rescind them.
Finally, total surplus in this example is

1

2

„

1

3

ˆ

N

2
0 ´

N

2
0

˙

`
2

3

ˆ

N0 ´
N

2
0 ´

N

2

2

3

˙ȷ

`
1

2

„

2

3

ˆ

N

2
1 ´

N

2
0

˙

`
1

3

ˆ

N1 ´
N

2
0 ´

N

2

2

3

˙ȷ

“ N

ˆ

´
1

9
`

1

6
`

1

9

˙

“
N

6
ă

N

4
.
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Why in this example is social welfare lower than under no information? Comparing the
two outcomes, the number of purchases is quite a bit higher, at 3N{4 compared to N{2.
However, the expected value conditional on a purchase is lower. Indeed, as we saw in our
previous examples, when price impact is high, it is possible that the expected value of non-
buyers is higher than the expected value of buyers. This is precisely what happens in this
example; the expected value of non-buyers is 2{3, which is what the price would jump up to
if any of them were to purchase. In addition, while expected value conditional on a purchase
is lower than under no information, the average production cost is higher, because now with
probability 1{2 all buyers purchase.

4.3 Welfare Guarantees and Price Impact

The inefficiency preceding example relies on the fact that price impact is significant. In fact,
as the next result shows, when price impact is small, the equilibrium outcome cannot be far
below the no information benchmark:

Theorem 2. Suppose that price impact is at most γ. Then

W pp, µq ě W ˚
pµq ´ Nγ.

Proof. Let n˚ be the maximizer of (7).
Define the strategic virtual objective

λpv, nq “ nv ´
ÿ

mďn

ppmq `
n˚

N
pN ´ nqpv ´ ppn ` 1qq ´

ˆ

1 ´
n˚

N

˙

npv ´ ppnqq.

(Comparing with equation (3), the objective here is welfare, α “ n˚

N
, β “ 1 ´ n˚

N
, and

rpnq “ rpn ` 1q “ 1 since K “ N .)
Rearranging the equation, we have

λpv, nq “ n˚v ´
ÿ

mďn

ppmq ´
n˚

N
pN ´ nqppn ` 1q `

ˆ

1 ´
n˚

N

˙

nppnq

ě n˚v ´
ÿ

mďn

ppmq ` pn ´ n˚
q ppnq

loooooooooooooooomoooooooooooooooon

”Jpnq

´γn˚N ´ n

N
.

Now,

Jpn ` 1q ´ Jpnq “ pn ` 1 ´ n˚
qppn ` 1q ´ pn ´ n˚

qppnq ´ ppn ` 1q

“ pn ´ n˚
qpppn ` 1q ´ ppnqq.

Hence, J is single-troughed at n “ n˚, and we have

λpv, nq ě n˚v ´
ÿ

mďn˚

ppmq ´ γN
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for every n.
Therefore, at any outcome σpdv, dnq induced by an equilibrium, we have (see the discus-

sion following Lemma 1):

ż

n,v

˜

nv ´
ÿ

mďn

ppmq

¸

σpdv, dnq ě

ż

v,n

λpv, nqσpdv, dnq ě

ż

v

˜

n˚v ´
ÿ

mďn˚

ppmq

¸

µpdvq´γN.

Of course, it might be that buyers in fact have no information, in which case welfare can
be at most W ˚. We therefore have the following analogue of Corollary 1:

Corollary 3. Fix v and v. Then for any sequence of economies pN,µN , pNq with vanishing
price impact,

lim
NÑ8

ˆ

W ppN , µNq

N
´

W ˚pµNq

N

˙

“ 0.

In words, when there is vanishing price impact, the social welfare guarantee per capita
must converge to that which is obtained under no information.

In general, W ˚ is less than the ex post efficient surplus, which is

W ˚˚
“

ż

v

max
n

˜

nv ´
ÿ

mďn

ppmq

¸

µpdvq.

However, one special case where W ˚˚ and W ˚ coincide, in limit as N grows large, is when the
sequence of prices functions/aggregate marginal cost curves ppNq is asymptotically inelastic
at some x P p0, 1q. The reason is that in that limit, social efficiency only requires that
n « Nx, which is achievable under no information. Hence, we have the following further
corollary of Theorem 2:

Corollary 4. Fix v and v. Then for any sequence of economies pN,µN , pNq that has van-
ishing price impact and is asymptotically inelastic, then

lim
NÑ8

ˆ

W ppN , µNq

N
´

W ˚˚pµNq

N

˙

“ 0.

Note that, by Corollary 1, under the hypotheses of Corollary 4, we also have revenue
per capita converging to the ex ante expected value. Hence, buyer surplus goes to zero, no
matter the sequence of information structures and equilibria.

5 Heterogenous Values

5.1 Revenue Guarantees in Large Markets

We now extend our results beyond the case of pure common values. Suppose the value has
both common and private components, i.e., the value of buyer i is vpν, ωiq P rv, vs, where
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ν P V is the common value component, and ωi P Ωi Ă R is buyer i’s private value component.
For simplicity, we suppose that V and the Ωi are all finite sets.

We further suppose that vpν, ωiq is strictly increasing in ωi. An example is vpν, ωiq “

ν ` ωi. More generally, ν can be the resale value or the quality of the good; and ωi can be
buyer i’s idiosyncratic taste or characteristic that influences the value (cf. Pesendorfer and
Swinkels, 2000; Jackson, 2009; McLean and Postlewaite, 2023).

Given a pricing rule p, buyer i’s utility in a market order mechanism is now ui “

airpΣaqpvpν, ωiq ´ ppΣaqq. Each buyer i observes his private value ωi and also observes
a signal si about the common value ν as well as others’ private values ω´i, as described by
an information structure I “ pS, σq, where Si is the set of signals for buyer i S “

ś

i Si,
Ω “

ś

i Ωi, and σ P ∆pV ˆ Ω ˆ Sq. As a result, a strategy for buyer i is now a mapping
bi : Ωi ˆSi Ñ ∆pAiq. Note that we allow for arbitrary correlation between ωi and the signal
about ν, e.g., a buyer with a high ωi may receive a pessimistic signal si about ν, potentially
presenting an obstacle to allocative efficiency (which depends only on ω).

Let µ “ margVˆΩ σ. For a market order mechanism with pricing rule p, the revenue
guarantee Rpp, µq is defined, as before, as the minimum expected revenue over all information
structures with marginal µ and all equilibria.

We make the following assumption about µN as N Ñ 8. Let FN be the empirical
cumulative distribution function (CDF) for ω P Ω, i.e.,

FNpzq “
|ti : ωi ď zu|

N

for z P R. We assume that there exists a CDF F such that

lim
NÑ8

N

KN

µN

ˆ

sup
zPR

|FNpzq ´ F pzq| ą δN

˙

“ 0 (8)

for some sequence δN Ñ 0.
Condition (8) says that the uncertainty about the empirical distribution of the private

values vanishes as the market gets large. Moreover, each buyer knows with very high precision
their quantile in that empirical distribution. For example, Condition (8) is satisfied if in µN

the ωi’s are independently and identically drawn from F : the Dvoretzky–Kiefer–Wolfowitz
inequality (Massart, 1990) states that

µN

ˆ

sup
zPR

|FNpzq ´ F pzq| ą δ

˙

ď 2 expp´2Nδ2q,

for every δ ą 0 and N . Thus to satisfy Condition (8) we can take δN “ N´c for any c ă 1{2.
Let F´1 be the quantile function: F´1prq “ inftz P R : F pzq ě ru for r P r0, 1s. Thus

F´1prq is the r-th percentile private value.
We say a sequence of pricing rules ppNq is bounded if supN,n pNpnq is finite.

Theorem 3. Fix v, v, and suppose KN Ñ 8 as N Ñ 8. Let pµNq be a sequence of priors
satisfying Condition (8) for a CDF F , and let ppNq be a sequence of pricing rules with p “ 0
that has vanishing price impact, is asymptotically inelastic at x P p0, 1q, and is bounded.
Then we have

lim
NÑ8

ˆ

RppN , µNq

mintKN , Nxu
´

ż

ν,ω

vpν, F´1
p1 ´ xqqµNpdν, dωq

˙

“ 0. (9)
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The proof of Theorem 3 is in Appendix A.
In the case where KN “ tκN u for some κ P p0, 1q, Theorem 3 implies that the market

order mechanism with x “ κ always yields the competitive price which is the expected value
of the marginal buyer who exhausts the supply.

In some cases the revenue guarantees in Theorem 3 are asymptotically optimal. Continue
to assume that KN “ tκN u for some κ P p0, 1s. Also suppose that the sequence of priors µN

satisfies condition (8) and that the common value ν has the fixed marginal distribution µ̃.
Finally, suppose

x

ż

ν,ω

vpν, F´1
p1 ´ xqqµ̃pdνq

is a concave function of x P r0, κs.7 Then solving8

sup
xPp0,κs

x

ż

ν,ω

vpν, F´1
p1 ´ xqqµ̃pdνq, (10)

gives revenue guarantees in (9) arbitrarily close to asymptotic optimality. The reason is that
if each buyer i only observes his private value ωi and has no information about the common
value ν, then by Myerson (1981) as N Ñ 8 the optimal revenue per capita under incentive
compatible and individual rational mechanisms is (10).

Theorem 3 is closely related to Pesendorfer and Swinkels (2000), who show that equilib-
rium price in the pK `1q-th price auction converges to the value of the marginal buyer (with
the K-th highest value) in the environment with both common and private components in
value. Pesendorfer and Swinkels (2000) prove this result for the symmetric and monotone
equilibrium9 in a specific information structure where buyers have independent signals con-
ditional on the common value component; in contrast, our price convergence result holds for
every information structure and every equilibrium. Note that there are information struc-
tures where the equilibrium price in the pK ` 1q-th price auction is bounded away from
the common value in expectation as N Ñ 8, for example the maximum signal information
structure in Bergemann, Brooks, and Morris (2017) when K “ 1. Thus, when N is large,
the pK ` 1q-th price auction has a strictly inferior revenue guarantee compared to market
order mechanisms with a small window of price discovery around x « K{N .

McLean and Postlewaite (2023) also study a large market with buyers having both com-
mon and private components in value and a single good. They construct a two-stage mech-
anism where there is voting about the common value component in the first stage (which
fully reveals the common value component), and the second stage is a second price auction.
Similar to Pesendorfer and Swinkels (2000), McLean and Postlewaite (2023) rely on the
buyers being symmetric and having independent signals conditional on the common value

7This is the “regular” case where the virtual value from the private value is non-decreasing; see Bulow
and Roberts (1989).

8We must use sup instead of max because F´1 is not continuous from the right.
9A caveat of their result is that Pesendorfer and Swinkels (2000) do not prove the existence of a monotone

and symmetric equilibrium and simply characterize the implications of the equilibrium. Jackson (2009) shows
that non-existence of equilibrium is a real concern in this setting. Since we work with finite type spaces and
a finite mechanism, an equilibrium always exists.
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component, while we need neither assumption. On the other hand, the result of McLean
and Postlewaite (2023) only relies on the fact that buyers know lower and upper bounds on
the precision of their signals, and does not rely on the full strength of the common prior
assumption.

5.2 Welfare Guarantee in Large Decentralized Markets

We next consider the decentralized market model in Section 4 with common and private
values.

Given information I and strategies b, total welfare is

W pp, I, bq “

ż

ν,ω,s,a

˜

ÿ

i

aivpν, ωiq ´
ÿ

mďΣa

ppmq

¸

ź

i

bipai|si, ωiqσpdν, dω, dsq,

i.e., the value of the units sold, less the production cost. As before, we define the welfare
guarantee W pp, µq as the minimum expected total welfare over all information structures
with marginal µ and all equilibria.

Ex ante social welfare under no information is

W ˚
pµq “ max

n

«

ż

ν,ω

ÿ

mďn

vpν, ωpmq
qµNpdν, dωq ´

ÿ

mďn

ppmq

ff

, (11)

where ωpmq is the m-th highest value in ω.
As in the previous subsection, we consider a sequence of priors pµNq where the uncertainty

about the empirical distribution of private values vanishes as the market gets large: there
exists a CDF F such that

lim
NÑ8

µN

ˆ

sup
zPR

|FNpzq ´ F pzq| ą δN

˙

“ 0 (12)

for some sequence δN Ñ 0. (It is the same condition as (8) sinceKN “ N in the decentralized
market.)

Theorem 4. Fix v and v. Let pµNq be a sequence of priors satisfying Condition (12) for a
CDF F , and let ppNq be a bounded sequence of supply functions with vanishing price impact.
Then we have

lim
NÑ8

ˆ

W ppN , µNq

N
´

W ˚pµNq

N

˙

“ 0.

The proof of Theorem 4 is in Appendix A.
The ex post efficient surplus is

W ˚˚
pµq “

ż

ν,ω

max
n

˜

ÿ

mďn

vpν, ωpmq
qµNpdν, dωq ´

ÿ

mďn

ppmq

¸

.

As in the case of pure common value, we have the following corollary of Theorem 4:
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Corollary 5. Fix v and v. Let pµNq be a sequence of priors satisfying Condition (12) for
a CDF F , and let ppNq be a bounded sequence of supply functions that has vanishing price
impact and is asymptotically inelastic. Then we have

lim
NÑ8

ˆ

W ppN , µNq

N
´

W ˚˚pµNq

N

˙

“ 0.

6 Discussion

As we have said, our model has two interpretations: A monopolist with commitment power
selling to a large market of buyers, or a decentralized market with demand uncertainty and
complete information on the production side. In the former case, we have shown that market
order mechanisms asymptotically extract all of the surplus, regardless of the information
structure and equilibrium, as long as the seller uses pricing rules with low price impact and
a narrow window of price discovery. Moreover, the achievable rate of 1{

?
N is known to

be unimprovable in special cases. In fact, because of the simple binary-action structure of
these mechanisms, we do not even need the full power of equilibrium. It would be enough
to suppose that buyers prefer their strategies to the alternatives of always buying and never
buying. And as the direct proof of Corollary 2 shows, if the low price is zero, then it is
enough to suppose that buyers weakly prefer their strategies to never buying.10

Regarding the decentralized market, economists have long sought a tighter connection
between large market models in which buyers are price takers with finite market models
where individuals have small but non-negligible price impact. Of course, real markets feature
complex dynamic feedback between orders and prices. The approach that is attempted in
much of the literature, including this paper, is to reflect and approximate these rich dynamics
with a static model, in which trading behavior is represented as a strategy in the normal
form. In models with limit orders, the strategy is essentially a mapping from prices to
price-contingent orders. This presumes that traders have access to all of the information
that would be contained in the price, and it also aligns with the classical assumptions in
rational expectations equilibrium. In contrast, we suppose that traders have access to some
information, which may or may not include the price, and they place their orders based on
this information. This weaker informational assumption leads us to focus on Bayes correlated
equilibria of the market game. As is well known, limit order mechanisms may admit equilibria
that are far from competitive, even when the number of traders is large (Engelbrecht-Wiggans
et al., 1983; Bergemann et al., 2017; Barelli et al., 2023). In striking contrast, we show that
market order mechanisms guarantee competitive outcomes in the large market, regardless of
the information and equilibrium, as long as the pricing rule has negligible price impact and
is nearly inelastic. These same conditions guarantee market efficiency in the decentralized
market interpretation (where the pricing rule is interpreted as a supply curve). And while

10More broadly, the same argument would apply for any coarse Bayes correlated equilibrium under partic-
ipation adaptive pricing, by which we mean any joint distribution over fundamentals and actions such that
each player prefers their equilibrium strategy to any alternative strategy that always plays a fixed action.
As Hartline, Syrgkanis, and Tardos (2015) show, no-regret learning dynamics are guaranteed to converge to
a coarse Bayes correlated equilibrium in the long run. Thus, no-regret learning by buyers who participate
in a large market order mechanism will necessarily lead to a competitive outcome.
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inefficiency is possible in the elastic case, we also show that as long as the pricing rule has
negligible price impact, welfare will always be at least the no-information benchmark. From
a normative perspective, these are arguments in favor of designing markets with market order
mechanisms, and from a positive perspective, it provides new foundations for competitive
behavior and efficiency in markets.

Why are market order mechanisms robust to the details of information and equilibrium,
whereas limit order mechanisms are not? A classical perspective is that the efficiency of
markets under incomplete information depends on their ability to aggregate private infor-
mation through prices. As a result, trade conditioned on the price takes place under what is
essentially complete information. Moreover, for prices to aggregate rich private information,
it seems that there should be relatively rich ways in which agents can interact with the mar-
ket. Market order mechanisms, however, leave buyers with only the coarsest possible mode
of interaction: buy or do not buy. The welfare properties of market order mechanisms are
therefore not linked to information aggregation. However, what may seem like a weakness of
market order mechanisms is actually a strength: In settings here some agents have a large
informational advantage, such as the proprietary information model of Engelbrecht-Wiggans
et al. (1983), equilibrium in a limit order mechanism would be associated with a substantial
winner’s curse, because a single trader with an informational advantage can have a large
effect on the terms of trade. But in a market order mechanism, traders are severely con-
strained in how they can leverage their private information, which in turn limits the scope
for adverse selection. This is a key takeaway from our model: simple market mechanisms
may limit information aggregation in a manner that reduces the scope for adverse selection,
and thereby achieve superior welfare outcomes (cf. Bulow and Klemperer, 2002, for a related
discussion and examples).

A substantive limitation of the current analysis is that the supply side is treated as
exogenous. A natural direction for future work would be to consider two-sided markets,
consisting of buyers and sellers, and where both sides must choose to participate in order
for trade to take place. It is our hope that similar ideas can be used to construct market
mechanisms will facilitate efficient trade in such settings.
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A Omitted proofs

Proof of Theorem 1. Fix an admissible low price p. Let p be a pricing rule, pp, x, ϵq be a
window of price discovery for p and γ the price impact of p.

Let11

α “ max

"

x

1 ´ x
,

xv

v ´ p

*

;

β “ α
1 ´ x

x
´ 1.

In the special case where p “ v “ 0, we set α “ x{p1 ´ xq.
As in the proof of Corollary 2, we consider three cases.

11Thus, the value of the multiplier α is tightly connected to the parameters of the pricing rule and the
participation rates that minimize the lower bound on revenue. At first glance, this seems at odds with the
analysis of Brooks and Du (2024), who emphasize that the Lagrange multiplier on obedience constraints
corresponds to a choice of units for actions, and can be normalized to any value. But Brooks and Du (2024)
analyze a limit of mechanisms in which the number of actions can be arbitrarily large, whereas participation-
adaptive pricing has only two actions. When we constrain the number of actions in the mechanism, the
nominal value of the Lagrange multiplier matters.
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Case 1: n ă Npx ´ ϵq ´ 1, nrpnq “ mintK,nu ď mintK,Nxu, and hence

λpv, nq

min tK,Nxu
ě p pn ` 1q

mintK,nu

mintK,Nxu
`

αpN ´ nqrpn ` 1q ´ βnrpnq

min tK,Nxu
pv ´ p pn ` 1qq

´ γ p1 ` βq .

Now, for any p ď p ď yv ď v, where y P p0, 1q, consider the expression

fpnq “ pmintK,nu ` rαpN ´ nqrpn ` 1q ´ βnrpnqs pv ´ pq

“ pmintK,nu `

„

αmin

"

K
N ´ n

n ` 1
, N ´ n

*

´ βmintK,nu

ȷ

pv ´ pq.

The right-derivative with respect to n is

f 1
pnq “

$

’

’

&

’

’

%

p ´ pα ` βqpv ´ pq if n ` 1 ă K;

p ´

´

αKpN`1q

pn`1q2
` β

¯

pv ´ pq if n ă K ď n ` 1;

0 ´ αKpN`1q

pn`1q2
pv ´ pq if n ě K.

This expression is clearly non-positive if n ě K. Note that

α ` β “
α

x
´ 1 ě

v

v ´ p
´ 1

so that when n ` 1 ă K,

f 1
pnq “ p ´

ˆ

v

v ´ p
´ 1

˙

pv ´ pq “ v ´ v
v ´ p

v ´ p
ď 0.

Finally, when n ă K ď n`1, we have that when N is sufficiently large, KpN `1q{pn`1q2 ě

nNx{pn ` 1q2 ě npn ` 3q{pn2 ` 2n ` 1q ě 1, so that f 1pnq ď 0 in this case as well. We
conclude that

λpv, nq

min tK,Nxu
ě p pn ` 1q

mintK,Nxu

mintK,Nxu
`

αpN ´ NxqrpNx ` 1q ´ βNxrpNxq

min tK,Nxu
pv ´ p pn ` 1qq

´ γ p1 ` βq

“ p pn ` 1q `

˜

α
1 ´ x

x

min
␣

K Nx
Nx`1

, Nx
(

min tK,Nxu
´ β

¸

pv ´ p pn ` 1qq

´ γ p1 ` βq

ě p pn ` 1q `

ˆ

α
1 ´ x

x
´ β

˙

pv ´ p pn ` 1qq

´ γ p1 ` βq ´ α
1 ´ x

x

ˆ

1 ´
Nx

Nx ` 1

˙

v

ě v ´ γ p1 ` βq ´ α
1 ´ x

x

1

Npx ` 1q
v.

We can then define B1 “ p1 ` βq and

C1 “ α
1 ´ x

xpx ` 1q
v.
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Case 2: Now suppose n ą Npx ` ϵq. In this case, ppnq is at least v at both n and n ` 1,
and hence

λpv, nq ě Nxmin

"

K

Nx
, 1

*

p pnq ` αNp1 ´ xqmin

"

K

Nx ` 1
, 1

*

pv ´ p pn ` 1qq

´ βmintK,Nxu pv ´ p pnqq

ě min tK,Nxu p pnq ` α
Np1 ´ xq

Nx ` 1
min tK,Nx ` 1u pv ´ p pnq ´ γq

´ βmintK,Nxu pv ´ p pnqq

ě min tK,Nxu p pnq `

„

α
Np1 ´ xq

Nx ` 1
´ β

ȷ

min tK,Nxu pv ´ p pnqq

´ α
Np1 ´ xq

Nx ` 1
ppmintK,Nxu ` 1qγ ` IKěNx`1vq

ě min tK,Nxu p pnq `

„

α
1 ´ x

x
´ β

ȷ

min tK,Nxu pv ´ p pnqq

´ α

ˇ

ˇ

ˇ

ˇ

1 ´ x

x
´

Np1 ´ xq

Nx ` 1

ˇ

ˇ

ˇ

ˇ

mintK,Nxuv ´ α
Np1 ´ xq

Nx ` 1
ppmintK,Nxu ` 1qγ ` IKěNx`1vq

ě mintK,Nxu

«

v ´ α

ˇ

ˇ

ˇ

ˇ

1 ´ x

x
´

Np1 ´ xq

Nx ` 1

ˇ

ˇ

ˇ

ˇ

v ´ α
Np1 ´ xq

Nx ` 1

ˆ

γ `
γ ` IKěNx`1v

mintK,Nxu

˙

ff

ě mintK,Nxu

«

v ´ α

ˇ

ˇ

ˇ

ˇ

1 ´ x

x
´

Np1 ´ xq

Nx ` 1

ˇ

ˇ

ˇ

ˇ

v ´ α
Np1 ´ xq

Nx ` 1

ˆ

2γ `
v

Nx

˙

ff

ě mintK,Nxu

«

v ´ α
1 ´ x

xpNx ` 1q
v ´ α

1 ´ x

x

ˆ

2γ `
v

Nx

˙

ff

ě mintK,Nxu

«

v ´ α
1 ´ x

x2

1

N
v ´ α

1 ´ x

x

ˆ

2γ `
v

Nx

˙

ff

.

We can then let

B2 “ 2α
1 ´ x

x

and

C2 “ 2αv
1 ´ x

x2
.

Case 3: Finally, suppose n P rNpx ´ ϵq, Npx ` ϵqs. Let us rewrite the strategic virtual
objective as

λpv, nq “ v

„

αpN ´ nqmin

"

K

n ` 1
, 1

*

´ βmintK,nu

ȷ

`

ˆ

mintK,nu ´

„

αpN ´ nqmin

"

K

n ` 1
, 1

*

´ βmintK,nu

ȷ˙

p pnq
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´ αpN ´ nqmin

"

K

n ` 1
, 1

*

pp pn ` 1q ´ p pnqq

ě v

„

α
1 ´ x

x
min

"

K
N ´ n

n ` 1

x

1 ´ x
,Nx

N ´ n

Np1 ´ xq

*

´ βmintK,nu

ȷ

´

ˆ

mintK,nu ´

„

α
1 ´ x

x
min

"

K
N ´ n

n ` 1

x

1 ´ x
,Nx

N ´ n

Np1 ´ xq

*

´ βmintK,nu

ȷ˙

v

´ α
1 ´ x

x
min

"

K
N ´ n

n ` 1

x

1 ´ x
,Nx

N ´ n

Np1 ´ xq

*

γ

“ vmintK,Nxu ´ pmintK,Nxu ´ mintK,nuq v

` 2α
1 ´ x

x

„

min

"

K
N ´ n

n ` 1

x

1 ´ x
,Nx

N ´ n

Np1 ´ xq

*

´ mintK,nu

ȷ

v

´ α
1 ´ x

x
min

"

K
N ´ n

n ` 1

x

1 ´ x
,Nx

N ´ n

Np1 ´ xq

*

γ

ě vmintK,Nxu ´ vmintK,Nxu
ϵ

x

` 2α
1 ´ x

x

„

min

"

K
N ´ n

n ` 1

x

1 ´ x
,Nx

N ´ n

Np1 ´ xq

*

´ mintK,Nxu

´

1 `
ϵ

x

¯

ȷ

v

´ α
1 ´ x

x
min

"

K
N ´ n

n ` 1

x

1 ´ x
,Nx

N ´ n

Np1 ´ xq

*

γ.

At this point, we need the inequalities

N ´ n

n ` 1

x

1 ´ x
ď

N ´ Npx ´ ϵq

Npx ´ ϵq

x

1 ´ x
“

1 ´ x ` ϵ

1 ´ x

x

x ´ ϵ
;

N ´ n

Np1 ´ xq
ď

N ´ Npx ` ϵq

Np1 ´ xq
“

1 ´ x ` ϵ

1 ´ x
ď

1 ´ x ` ϵ

1 ´ x

x

x ´ ϵ
;

N ´ n

n ` 1

x

1 ´ x
ě

N ´ Nx ´ Nϵ

Npx ` ϵq ` 1

x

1 ´ x
“

1 ´ x ´ ϵ

1 ´ x

x

x ` ϵ ` 1{N
;

N ´ n

Np1 ´ xq
ě

N ´ Npx ` ϵq

Np1 ´ xq
“

1 ´ x ´ ϵ

1 ´ x
ě

1 ´ x ´ ϵ

1 ´ x

x

x ` ϵ ` 1{N
.

Hence, assuming ϵ ă x{2,

λpv, nq

mintK,Nxu
ě v ´ v

ϵ

x
` 2α

1 ´ x

x

„

1 ´ ϵ
1´x

1 ` ϵ
x

` 1
Nx

´

´

1 `
ϵ

x

¯

ȷ

v

´ α
1 ´ x ` ϵ

x ´ ϵ
γ

“ v ´ v
ϵ

x
´ 2α

1 ´ x

x

«

ϵ
x

` 1
Nx

` ϵ
1´x

1 ` ϵ
x

` 1
Nx

`
ϵ

x

ff

v ´ α
1 ´ x ` ϵ

x ´ ϵ
γ

ě v ´ v
ϵ

x
´ 2α

1 ´ x

x

„

ϵ

ˆ

2

x
`

1

1 ´ x

˙

`
1

Nx

ȷ

v ´ α
2 ´ x

x
γ.

Let

A “
ϵ

x
` 2α

1 ´ x

x

ˆ

2

x
`

1

1 ´ x

˙

;
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B3 “ α
2 ´ x

x
;

C3 “ 2α
1 ´ x

x2
.

Then taking B “ maxtB1, B2, B3u and C “ maxtC1, C2, C3u satisfies the hypotheses of the
theorem.

Lemma 2. Fix arbitrary αi : Ωi Ñ R` and βi : Ωi Ñ R`. We have the following lower
bound on the revenue guarantee of Section 5.1:

Rpp, µq ě

ż

ν,ω

min
a

λpν, ω, aqµpdν, dωq,

where

λpν, ω, aq “ ppΣaqminpK,Σaq `
ÿ

i

´

αipωiqIai“0rpΣa ` 1qpvpν, ωiq ´ ppΣa ` 1qq

´ βipωiqIai“1rpΣaqpvpν, ωiq ´ ppΣaqq

¯

.

Likewise, we have the following lower bound on the welfare guarantee of Section 5.2:

W pp, µq ě

ż

ν,ω

min
a

λpν, ω, aqµpdν, dωq,

where

λpν, ω, aq “
ÿ

i

aivpν, ωiq ´
ÿ

mďn

ppmq `
ÿ

i

´

αipωiqIai“0pvpν, ωiq ´ ppΣa ` 1qq

´ βipωiqIai“1pvpν, ωiq ´ ppΣaqq

¯

.

Proof of Lemma 2. Let us focus on the first part; the proof for the second part is analogous.
Any equilibrium on an information structure induces an outcome σ P ∆pVˆΩˆAq whose

marginal is µ (margVˆΩ σ “ µ), and the obedience constraints hold for all i and ωi:

ÿ

a´i,ω´i,ν

rp1 ` Σa´iqpvpν, ωiq ´ pp1 ` Σa´iqqσpν, ω, p0, a´iqq ď 0,

´
ÿ

a´i,ω´i,ν

rp1 ` Σa´iqpvpν, ωiq ´ pp1 ` Σa´iqqσpν, ω, p1, a´iqq ď 0.

Therefore, we have

ÿ

a,ω,ν

mintK,ΣauppΣaqσpν, ω, aq

ě
ÿ

a,ω,ν

mintK,ΣauppΣaqσpν, ω, aq
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`
ÿ

i

ÿ

ωi

ÿ

a´i,ω´i,ν

αipωiqrp1 ` Σa´iqpvpν, ωiq ´ pp1 ` Σa´iqqσpν, ω, p0, a´iqq

´
ÿ

i

ÿ

ωi

ÿ

a´i,ω´i,ν

βipωiqrp1 ` Σa´iqpvpν, ωiq ´ pp1 ` Σa´iqqσpν, ω, p1, a´iqq

“
ÿ

a,ω,ν

λpν, ω, aqσpν, ω, aq

ě
ÿ

ω,ν

min
a

λpν, ω, aqµpν, ωq.

Proof of Theorem 3. Let ppNq be a sequence of pricing rules with corresponding windows
of price discovery p0, xN , ϵNq and price impacts γN , where xN Ñ x P p0, 1q, ϵN Ñ 0 and
γN Ñ 0. And let pδNq be a sequence converging to zero for which condition (8) holds.

Let y “ F´1p1 ´ xq, and let y´ “ maxtz P
Ť

i Ωi : z ă yu; if y “ min
Ť

i Ωi, then set
y´ “ y ´ 1. Notice that by definition we have F py´q ă 1 ´ x. Set

αN,ipωiq “

#

xN

1´F py´q`δN´xN
ωi ě y,

0 ωi ă y,
βN,ipωiq “

#

0 ωi ě y,
xN

1´F py´q`δN´xN
ωi ă y.

We apply the first part of Lemma 2 to each pN with the above multipliers, which yields

RppN , µNq ě

ż

ν,ω

min
a

λNpν, ω, aqµNpdν, dωq,

where

λNpν, ω, aq ěmintKN , n0 ` n1upNpn0 ` n1q

`
xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ n1qrNpn0 ` n1 ` 1qpvpν, yq ´ pNpn0 ` n1 ` 1qq

´
xN

1 ´ F py´q ` δN ´ xN

n0rNpn0 ` n1qpvpν, y´
q ´ pNpn0 ` n1qq

”λNpν,N1pωq, n0, n1q,

where N1pωq “ |ti : ωi ě yu|, n1 “ |ti : ωi ě y, ai “ 1u|, n0 “ |ti : ωi ă y, ai “ 1u|.
Therefore,

min
a

λNpν, ω, aq ě min
n1ďN1pωq,n0ďN´N1pωq

λNpν,N1pωq, n0, n1q.

We have rNpn0`n1`1q´rNpn0`n1q “ 0 if n0`n1`1 ď KN and |rNpn0`n1`1q´rNpn0`

n1q| “
KN

pn0`n1qpn0`n1`1q
ď 1

KN´1
if n0`n1`1 ą KN . Moreover |pNpn0`n1`1q´pNpn0`n1q| ď

γN . Since both 1
KN´1

and γN tend to zero as N Ñ 8 and vpν, yq ą vpν, y´q, when N is
sufficiently large, we have

rNpn0 ` n1 ` 1qpvpν, yq ´ pNpn0 ` n1 ` 1qq ą rNpn0 ` n1qpvpν, y´
q ´ pNpn0 ` n1qq,

which implies that

λNpν,N1pωq, n0, n1q ě λNpν,N1pωq, 0, n0 ` n1q (13)
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if n0 ` n1 ď N1pωq, and

λNpν,N1pωq, n0, n1q ě λNpν,N1pωq, n0 ` n1 ´ N1pωq, N1pωqq (14)

if n0 ` n1 ą N1pωq.
Suppose N is sufficiently large so that

xN ` ϵN ă 1 ´ F py´
q ´ δN .

We will focus on ω such that

p1 ´ F py´
q ´ δNqN ď N1pωq ď p1 ´ F py´

q ` δNqN. (15)

Since ppNq is bounded, there exists a constant C ą 0 such that |λNpν,N1pωq, n0, n1q| ď CN
for all n0 n1, and N . Let Ω1 be the set of ω for which (15) does not hold. Then,

ż

pν,ωqPVˆΩ1

ˇ

ˇ

ˇ

ˇ

min
n0,n1

λNpν,N1pωq, n0, n1q

ˇ

ˇ

ˇ

ˇ

µNpdν, dωq ď CNµN

ˆ

sup
zPR

|FNpzq ´ F pzq| ą δN

˙

so the ratio of the above to mintKN , Nxu tends to zero as N Ñ 8 by (8).
Set

n “ n0 ` n1.

As in the proof of Theorem 1 we consider three cases:
Case 1: n ă NpxN ´ ϵNq ´ 1. In this case (13) applies, and

λNpν,N1pωq, n0, n1q

ěλNpν,N1pωq, 0, nq

“
xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ nqrNpn ` 1qvpν, yq,

which is clearly decreasing in n, and so is at least

xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ NxqrNpNx ` 1qvpν, yq (16)

Case 2: n ą NpxN ` ϵNq.
Subcase a: n ď N1pωq. Then (13) applies:

λNpν,N1pωq, n0, n1q

ěλNpν,N1pωq, 0, nq

“ mintKN , nupNpnq `
xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ nqrNpn ` 1qpvpν, yq ´ pNpn ` 1qq

ě mintKN , nupNpnq `
xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ nqrNpn ` 1qpvpν, yq ´ γN ´ pNpnqq.

Examining the coefficients of pNpnq, we note that mintKN , nu “ nrNpnq ě
xN

1´F py´q`δN´xN
pN1pωq´

nqrNpn ` 1q. Since pNpnq ě v in this case, the last line above is at least

mintKN , nuv `
xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ nqrNpn ` 1qpvpν, yq ´ γN ´ vq
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ě mintKN , Nxuv `
xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ NxqrNpNx ` 1qpvpν, yq ´ γN ´ vq,

(17)

since the left-hand side is increasing in n.
Subcase b: n ą N1pωq. Then (14) applies:

λNpν,N1pωq, n0, n1q

ěλNpν,N1pωq, n ´ N1pωq, N1pωqq

“ mintKN , nupNpnq ´
xN

1 ´ F py´q ` δN ´ xN

pn ´ N1pωqqrNpnqpvpν, y´
q ´ pNpnqq

ě mintKN , nuv

ě mintKN , Nxuv (18)

since pNpnq ě v and n ě Nx in this case.
Case 3: n P rNpxN ´ ϵNq ´ 1, NpxN ` ϵNqs. In this case (13) applies:

λNpν,N1pωq, n0, n1q

ěλNpν,N1pωq, 0, nq

“ mintKN , nupNpnq `
xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ nqrNpn ` 1qpvpν, yq ´ pNpn ` 1qq

ě mintKN , nupNpnq `
xN

1 ´ F py´q ` δN ´ xN

pN1pωq ´ nqrNpn ` 1qpvpν, yq ´ γN ´ pNpnqq

(19)

Examining (16), (17), (18), and (19) and applying condition (8) on N1pωq and the con-
dition of case 3 on n, we see that

lim inf
NÑ8

˜
ş

ν,ω
mina λNpν, ω, aqµNpdν, dωq

mintKN , Nxu
´

ż

ν,ω

vpν, yqµNpdν, dωq

¸

ě 0.

Proof of Theorem 4. Let pµNq be a sequence of priors satisfying condition (12) for some
sequence pδNq converging to zero, and let ppNq be a bounded sequence of supply functions
with price impact γN tending to zero.

Let fNpyq “ ti : ωi “ yu{N , i.e., the empirical probability mass function for the private
values. Likewise, let fpyq be the probability mass function corresponding to the limit CDF
F pyq, i.e., F pyq “

ř

zďy fpzq, where the sum are over z P
Ť

i Ωi.
Because of (12), we can assume

sup
y

|FNpyq ´ F pyq| ď δN , (20)

which implies
sup
y

|fNpyq ´ fpyq| ď 2δN .
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Let n˚
N be the maximizer for W ˚pµNq in (11). Let y˚

N “ F´1p1 ´ n˚
N{Nq. By definition,

we have F py˚
Nq ě 1 ´ n˚

N{N .
We set

αN,ipωiq “ Iωiąy˚
N

`
n˚
N{N ´ p1 ´ F py˚

Nqq

fpy˚
Nq

Iωi“y˚
N
, βN,ipωiq “ 1 ´ αN,ipωiq.

Define the strategic virtual objective from the second part of Lemma 2 with above mul-
tipliers:

λNpν, ω, aq “
ÿ

i

aivpν, ωiq ´
ÿ

mďΣa

pNpmq `
ÿ

i

´

Iai“0αN,ipωiqpvpν, ωiq ´ pNpΣa ` 1qq

´ Iai“1βN,ipωiqpvpν, ωiq ´ pNpΣaqq

¯

.

We have, for any a,

λNpν, ω, aq ě
ÿ

i

aivpν, ωiq ´
ÿ

mďΣa

pNpmq `
ÿ

i

´

Iai“0αN,ipωiqpvpν, ωiq ´ pNpΣaqq

´ Iai“1βN,ipωiqpvpν, ωiq ´ pNpΣaqq

¯

´ NγN

“ ΣapNpΣaq ´
ÿ

mďΣa

pNpmq `
ÿ

i

´

Iai“0αN,ipωiqpvpν, ωiq ´ pNpΣaqq

` Iai“1αN,ipωiqpvpν, ωiq ´ pNpΣaqq

¯

´ NγN

“ ΣapNpΣaq ´
ÿ

mďΣa

pNpmq `
ÿ

yąy˚
N

NfNpyqpvpν, yq ´ pNpΣaqq

`
n˚
N{N ´ p1 ´ F py˚

Nqq

fpy˚
Nq

NfNpy˚
Nqpvpν, y˚

Nq ´ pNpΣaqq ´ NγN .

Under condition (20), the above is at least

ΣapNpΣaq ´
ÿ

mďΣa

pNpmq `
ÿ

yąy˚
N

Nfpyqpvpν, yq ´ pNpΣaqq

`
n˚
N{N ´ p1 ´ F py˚

Nqq

fpy˚
Nq

Nfpy˚
Nqpvpν, y˚

Nq ´ pNpΣaqq ´ NγN ´ NδNC

“ pΣa ´ n˚
NqpNpΣaq ´

ÿ

mďΣa

pNpmq `
ÿ

yąy˚
N

Nfpyqvpν, yq ` pn˚
N ´ Np1 ´ F py˚

Nqqqvpν, y˚
Nq

´ NγN ´ NδNC

ě ´
ÿ

mďn˚
N

pNpmq `
ÿ

yąy˚
N

Nfpyqvpν, yq ` pn˚
N ´ Np1 ´ F py˚

Nqqqvpν, y˚
Nq ´ NγN ´ NδNC

(21)

where for the last inequality we used the same reasoning with the J function as in the proof
of Theorem 2, and

C “ 2pv ` pq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

i

Ωi

ˇ

ˇ

ˇ

ˇ

ˇ

, p “ sup
N,n

pNpnq.
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Let yN “ F´1
N p1 ´ n˚

N{Nq, then

n˚
N
ÿ

m“1

vpν, ωpmq
q “

ÿ

yąyN

NfNpyqvpν, yq ` pn˚
N ´ Np1 ´ FNpyNqqqvpν, yNq,

where ωpmq is the m-th highest private value among ω, and under condition (20), we have

ˇ

ˇ

ˇ

ˇ

ˇ

˜

ÿ

yąyN

NfNpyqvpν, yq ` pn˚
N ´ Np1 ´ FNpyNqqqvpν, yNq

¸

´

¨

˝

ÿ

yąy˚
N

Nfpyqvpν, yq ` pn˚
N ´ Np1 ´ F py˚

Nqqqvpν, y˚
Nq

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ď NδNC.

Combining the above with (21), the theorem follows from Lemma 2.

B Uncertain number of buyers and goods

In this section we enrich the common value model with uncertain numbers of buyers and
goods. Let the state space be Θ “ r0, 1s ˆ Z` ˆ Z`. A state θ “ pv,N,Kq P Θ means
that there are K units of a good, and there are N buyers with a unit-demand and a pure
common value v for the good. Let µ P ∆pΘq be a distribution over the states. We suppose
µptN ď Nuq “ 1 for some N P Z`.

12 Uncertainty in the number of buyers is a common
feature in markets where agents trade through an online platform; moreover, the number
of buyers could be correlated with the value because the auctioneer solicits the participants
in the auction after learning some information about the value (Lauermann and Wolinsky,
2017, 2022; Lauermann and Speit, 2023). Likewise, the number of goods could be uncertain
and correlated with the value, for example, because some units of goods are reserved for
some “non-competitive” investors in the treasury auction.

The buyers’ private information about the state is described by an information structure

I “ pS, σq as in Section 2, where Si is a finite set of signals (or types) for buyer i, S “
śN

i“1 Si,
and σ P ∆pΘ ˆ Sq is the joint distribution of the states and signals such that margΘ σ “ µ.
Moreover, we require each Si contains a null type H; if si “ H, then buyer i is not present.
Thus, for consistency we also require that for every pv,N,K, sq in the support of σ, we have
N “ |ti : si ‰ Hu|.

A market order mechanism is defined as in Section 2. To model the absence of some
buyers, for every i we now add a null action H to the action space: Ai “ tH, 0, 1u. The
rationing probability is rpaq “ mintK{npaq, 0u, and pricing function ppxq depends only on
the participation rate x “ npaq{Npaq, where npaq “ |ti : ai “ 1u| is the aggregate order, and
Npaq “ |ti : ai ‰ Hu| is the potential number of buyers. A buyer i who is present in the
mechanism (ai ‰ H) has utility ui “ airpaqpv ´ ppxqq as before.

12In Theorem 5 below, we will consider a sequence of priors µl where the number of buyers goes to infinity
in probability, and the corresponding upper bounds N l go to infinity as well.
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For a strategy bi : Si Ñ ∆pAiq, we now require bipsiq “ H for the null type si “

H. Subject to this constraint on the strategy, the definitions of equilibrium and revenue
guarantee remain the same as before.

For simplicity, let us focus on piecewise linear pricing rule p
px,ϵpxq with a fixed low price

p ă v:

p
px,ϵpxq “

$

’

&

’

%

p x ă px ´ ϵ,

p ` pv ´ pq
x´ppx´ϵq

2ϵ
x P rpx ´ ϵ, px ` ϵs,

v x ą px ` ϵ.

Theorem 5. Let pµlq be a sequence of state distributions and let pvl, Nl, Klq be the corre-
sponding sequence of random variables. Suppose ϵl converges to 0 and ϵlNl converges in
probability to 8 as l Ñ 8. Then there exists a sequence of random variables δl such that
Rpp

px,ϵl , µlq ě Eµl
rmintKl, pxNLupvl ´ δlqs for every l, and δl converges in probability to zero

as l Ñ 8.

The proof follows immediately from Corollary 2: we set δl “ Aϵl ` B
Nϵl

` C
Nl
, where the

constants A, B and C are from the corollary.
Thus, the equilibrium price in the market order mechanism is guaranteed to converge

to the value in expectation, regardless of the correlation between the value and the number
of buyers. In contrast, Lauermann and Wolinsky (2017, 2022) show that a common value
first price auction generally have low price equilibrium (bounded away from the expected
value) even as the number of buyers converges to infinity in probability, as long as there are
relatively more buyers given a low value than a high value.
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