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Abstract

The guarantee of a mechanism is the lowest objective value for the designer, across
all information structures and equilibria. Brooks and Du (2024) proposed a “first-
order” approach to characterizing guarantee-maximizing mechanisms by maximizing
a particular lower bound on the guarantee: the expected lowest strategic virtual ob-
jective. In this paper, we show that for any mechanism M , there is an associated
“dual reduction” mechanism M 1 for which the expected lowest strategic virtual ob-
jective of M 1 (and hence the guarantee of M 1) is greater than the guarantee of M .
This provides a rigorous foundation for the use of the strategic virtual objective in
designing informationally robust mechanisms. A parallel result, based on dual reduc-
tions of information structures, justifies Brooks and Du’s (2024) first-order approach
to characterizing information structures with the lowest potential, in terms of those
that minimize the expected highest informational virtual objective.
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1 Introduction

The literature on informationally-robust mechanism design has shifted the focus from a
mechanism’s performance in a single information environment to, instead, bounding the
mechanism’s performance across a large family of environments. This reflects a concern that
in practical settings, a mechanism designer may not know the detailed structure of agents’
information. Moreover, the standard modeling devices for distributed information often
seem more plausible as loose metaphors, that could discipline our theoretical search for
desirable institutions, rather than as a literal description of agents’ knowledge and thought
processes that should be “hard-coded” into the way agents interact with a mechanism.

In a series of recent papers, we and our coauthors have been developing a method-
ology for designing informationally-robust mechanisms. Holding fixed the distribution of
payoff-relevant fundamentals in the economy, we define the guarantee of a mechanism to
be the lowest expected objective for the designer, across all informational environments
and equilibria. Guarantee maximizing mechanisms have been characterized in applications
involving optimal auctions, bilateral trade, and public goods (Brooks and Du, 2021b,a,
2023, 2021a, 2024; Brooks, Du, and Zhang, 2024b; Brooks, Du, and Haberman, 2024a).
These novel mechanisms have both strong welfare guarantees and relatively simple struc-
ture, suggesting both that they may be practically useful and that guarantee-maximization
is a useful heuristic for discovering new mechanisms with desirable incentive properties.

These applications employ a general methodology that is fully described in Brooks and
Du (2024): Instead of maximizing the guarantee directly, we maximize a lower bound on the
guarantee, which is the expected lowest strategic virtual objective. This is the designer’s
innate objective, plus extra terms that correspond to a simple class of “local inward”
equilibrium constraints, pointing away from the action that corresponds to opting out of
the mechanism. The focus on this particular class of equilibrium constraints represents
a kind of “first order” approach in informationally robust mechanism design, wherein we
work with bounds on performance derived from first-order conditions for optimality of
agents’ behavior. In a series of applications, the lower bound has been found to be tight, in
the sense that the maximum guarantee is equal to the maximum expected lowest strategic
virtual objective.1 In this paper, we provide a general proof that the lower bound is always
tight. We thus provide a solid foundation for the use of the strategic virtual objective in
informationally robust mechanism design.

The approach is as follows: We start from a given mechanism, and its associated guar-
antee. This guarantee is the optimal value of a linear program in which we minimize the
designer’s objective over all Bayes correlated equilibria (BCE) (Bergemann and Morris,
2016). The dual of this linear program involves optimization over Lagrange multipliers on
a collection of “obedience” constraints: each agent prefers their equilibrium action over any
alternative. Up to rescaling, these multipliers can be interpreted as mixed strategies that

1It is important to note that in classical mechanism design, strong assumptions are needed on the
informationally environment for local equilibrium constraints to pin down the optimal mechanism. In
contrast, the guarantee holds across all information structures and equilibria, including those with much
more complicated incentive structure. Nonetheless, in the aforementioned applications, it turns out that
the critical “worst-case” information structures are those for which a simple pattern of binding equilibrium
constraints emerges at the optimum.
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represent the most “tempting” deviation from an equilibrium pure action. In particular, the
optimal value of the linear program would not change if instead of imposing all obedience
constraints, we only impose the constraint that an agent not want to deviate to this most
tempting mixture. We use these most tempting deviations to construct a new “reduced”
mechanism, in which there are countably many pure actions, each of which corresponds
to a particular mixed strategy in the original mechanism. Specifically, the first reduced
action corresponds to opting out (for sure) in the original mechanism. This is followed by
a second reduced action, which corresponds to the most tempting deviation from opting
out. The third reduced action corresponds to the mixture that would result by drawing
from the second reduced action, and then following the most tempting deviation from what
was drawn. And so on, thus generating a countable sequence of reduced actions, where
each element in the sequence corresponds to drawing from its predecessor and then taking
the most tempting deviation. We then show that the expected lowest strategic virtual
objective for the reduced mechanism is precisely the optimal Lagrangian that pins down
the guarantee in the original mechanism.

This construction represents a kind of “dual reduction” of the original mechanism that
is analogous to, but distinct from, that of Myerson (1997). We discuss this connection in
more detail in Section 5.

It is important to note that our construction starts with an original mechanism that
has finitely many actions, whereas the reduced mechanism has countably infinitely many
actions. A straightforward consequence of our proof, however, is that by truncating this
construction after a sufficiently large number of steps, we obtain a finite reduced mechanism
whose associated lower bound is arbitrarily close to the guarantee of the original mechanism.

How can we be certain that a given mechanism maximizes the guarantee? Brooks and
Du (2024) adopt the following duality-based approach. The potential of an information
structure is the highest expected objective of the designer, across all mechanisms and
equilibria. It is straightforward to establish that the minimum potential must be at least
the maximum guarantee. A saddle point for the guarantee/potential problem would be a
pair of a mechanism and an information structure, such that the respective guarantee and
potential are equal. By standard arguments, if a saddle point exists, then its mechanism
maximizes the guarantee and its information structure minimizes the potential.

Analogous to their approach to maximizing the guarantee, Brooks and Du (2024) also
provided a “first order” approach to minimizing the potential. In particular, we proved
that an information structure’s potential is less than its expected highest informational
virtual objective. The latter is the designer’s innate objective, plus additional terms that
correspond to a particular pattern of equilibrium constraints: the signals are linearly or-
dered, and binding equilibrium constraints are “local outward” pointing towards a single
signal with a binding participation constraint. In this paper, we provide a proof that the
potential upper bound is also tight. The construction shares a high level similarity with
that described above: Given an information structure, we construct a “dual reduction”
information structure, in which the agents’ signals are essentially mixtures over signals in
the original information structure. These mixtures are defined from the optimal Lagrange
multipliers for the potential-minimization program, which correspond to either most tempt-
ing distributions of signals to mimic, or probabilistic deviations to opting out. We then
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show that the expected highest informational virtual objective for the reduced information
structure is less than the potential of the original information structure. This dual reduc-
tion involves countably infinitely many signals, but again, we also establish an approximate
version of our result with a finite dual reduction.

The rest of this paper is as follows. Section 2 introduces notation and terminology.
Section 3 presents our result on dual reductions of mechanisms. Section 4 presents the
dual analysis for dual reductions of information structures. Section 5 is a discussion and
conclusion.

2 Model

There is a mechanism designer and a finite group of agents indexed by i P t1, . . . , Nu.
The designer controls an outcome ω P Ω, where Ω is finite. The designer and the agents
have expected utility preferences over outcomes. In particular, the preferences of agent
i “ 1, . . . , N over outcomes and states are represented by the utility index uipω, θq, which
depends on a payoff-relevant state of the world θ P Θ, where Θ is also finite. The designer’s
preferences are similarly represented by the utility index wpω, θq. The designer has a prior
belief about θ, denoted µ P ∆pΘq, which is held fixed throughout our analysis.2

Each agent could choose not to participate in the designer’s mechanism and receive
a certain state-dependent payoff. We normalize this outside option to zero and interpret
agent i’s utility as their payoff net of the outside option.

The agents’ private information about θ is described by an information structure, which
consists of: a product set of signal profiles S “

ś

i Si,
3 where Si is agent i’s set of signals,

and a joint distribution σ P ∆pS ˆ Θq for which the marginal on Θ is µ. We assume that
the Si are finite or countably infinite.4 The information structure is finite if each Si is finite.
An information structure is denoted I “ pS, σq, I is the set of information structures, and
I is the subset of information structures that are finite.5

The designer commits to a mechanism, which consists of: a product set of action profiles
A “

ś

iAi, where Ai is agent i’s set of actions, and an outcome function m : AÑ ∆pΩq that
maps action profiles to lotteries over outcomes. We assume that Ai is finite or countably
infinite. The mechanism is finite if each Ai is finite. An action ai P Ai is participation secure
if
ř

ω uipω, θqmpω|ai, a´iq ě 0 for all a´i and θ. A mechanism is participation secure if every
agent has an action that is participation secure. We will restrict the mechanism designer
to use only mechanisms that are participation secure. This ensures that, regardless of the
information structure and other agents’ strategies, no agent will have a strict incentive to

2Portions of this section are replicated almost verbatim from Section 2 of Brooks and Du (2024).
3Throughout our exposition, a sum or a product with respect to a variable without qualification means

that the operation should be applied for all values of the variable. In this case, the product is over all i,
that is, i “ 1, . . . , N .

4Brooks and Du (2024) restrict attention to finite mechanisms and information structures (cf. the
discussion in Section 3.3, ibid). We allow countably infinity here so that we can state exact results for
the dual reductions, which are countably infinite, and we report analogous approximate results when we
restrict to finite objects.

5The set of finite or countably infinite information structures is defined by identifying finite sets of
signals with finite subsets of the natural numbers. Likewise for the set of mechanisms.
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exit the mechanism, since they can always play a participation secure action and receive a
weakly higher payoff than their outside option. A mechanism is denoted by M “ pA,mq,
the set of all mechanisms is M, the set of participation secure mechanisms is M˚, and the
set of finite participation secure mechanisms is M˚

. We assume that a participation secure
mechanism exists.

A mechanism and an information structure pM, Iq together define a Bayesian game,
in which a (behavioral) strategy for agent i is a mapping bi : Si Ñ ∆pAiq. A strategy
profile b “ pb1, . . . , bNq is identified with the function from S to ∆pAq defined by bpa|sq “
ś

i bipai|siq. Expected utility for agent i is

UipM, I, bq “
ÿ

θ,s,a,ω

uipω, θqmpω|aqbpa|sqσps, θq,

and the designer’s welfare is

W pM, I, bq “
ÿ

θ,s,a,ω

wpω, θqmpω|aqbpa|sqσps, θq.

A strategy profile b is a (Bayes Nash) equilibrium of pM, Iq if UipM, I, bq ě UipM, I, b1i, b´iq
for all i “ 1, . . . , N and b1i. The set of equilibria is EpM, Iq, which we note is non-empty
whenever M and I are both finite.

The guarantee of a mechanism M is

GpMq “ inf
IPI

inf
bPEpM,Iq

W pM, I, bq,

that is, the infimum welfare of the designer across all information structures and equilibria.
The potential of an information structure I is

P pIq “ sup
MPM˚

sup
bPEpM,Iq

W pM, I, bq,

that is, the supremum welfare of the designer across all participation-secure mechanisms
and equilibria. It is immediate that for any M PM˚

and I P I, GpMq ď P pIq.

3 Dual reductions of Mechanisms

This section presents our first main result: For any mechanism M , we can construct a “dual
reduction” of it, denoted M 1, for which the expected lowest strategic virtual objective of
M 1 is greater than GpMq. To develop this result, we first describe the strategic virtual
objective, and then we will construct the dual reduction.

The strategic virtual objective is defined by first fixing a linear order on actions. With-
out loss, we label the actions with integers. Let X˚

i “ t0, 1, 2, . . .u to be the non-negative
integers, and X˚ “

ś

iX
˚
i . We will treat X˚ as an action space and consider ordered

mechanisms of the form pX˚,mq. M˚ is the set of ordered mechanisms for which 0 P X˚
i

is participation secure for each agent i.
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In a slight abuse of notation, we say that an ordered mechanism pX˚,mq is finite if
there is some k P X˚

i such that for i, ω, and x with xi ą k, mpω|xq “ mpω|k, x´iq. Thus,
all actions above some finite threshold have the same meaning in the mechanism.

Fix an ordered mechanism pX˚,mq P M˚ and a constant C P R`. The associated
strategic virtual objective at the action profile x and the state θ is

λpx, θ, Cq ”
ÿ

ω

«

wpω, θqmpω|xq ` C
ÿ

i

uipω, θqpmipω|xi ` 1, x´iq ´mipω|xqq

ff

.

As we mentioned in the introduction, λ is the sum of the designer’s innate objective, plus
terms that correspond to the agents’ gains from deviating to actions which are further away
from the participation secure action. The constant C is effectively the multiplier on the
agents’ equilibrium constraints. We have fixed this multiplier to be the same for all agents
and equilibrium actions, but as discussed in Brooks and Du (2024, Section 3.3), this is
essentially without loss.

Proposition 3 of Brooks and Du (2024) shows that for any ordered mechanism pX˚,mq,

GpX˚,mq ě GpX˚,m,Cq ”
ÿ

θ

µpθq inf
x
λpx, θ, Cq.

Now, starting from a finite mechanismM “ pA,mq, we define a dual reduction pX˚,m˚q P

M˚ as follows. Let σ˚ be a BCE that attains the minimum in GpMq, and let α˚i pa
1
i|aiq be

the associated optimal multipliers on obedience constraints. Thus,6

GpMq “ min
σP∆pAˆΘq

s.t. margΘ σ“µ

ÿ

a,θ,ω

σpa, θq

»

–wpω, θqmpω|aq `
ÿ

i,a1i

α˚i pa
1
i|aiquipω, θqpmpω|a

1
i, a´iq ´mpω|ai, a´iqq

fi

fl

“
ÿ

θ

µpθqmin
a

ÿ

ω

»

–wpω, θqmpω|aq `
ÿ

i,a1i

α˚i pa
1
i|aiquipω, θqpmpω|a

1
i, a´iq ´mpω|ai, a´iqq

fi

fl .

Let

C “ 1`max
ai

ÿ

a1i‰ai

α˚i pa
1
i|aiq,

and without loss, set

α˚i pai|aiq “ C ´
ÿ

a1i‰ai

α˚i pa
1
i|aiq ą 0.

Note that we have intentionally used the same notation for the normalizing constant as for
the Lagrange multiplier on local constraints. In the proof of Theorem 1 below, they will
turn out to be the same quantity.7

6The Lagrangian in GpMq would coincide with the strategic virtual objective of M if Ai “ X˚i and
α˚i ps

1
i|siq “ C if a1i “ ai ` 1 and is zero otherwise.

7Indeed, this construction provides a complementary perspective as to why it is without loss to normalize
the “size” of a deviation so that the multiplier is constant: we are free to choose the probability α˚i pai|aiq,
which is proportional to the likelihood of not deviating at all, and parametrizes the likelihood of a deviation
from the given action
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For each i, let a0
i be (any) participation secure action for player i.8 Then, for each i,

define a function gi : X˚
i Ñ ∆pAiq as follows: gipa

0
i |0q “ 1, and for k ą 0,

gipai|kq “
ÿ

a1i

gipa
1
i|k ´ 1q

«

α˚i pai|a
1
iq

ř

a2i
α˚i pa

2
i |a

1
iq

ff

.

The interpretation is as follows: each action xi P X˚
i corresponds to a mixture in the

original mechanism. The action xi “ 0 is identified with a0
i P Ai, a participation secure

action; xi “ 1 is the most tempting deviation from a0
i . Action xi is the mixture obtained

by drawing an action from xi ´ 1 and then taking the most tempting deviation from the
corresponding original action. In other words, xi is the mixture obtained by iteratively
taking the most tempting deviation xi times, starting from a0

i . Thus, actions in the dual
reduction are interpreted as a number of deviations from a0

i .
Finally, we define for all ω and x,

m˚
pω|xq “

ÿ

aPA

gpa|xqmpω|aq,

where

gpa|xq “
ź

i

gipai|xiq.

Theorem 1. For any finite participation secure mechanism M “ pA,mq and corresponding
dual reduction pX˚,m˚q, we have that GpX˚,m˚, Cq ě GpMq.

As a result, the supremum guarantee across finite participation secure mechanisms is
equal to the supremum expected lowest strategic virtual objective across all participation
secure ordered mechanisms.9

Proof. We have:

GpX˚,m˚
q

“
ÿ

θ

µpθq inf
x

ÿ

ω

«

wpω, θqm˚
pω|xq ` C

ÿ

i

pm˚
pω|xi ` 1, x´iq ´m

˚
pω|xi, x´iqquipω, θq

ff

“
ÿ

θ

µpθq inf
x

ÿ

ω,a

«

wpω, θqmpω|aqgpa|xq ` C
ÿ

i

mpω|aq pgipai|xi ` 1q ´ gipai|xiqq g´ipa´i|x´iquipω, θq

ff

“
ÿ

θ

µpθq inf
x

ÿ

ω,a

«

wpω, θqmpω|aqgpa|xq

` C
ÿ

i

mpω|aq

¨

˝

ÿ

a1i

α˚i pai|a
1
iq

C
gipa

1
i|xiq ´ gipai|xiq

˛

‚g´ipa´i|x´iquipω, θq

ff

8There is a different dual reduction for every choice of optimal multipliers, every selection of the par-
ticipation secure actions, and every choice of the constant C.

9The latter supremum is taken across all participation secure ordered mechanisms and multipliers C.
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“
ÿ

θ

µpθq inf
x

ÿ

ω,a

«

wpω, θqmpω|aqgpa|xq `
ÿ

i,a1i

α˚i pa
1
i|aiq pmpω|a

1
i, a´iq ´mpω|ai, a´iqq gpa|xquipω, θq

ff

.

The above equation is clearly weakly larger than

ÿ

θ

µpθqmin
a

ÿ

ω

«

wpω, θqmpω|aq `
ÿ

i,a1i

α˚i pa
1
i|aiq pmpω|a

1
i, a´iq ´mpω|ai, a´iqquipω, θq

ff

“ GpA,mq.

The dual reduction that we constructed before Theorem 1 involves countably infinitely
many actions. In contrast, the mechanism that we started with has only finitely many
actions. An advantage of working with finite mechanisms and information structures is
that equilibria always exist, so that we can be assured that favorable guarantees are not
relying on some controversial use of equilibrium existence in infinite games. In fact, we can
provide an approximate version of Theorem 1 with finite mechanisms.

Given a dual reduction pX˚,m˚q, we define its k-truncation to be the mechanism
pX˚,m˚ ˝ fkq, where fk : X˚ Ñ X˚ is defined by

fki pxq “ minpxi, kq.

In other words, all actions above k are relabeled as k. Clearly, pX˚,m˚ ˝ fkq is a finite
mechanism.

Proposition 1. For any finite participation secure mechanism M “ pA,mq and corre-
sponding dual reduction pX˚,m˚q and for any ε ą 0, there exists a k so that GpX˚,m˚ ˝

fkq ě GpMq ´ ε.
As a result, the supremum guarantee across finite participation secure mechanisms is

equal to the supremum expected lowest strategic virtual objective across all finite participa-
tion secure ordered mechanisms.

Proof. The analogue of g for pX˚,m˚ ˝ fkq is pgipai|xiq “ gpai|f
kpxiqq. Let the associated

mechanism be denoted by pm “ m˚ ˝ fk:

pmpω|xq “
ÿ

aPA

pgpa|xqmpω|aq.

We compare the strategic virtual objectives of pX˚,m˚q and pX˚, pmq:

λ˚px, θ, Cq “
ÿ

ω

«

wpω, θqm˚
pω|xq ` C

ÿ

i

pm˚
pω|xi ` 1, x´iq ´m

˚
pω|xi, x´iqquipω, θq

ff

“
ÿ

ω,a

«

wpω, θqmpω|aqgpa|xq ` C
ÿ

i

mpω|aq pgipai|xi ` 1q ´ gipai|xiqq g´ipa´i|x´iquipω, θq

ff

,
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pλpx, θ, Cq “
ÿ

ω

«

wpω, θqpmpω|xq ` C
ÿ

i

ppmpω|xi ` 1, x´iq ´ pmpω|xi, x´iqquipω, θq

ff

“
ÿ

ω,a

«

wpω, θqmpω|aqpgpa|xq ` C
ÿ

i

mpω|aq ppgipai|xi ` 1q ´ pgipai|xiqq pg´ipa´i|x´iquipω, θq

ff

,

|λ˚px, θ, Cq ´ pλpx, θ, Cq|

ďM
ÿ

ω,a

|gpa|xq ´ pgpa|xq| ` CM
ÿ

ω,a,i

p|gipai|xi ` 1q ´ gipai|xiq|Ixiěk ` |g´ipa´i|x´iq ´ pg´ipa´i|x´iq|q,

where M is a constant such that |uipω, θq| ďM and |wpω, θq| ďM for all ω and θ.
Because α˚i pai|aiq ą 0 for every ai, every ai is aperiodic in the Markov chain α˚i pa

1
i|aiq{C.

Therefore, by a standard result on Markov chain (e.g., Stroock, 2014, equation (4.1.15) on
page 85), limkÑ8 gipkq exists in ∆pAiq, which is the invariant measure of the chain when it
starts from a0

i . We denote this invariant measure by gip8q.
Since

|gipai|xiq ´ pgipai|xiq| ď |gipai|xiq ´ pgipai|kq|Ixiěk
and

lim
kÑ8

gipai|kq “ gipai|8q

for every ai and xi, we see that supx,θ |λ
˚px, θ, Cq ´ pλpx, θ, Cq| Ñ 0 as k Ñ 8. Proposition

1 then follows from Theorem 1.

In Brooks, Du, and Zhang (2024b), we computed guarantees for binary action trading
mechanisms, where agents simply indicate whether or not they want to trade. We remarked
that the guarantee would be the same even if we relaxed the solution concept to coarse Bayes
correlated equilibrium, which is analogous to BCE, except that we only impose obedience
constraints of the form: for every i and ai, agent i should weakly prefer their equilibrium
strategy to the strategy of always playing ai (regardless of agent i’s private information).

For any mechanism M , we could define its coarse guarantee GCpMq to be minimum
designer welfare across all coarse Bayes correlated equilibria. This is a linear program,
and in the dual program, relaxing the solution concept to coarse BCE manifests itself as a
functional form restriction that for all i and ai, the multiplier αipai|a

1
iq does not depend on

the equilibrium action a1i. In other words, the “most tempting deviation” is independent
of the equilibrium action.

By following the same procedure as described at the beginning of this section, we can
use the optimal multipliers to define a coarse dual reduction of M , which is derived from
optimal multipliers. Because of the property described in the previous paragraph, the
Markov chain on most tempting deviations converges after one step. Hence, a coarse dual
reduction only has two actions: the participation secure action and the most tempting
deviation. We therefore have the following corollary of Theorem 1.
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Corollary 1. For any participation secure mechanism M and corresponding coarse dual
reduction pX˚,m˚q, we have that GpX˚,m˚q ě GCpMq. Moreover, the coarse dual re-
duction pX˚,m˚q has only two actions, in the sense that for all i and x´i and xi ą 0,
m˚pxi, x´iq “ m˚p1, x´iq (all positive actions are equivalent to the action 1).

As a result, supremum coarse guarantee across all finite participation secure mechanisms
is equal to the supremum expected lowest strategic virtual objective across binary action
participation secure mechanisms.

4 Dual reductions of Information Structures

We now present a corresponding result for dual reductions of information structures.
Let X

˚
“ t0, 1, 2, . . .u Y t8u. In other words, we take X˚ and add a point at infinity.

We now consider ordered information structures of the form pX
˚
, σq. Such an information

structure is finite if there exists a k such that for all x and θ, if k ă xi ă 8 for some i,
then σpx, θq “ 0.

For any ordered information structure and constant C, we define the informational
virtual objective at a signal x and for an outcome ω to be10

ψpx, ω, Cq “
ÿ

θ

«

wpω, θqσpx, θq ´ C
ÿ

i

uipω, θq pσpxi ` 1, x´i, θq ´ σpxi, x´i, θqq

ff

.

Note the implicit convention that8`1 “ 8. In effect, we drop all participation constraints
except participation for one type, and local “outward” constraints that represent deviation
towards the participation constraint. The one exception is the infinite type, for which no
constraints bind. Proposition 3 of Brooks and Du (2024) shows that

P pX
˚
, σq ě P pX

˚
, σ, Cq ”

ÿ

x

max
ω

ψpx, ω, Cq.

We now describe how to construct dual reductions of a given information structure
I “ pS, σq. The potential P pIq is the solution to a linear program, for which there exist
multipliers α˚i ps

1
i|siq and β˚i psiq such that11

P pIq “ max
m:SÑ∆pΩq

ÿ

s,θ,ω

σps, θq

«

wpω, θqmpω|sq `
ÿ

i

β˚i psiquipω, θqmpω|sq

`
ÿ

i,s1i

α˚i ps
1
i|siquipω, θqpmpω|sq ´mpω|s

1
i, s´iqq

ff

10Brooks and Du (2024) show that for the optimal auctions problem, the expected highest informational
virtual objective is minimized when signals are independent (unconditional on the state), in which case the
informational virtual objective reduces to an interdependent-values “virtual value” that is familiar from
auction theory (Myerson, 1981; Bulow and Klemperer, 1996). Thus, by pursuing an exercise inspired by
Myerson (1997), we provide a foundation for the analysis of independent types and virtual values, following
Myerson (1981).

11The Lagrangian in P pIq would coincide with the informational virtual objective of I if Ai “ X
˚

i and
α˚i ps

1
i|siq “ C if a1i “ ai ´ 1 and is zero otherwise, and β˚i psiq “ C if si “ 0 and is zero otherwise.
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“
ÿ

s

max
ω

ÿ

θ

«

wpω, θqσps, θq `
ÿ

i

β˚i psiquipω, θqσps, θq

`
ÿ

i,s1i

rα˚i ps
1
i|siqσps, θq ´ α

˚
i psi|s

1
iqσps

1
i, s´i, θqsuipω, θq

ff

.

To define a dual reduction of I, we associate each si with a distribution over xi P
X
˚

i . This distribution is defined from a particular Markov chain, for which the states are
elements of Si, plus an additional absorbing state H. We let

C “ 1`max
si

»

–β˚psiq `
ÿ

s1i‰si

α˚i ps
1
i|siq

fi

fl .

We then set α˚i psi|siq so that for all si,

C “ β˚psiq `
ÿ

s1i

α˚i ps
1
i|siq.

Starting from si, with probability β˚psiq{C, the chain transitions to H. Otherwise, with
probability α˚i ps

1
i|siq{C, the si transitions to s1i. Suppose that we draw an initial ps, θq

according to σ, and then let the Markov chain run. For each i, there is a certain number
of periods xi that the chain will run before reaching H. For each si, let ρipxi|siq be the
probability that starting at si, it takes xi more periods to reach H. Note that ρp8|siq ą 0
means that si may transition to a recurrent class of the Markov chain without any s1i for
which βips

1
iq ą 0.

Note that ρip0|siq “ β˚i psiq{C, and for xi ą 0, it is defined recursively as

ρipxi|siq “
ÿ

s1i

α˚i ps
1
i|siq

C
ρipxi ´ 1|s1iq.

We further remark that it may be that the chain never transitions to zero, if si does
not communicate with a signal s1i for which βips

1
iq ą 0. In that case, we simply have

ρip8|siq “ 1. We then define

σ˚px, θq “
ÿ

s

σps, θqρpx|sq,

where

ρpx|sq “
ź

i

ρipxi|siq.

In other words, pX
˚
, σ˚q is the information structure we would obtain if agents do not get

to observe their original signals. Instead, we have the signals transition independently until
they reach H, and agents observe how many periods it takes their signal to transition to
H (or they observe 8 if the signal never transitions to H).
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Theorem 2. Given any finite information structure I “ pS, σq and corresponding dual
reduction pX˚, σ˚q and multiplier C, we have that P pX˚, σ˚, Cq ď P pIq.

As a result, the infimum potential across all finite information structures is equal to
the infimum expected highest informational virtual objective across all ordered information
structures.12

Proof. For the reduced information structure, we now have the following upper bound on
designer welfare:

P pX˚, σ˚q

“
ÿ

x

max
ω

ÿ

θ

«

wpω, θqσ˚px, θq ´ C
ÿ

i

uipω, θq pσ
˚
pxi ` 1, x´i, θq ´ σ

˚
px, θqq

ff

“
ÿ

x

max
ω

ÿ

θ

«

wpω, θqσ˚px, θq ´ C
ÿ

s

σps, θq
ÿ

i

uipω, θq pρipxi ` 1|siq ´ ρipxi|siqq ρ´ipx´i|s´iq

ff

“
ÿ

x

max
ω

ÿ

s,θ

«

wpω, θqσps, θqρpx|sq

´ Cσps, θq
ÿ

i

uipω, θq

¨

˝

ÿ

s1i

α˚i ps
1
i|siqρpxi|s

1
iq

C
´ ρipxi|siq

˛

‚ρ´ipx´i|s´iq

ff

“
ÿ

x

max
ω

ÿ

s,θ

«

wpω, θqσps, θqρpx|sq

´ σps, θq
ÿ

i

uipω, θq

¨

˝

ÿ

s1i

α˚i ps
1
i|siqρpxi|s

1
iq ´

¨

˝

ÿ

s1i

α˚i ps
1
i|siq ` β

˚
i psiq

˛

‚ρipxi|siq

˛

‚ρ´ipx´i|siq

ff

“
ÿ

x

max
ω

ÿ

s,θ

«

wpω, θqσps, θqρpx|sq `
ÿ

i

uipω, θqβ
˚
i psiqσps, θqρpx|sq

´
ÿ

i

uipω, θq

¨

˝

ÿ

s1i

α˚i psi|s
1
iqσps

1
i, s´i, θq ´

ÿ

s1i

α˚i ps
1
i|siqσps, θq

˛

‚ρpx|sq

ff

.

The above equation is clearly weakly less than

ÿ

x,s

max
ω

ÿ

θ

«

wpω, θqσps, θqρpx|sq `
ÿ

i

uipω, θqβ
˚
i psiqσps, θqρpx|sq

´
ÿ

i

uipω, θq

¨

˝

ÿ

s1i

α˚i psi|s
1
iqσps

1
i, s´i, θq ´

ÿ

s1i

α˚i ps
1
i|siqσps, θq

˛

‚ρpx|sq

ff

“
ÿ

s

max
ω

ÿ

θ,x

«

wpω, θqσps, θqρpx|sq `
ÿ

i

uipω, θqβ
˚
i psiqσps, θqρpx|sq

12The latter infimum is across all ordered information structures and multipliers C.

12



´
ÿ

i

uipω, θq

¨

˝

ÿ

s1i

α˚i psi|s
1
iqσps

1
i, s´i, θq ´

ÿ

s1i

α˚i ps
1
i|siqσps, θq

˛

‚ρpx|sq

ff

“ P pS, σq.

The first equality comes from the fact that θ is uncorrelated with x given s, and the second
equality comes from the optimality of α˚ and β˚.

The infinite signal xi “ 8 in the dual reduction represents all of the signals in pX, σq
that do not commute to a signal with a binding participation constraint. This represents a
subtle difference with the ordered information structures and constraints used in the upper
bounding program of Brooks and Du (2024), where it is assumed that all signals communi-
cate with a binding participation constraint. Under this assumption, the two constructions
coincide (up to a rescaling of the multiplier on local outward incentive constraints).

The construction of the informational virtual objective just presented is therefore more
general. It seems that the infinite signal cannot be dispensed with, and it could be that
all participation constraints are slack at the potential minimizer. Such an example is
given in Section 4.3 of Brooks and Du (2024), in the context of a public goods problem,
where the potential is minimized by an information structure in which each agent has a
single signal, meaning there is no information about the state. Curiously, for this example,
the duality gap is positive. We conjecture that there may be a more general connection
between whether there is a duality gap and whether participation constraints are slack at
the potential minimizer.

Finally, as with the mechanism, we can modify our construction to yield a truncated
dual reduction that has a virtually lower potential than the original information structure.
Given a dual reduction pX

˚
, σ˚q, we define its k-truncation to be the ordered information

structure pX
˚
, pσq, where

pσpx, θq “
ÿ

yPpζkq´1pxq

σ˚py, θq;

ζki pxq “

#

k if k ă xi ă 8;

xi otherwise.

Note that for all k, the k-truncation is a finite information structure.

Proposition 2. For any finite information structure I “ pS, σq and corresponding dual
reduction pX

˚
, σ˚q and for any ε ą 0, there exists a k so that if pX

˚
, pσq is the k-truncation

of pX
˚
, σ˚q, then P pX

˚
, pσq ď P pIq ` ε.

As a result, the infimum potential across all finite information structures is equal to the
infimum expected highest informational virtual objective across all finite ordered information
structures.
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Proof. Let w “ maxθ,ω wpω, θq and u “ maxi,θ,ω uipω, θq. The expected highest informa-

tional virtual objective for the k-truncation pX
˚
, pσq is

P pX
˚
, pσq “

ÿ

x

max
ω

ÿ

θ

«

wpω, θqpσpx, θq ` 2CIxi“0

ÿ

i

uipω, θqpσpx, θq

` CIxią0

ÿ

i

uipω, θq rpσpx, θq ´ pσpxi ´ 1, x´i, θqs

ff

ď
ÿ

x

max
ω

ÿ

θ

«

wpω, θqσ˚px, θq ` 2CIxi“0

ÿ

i

uipω, θqσ
˚
px, θq

` CIxią0

ÿ

i

uipω, θq rσ
˚
px, θq ´ σ˚pxi ´ 1, x´i, θqs

ff

` pw ` 4Cuq
ÿ

x,θ

|σ˚px, θq ´ pσpx, θq|

ď P pX
˚
, σ˚q ` 2pw ` 4Cuq

ÿ

θ

ÿ

tx|kăxiă8 for some iu

σ˚px, θq.

Now, it must be that for k sufficiently large,

ÿ

θ

ÿ

tx|kăxiă8 for some iu

σ˚px, θq ă
ε

2pw ` 4Cuq
,

since otherwise σ˚ could not integrate to one. Thus, by Theorem 2, we have that

P pX
˚
, pσq ď P pIq ` ε,

as desired.

5 Discussion

Theorems 1 and 2 show that in solving for the maximum guarantee and minimum potential,
it is without loss to assume that there is a simple one-dimensional structure on binding
equilibrium constraints. This provides a foundation for the tools developed in Brooks and
Du (2024), namely, that one can solve for the maximum guarantee by maximizing the
expected lowest strategic virtual objective across all ordered participation secure mech-
anisms, and that one can solve for the minimum potential by minimizing the expected
highest informational virtual objective across all ordered information structures.

While the bounds are always tight in this sense, it might still be the case that the
minimum potential is strictly greater than the maximum guarantee. Indeed, Brooks and
Du (2024) give an example where there is such a positive “duality gap.” They also prove
non-constructively that there is no duality gap for a wide class of optimal auctions problems.
It remains an important and open direction for future research, to establish useful sufficient
conditions for max guarantee to equal min potential.
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More broadly, we have provided a deeper understanding of those environments that are
especially challenging for a mechanism designer, namely, those in which types are linearly
ordered by a “willingness” to participate in the mechanism. And we have provided a deeper
understanding of those indirect which are informationally-robust in the presence of binding
participation constraints, namely, those in which actions are linearly ordered by a “degree
of participation” in the mechanism.

Finally, we comment on the connection with Myerson (1997).13 That paper considers
the correlated equilibria of a complete information normal-form game. Correlated equilibria
are joint distributions over actions that satisfy obedience constraints. As in our analysis,
Myerson interprets the multipliers on those obedience constraints as a Markov chain, and
derives from it a particular “dual reduction” game, where actions in the reduced game
correspond to mixtures in the original game. In fact, these mixtures are the invariant
measures that are induced by the Markov chain. A main result of that paper is that any
correlated equilibrium of the reduction is associated with a correlated equilibrium of the
original game. In that sense, dual reduction shrinks the set of correlated equilibria.

It is natural to apply this idea to informationally-robust mechanism design, since a re-
duction in the set of BCE would necessarily be associated with an increase in the guarantee.
Indeed, there is no great difficulty in adapting Myerson’s construction to the setting where
there is a payoff relevant state θ, and we consider BCE instead of correlated equilibria. The
problem is that a reduction in Myerson’s sense might no longer be participation secure.
For example, consider the common value first-price auction, whose revenue guarantee was
computed by Bergemann, Brooks, and Morris (2017). There are many ways in which we
could “reduce” the first-price auction so as to shrink the set of BCE, e.g., by forcing all
players to bid the ex ante expected value (which is indeed a BCE, induced by an equilib-
rium when the bidders have no information). But such a reduction would obviously fail
to satisfy natural participation constraints when bidders do have information about the
value.14 One can view our dual reduction as a way of shrinking the set of feasible outcomes
and improving the guarantee without losing participation security.15 Indeed, as xi Ñ 8,

13More recently, Myerson (2024) extends that work to communication equilibria of sender-receiver games,
and offers a “dual reduction” of the sender’s information that is analogous to our dual reduction of an
information structure.

14It is important to distinguish the optimal multipliers for the revenue guarantee program, which were
used in our dual reduction, versus the multipliers used in the construction of the invariant measures in
Myerson (1997). In general the two sets of multipliers are distinct. If we looked for invariant measures
with respect to the optimal multipliers for the revenue guarantee, as identified by Bergemann, Brooks,
and Morris (2017), the only invariant measure would be to bid the highest amount in the support of the
revenue minimizing BCE, which is greater than the ex ante expected value and clearly not a BCE of the
first-price auction.

15Clearly, by constraining the agents to only playing certain mixtures in the original game, we reduce
the set of feasible joint distributions over actions and outcomes. We do not know whether this construction
shrinks the set of equilibrium outcomes. The proof that the dual reduction in Myerson (1997) reduces the
set of correlated equilibria relies on the fact that the reduced actions are invariant measures, and moreover,
that the multipliers on obedience constraints induce λ “ 0. But in general, λ ‰ 0 for our optimal solution.
But this issue is not relevant to our primary concern, which is achieving a higher guarantee. Similarly,
we do not know whether our dual reduction of the information structure reduces the set of outcomes that
can be implemented in equilibrium, but we do know that the best implementable outcome for the dual
reduction is weakly worse than that for the original information structure.
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the reduced action converges to the invariant measure for the recurrent class that is reached
from the participation secure action in the original mechanism. In a similar spirit, our dual
reduction of the information structure shrinks the set of feasible outcomes and reduces the
best implementable objective for the designer, without weakening the agents’ participation
constraints.
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