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Abstract
Consider a set of agents uncertain about the state in some finite state space �. A type
space (T , Q) that describes the agents’ information consists of a finite product set
T = T1 × · · · × Tn , and a probability distribution Q ∈ �(� × T ). Alternatively, a
signal allocation assigns to each agent i a signal πi , a finite partition of�×X where X
is a measurable space endowed with a non-atomic probability measure. Every signal
allocation induces a type space in which the types in Ti are the elements of πi . We
establish two results. First, every type space is equivalent to one that is induced by a
signal allocation. Second, encoding of type spaces into signal allocations can be done
myopically, one agent at a time.

Keywords Type spaces · Signals

JEL classification C70 · D82 · D83 · D85

1 Introduction

1.1 Informational environment

Fix a finite state space � and an interior prior μ0 ∈ ��. Suppose n agents have
(potentially correlated) information about the state. There are two common approaches
to formalizing such an informational environment.
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A type space (T , Q) consists of a finite product set T = T1 × · · · × Tn , and
a probability distribution Q ∈ �(� × T ) for which the marginal of Q on � is
μ0. The interpretation is that agent i observes the realization ti ∈ Ti . The corre-
lation between ti and ω ∈ � allows the agent to make inferences about the state
while the overall Q allows the agent to make inferences about the state and (first-
and higher-order) beliefs of the other agents. We say two type spaces are equiv-
alent, denoted (T1 × · · · × Tn, Q) ∼ (

T ′
1 × · · · × T ′

n, Q
′), if there are bijections{

fi : Ti → T ′
i

}n
i=1 such that Q (ω, t1, . . . , tn) = Q′ (ω, f1 (t1) , ..., fn (tn)) for each

ω and (t1, . . . , tn) ∈ T . In otherwords, two type spaces are equivalent if they formalize
the same informational environment up to a relabeling of types.1

A distinct approach formalizes each agent’s information as a partition of an
expanded state space. Fix a measurable space X endowed with a non-atomic proba-
bility measure λ. A signal is a finite partition of � × X whose elements belong to S,
the set of non-empty measurable subsets of �× X . An element s ∈ S is a signal real-
ization. The interpretation is that a random variable drawn according to λ determines
the signal realization conditional on the state. In particular, an agent with signal πi

observes the realization s ∈ πi that contains (ω, x) ∈ � × X . Hence, the conditional
probability of s given ω is λ (sω) where sω ≡ {x ∈ X | (ω, x) ∈ s}. The unconditional
probability of s, denoted p (s), is equal to

∑
ω μ0 (ω) λ (sω). Let � be the set of all

signals. A signal allocation is a vector π = (π1, ..., πn) with πi ∈ �.
Every signal allocation is naturally associated with a type space in which the

types are the signal realizations. Formally, signal allocation π induces the type space
(π1 × · · · × πn, Qπ ) with Qπ (ω, s1, . . . , sn) = λ ((s1 ∩ · · · ∩ sn)ω) μ0 (ω) for each
ω and each (s1, ..., sn) ∈ π . We use 〈π〉 to denote the type space induced by π . We
say that a signal allocation π represents type space (T , Q) if 〈π〉 ∼ (T , Q).

1.2 A benefit of signal formalism

The formalism of representing information sources as signals (“signal formalism”
from hereon) has recently been used to study a number of topics in information eco-
nomics. Gentzkow and Kamenica (2017) study environments where multiple senders
simultaneously aim to persuade a receiver. Frankel and Kamenica (2019) derive ways
to measure the amount of information generated by a piece of news. Brooks et al.
(2022) investigate the distinctions between various notions of being “more informed.”
Brooks et al. (2024) study how to compare information sources in ways that are robust
to potential presence of additional information.

These papers all draw on a particular benefit of signal formalism, namely a nota-
tional system that allows one to describe an agent’s information without a reference
to the information of other agents.2 By contrast, type spaces require that the set of

1 In formulating games of incomplete information, many treatments specify that each player’s utility
depends only on the vector of actions and the vector of types, without an explicit state of the world (Harsanyi
1967; Fudenberg and Tirole 1991). For our purposes, however, it is necessary to keep the state explicit as
the fundamental source of uncertainty about which the agents have private information, as in Mertens and
Zamir (1985).
2 A related benefit is that signal formalism allows us to intepret a “piece of data” without a reference to who
observes it. In particular, the informational content of a signal realization s ∈ S is defined independently
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agents and their information are all specified at the outset. To illustrate this differ-
ence, suppose there are two agents, Ann and Bob. If we use type space formalism
and are initially unaware of Bob’s existence, we describe Ann’s information as some
(TA, QA). If we are unaware of Ann’s existence, we describe Bob’s information as
some (TB, QB). Upon learning that both Ann and Bob need to be considered, we have
to describe a new, expanded type space (TA × TB, Q). By contrast, if we use signal
formalism, we specify Ann’s information as signal πA (whether Bob exists or not).
Similarly, we specify Bob’s information as signal πB . Upon learning that both Ann
and Bob need to be considered, nothing new needs to be done: our description of Ann
and Bob’s information via signals already encodes the correlation structure between
their information.

1.3 Two interpretations

The aforementionedbenefit of signal formalismmight seem like amathematical sleight
of hand; is it really possible to specify at the outset how one agent’s information
correlates with every other information source imaginable? The views on this may
vary depending on the intepretation of signal formalism. As emphasized in Brooks
et al. (2024), there are (at least) two distinct intepretations.

One intepretation is that �× X is the “true” state space, in the tradition of Aumann
(1976), that captures all uncertainty in theworld, including the uncertainty that governs
the realization of each agent’s information.3 Returning to the example above, under
this interpretation, there is a unique signal that describes Ann’s information. Thus, we
can specify Ann’s information whether Bob exists or not and similarly for Bob.

A different interpretation is that X is not some “true” dimension of the state space,
but rather a modeling device that encodes the uncertainty conditional on the state.
Under this interpretation, the use of signal formalism may require some caution. This
note addresses two potential concerns that arise, which we describe next.

1.4 Our results

First, once we fix X and λ, the set of type spaces that are induced by signal allocations
is clearly a strict subset of all possible type spaces. Is there any loss of generality in
restricting attention to such type spaces? In otherwords, is every type space represented
by some signal allocation? Theorem 1 shows that, under the maintained assumption
that λ is a non-atomic measure on X , the answer is affirmative: every type space is
represented by some signal allocation.

Second, one may worry that the appropriate choice of how to encode an agent’s
information as a signal may depend on what information other agents have. Returning
to our example of Ann and Bob, suppose we initially consider Ann only, knowing that
her information about the state is represented by (TA, QA). There is a signal πA that

of who the observer is and what alternative data they could have seen. Frankel and Kamenica (2019) draw
heavily on this feature of signal formalism.
3 The distinction between � and X is then typically the distinction between payoff-relevant and payoff-
irrelevant dimensions of the state space.
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represents (TA, QA). In fact, there are many such signals.4 Suppose we select some
particular signal, say π̂A, to represent (TA, QA). Then, Bob comes into the picture.
We now wish to encode the type space (TA × TB, Q) as some signal allocation. Might
we have to revise our previous choice for π̂A? Theorem 1 tells us there is a signal
allocation (πA, πB) that represents (TA × TB, Q), but this does not imply that there is
aπB such that

(
π̂A, πB

)
represents (TA × TB, Q). If therewere no suchπB , that would

contradict our claim that the signal formalism allows us to represent an agent’s beliefs
and higher order beliefs, without reference to the information of others. Theorem 2,
however, establishes that this is not a concern. There is in fact always a

(
π̂A, πB

)
that

represents (TA × TB, Q). More generally, Theorem 2 establishes that the encoding of
type spaces into signal allocations can be done “myopically”, without consideration
of other potential agents and their information.

1.5 Related literature

When n = 1, a type space corresponds to an experiment (Blackwell 1951). Green
and Stokey (1978; 2022) consider the relationship between the Blackwell order on
experiments and the refinement order on signals. In particular, they establish5 that
if experiment (T1, Q) Blackwell dominates

(
T ′
1, Q

′), there exist X and λ and signal
allocations (π1) and

(
π ′
1

)
such that 〈(π1)〉 ∼ (T1, Q), 〈(π ′

1

)〉 ∼ (
T ′
1, Q

′) and π1
refines π ′

1.
Green and Stokey (1978; 2022) allow the choice of X and λ to depend on (T1, Q)

and
(
T ′
1, Q

′). Gentzkow and Kamenica (2017) establish a slightly stronger version of
the result by pre-specifying X to be the unit interval [0, 1] and λ to be the uniform
distribution. While this strengthening is mathematically trivial, pre-specifying (X , λ)

is important for applications since it is required in order for signal formalism to yield
the notational benefits mentioned above. The particular choice of the unit interval and
the uniform distribution provides further expositional benefit because the conditional
probability of s given ω becomes simply the Lebesgue measure of sω. Indeed, all of
the aforementioned papers that use signal formalism use the [0, 1]-uniform version.
In this note, we fix (X , λ) at the outset but only impose the essential requirement of
non-atomicity.

In Brooks et al. (2022), we consider whether the Green-Stokey result extends
beyond pairs of experiments. We establish that, in general, the answer is negative.
We construct a collection of experiments {(Ti , Qi )}i such that there is no collection
of signals {πi }i with the property that 〈(πi )〉 ∼ (Ti , Qi ) for each i , and if (Ti , Qi )

Blackwell dominates
(
Tj , Q j

)
then πi refines π j for each i and j . However, we also

show that if the collection {(Ti , Qi )}i satisfies a certain property—if we consider

4 Recall that this was not the case under the “true” state space interpretation of signal formalism. When X
is just a modeling device to encode uncertainty, however, there is freedom in the choice of the encoding.
5 Green and Stokey’s paper, while formally published in 2022, has been available as a working paper at
least since 1978. In the note accompanying the published paper, the authors write “when we tried to publish
our paper in the late 1970s, a referee at the Annals of Statistics pointed out that the result in Theorem 1 had
appeared as Proposition 13 (p. 1439) in... (Le Cam 1964). We are pleased that there is still enough interest
in the issue to warrant publishing our paper now, which will perhaps make the result more accessible to
economists.”
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the undirected graph whose nodes are the experiments and whose edges denote their
Blackwell comparability, this graph has no cycles—then in fact there is always a col-
lection of signals {πi }i that induce the corresponding experiments, and such that if
(Ti , Qi ) Blackwell dominates

(
Tj , Q j

)
then πi refines π j . The construction of these

signals, however, cannot be done “myopically”; to build {πi }i , we might assign a pro-
visional πi to represent some (Ti , Qi ) but once we encounter a (Tk, Qk) with k > i ,
we may have to go back and re-assign a different signal to represent (Ti , Qi ).6 This
provides a useful contrast to our Theorem 2.

2 Main results

The definitions we already provided suffice for the statement of our first result.

Theorem 1 Given any type space, there exists a signal allocation that represents it.

The proof (and the intuition) behind Theorem 1 are easiest to understand as
consequences of our second result.

Toward the statement of that result, we say that the type space
(
T ′
1 × · · · × T ′

n′, Q′)

extends the type space (T1 × · · · × Tn, Q) if n′ ≥ n, T ′
i = Ti for all i ≤ n, and Q is

the marginal of Q′ on � × T1 × · · · × Tn .

Theorem 2 Suppose that the signal allocation (π1, . . . , πn) represents the
type space (T1 × · · · × Tn, Q). Suppose that

(
T ′
1 × · · · × T ′

n′, Q′) extends
(T1 × · · · × Tn, Q). There exists (πn+1, . . . , πn′) such that the signal allocation
(π1, . . . , πn, πn+1, . . . , πn′) represents

(
T ′
1 × · · · × T ′

n′, Q′).

Proof of Theorem 2 We prove the theorem for the case where n′ = n + 1. The general
case follows by induction.

Since π ≡ (π1, . . . , πn) represents (T1 × · · · × Tn, Q), there are bijections
{ fi : Ti → πi }ni=1 such that Q (ω, t1, . . . , tn) = Qπ (ω, f1 (t1) , ..., fn (tn)) for each
ω and (t1, . . . , tn) ∈ T .

For each t ∈ T1 × · · · × Tn , let

st = f1 (t1) ∩ · · · ∩ fn (tn) .

Note that λ(sω
t )μ0 (ω) = Qπ (ω, f1 (t1) , . . . , fn (tn)) = Q(ω, t).

We partition each sω
t into subsets

(
sω
t,tn+1

)
tn+1∈Tn+1 , so that λ

(
sω
t,tn+1

)
μ0 (ω) =

Q′ (ω, t, tn+1). This is possible because λ is non-atomic7 and

∑

tn+1∈Tn+1

Q′(ω, t, tn+1) = Q(ω, t) = λ
(
sω
t

)
μ0 (ω) .

6 To see why, note that the signal πi has to be specified with finitely many realizations, and any π j with
more realizations than πi cannot be a coarsening of πi .
7 For our purposes, the key implication of non-atomicity is the Darboux property: For any X ′ ⊆ X such
that λ

(
X ′) > 0 and for every real number α ∈ [0, 1], there is a X ′′ ⊆ X ′ such that λ

(
X ′′) = αλ

(
X ′).
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For each tn+1 ∈ Tn+1, let

fn+1(tn+1) = ∪ω∈�,t∈T1×···×Tn s
ω
t,tn+1

and set

πn+1 = { fn+1(tn+1)|tn+1 ∈ Tn+1}.

Note that the fn+1(tn+1) sets are disjoint and clearly their union is all of � × X , so
πn+1 is a signal. Moreover, fn+1 is clearly a bijection from Tn+1 to πn+1. Finally,
by construction, for each ω and (t, tn+1) ∈ (T1 × · · · Tn) × Tn+1, we have that(
∩n+1
i=1 fi (ti )

)ω = sω
t,tn+1

, and so

λ
((

∩n+1
i=1 fi (ti )

)ω)
μ0 (ω) = λ

(
sω
t,tn+1

)
μ0 (ω) = Q′(ω, t, tn+1),

Hence, (πi )
n+1
i=1 represents

(
T1 × · · · × Tn+1, Q′). ��

With Theorem 2 in hand, it is easy to prove Theorem 1.

Proof of Theorem 1 Given some type space (T1 × · · · × Tn, Q), we wish to construct
a signal allocation that represents it. First consider the null type space (T0, Q0)

where T0 is a singleton. This type space is represented by the null signal allocation
consisting of only the signal π0 = {� × X}. Moreover,

(
T0 × T1 × . . . × Tn, Q′)

with Q′ (ω, t0, . . . , tn) = Q (ω, t1, . . . , tn) extends (T0, Q0). Hence, by Theorem 2,
there is a signal allocation (π0, π1, . . . , πn) that represents

(
T0 × T1 × · · · × Tn, Q′).

Consequently, (π1, . . . , πn) represents (T1, . . . , Tn, Q). ��
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